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The indirect interaction between adatom pairs on the (100) surface of a simple-cubic tight-
binding solid is investigated within a molecular-orbital approach. A general scheme for cal-
culating the surface-density-of-states change and the interaction energy of one and two single-
level adatoms is presented, and contact (and a correction) is made with Grimley's formula-
tion. The method permits binding above surface atoms, at bridge sites, or at centered posi-
tions, and yields interaction energy as a function of band filling, adatom energy level, and a
general hopping potential V between an adatom and the nearest surface atom(s). Calculations
have been carried out for V/W& in the range 1/12-1/2, the upper limit giving split-off states
(8'& —= bandwidth). The single-atom interaction shows little dependence on binding type, in all
three cases being most attractive when the Fermi energy equals the noninteracting adatom
level, with a strongly V-dependent strength. For the pair interaction, one finds a strength at
nearest-neighbor separation of about an order of magnitude smaller than the absorption energy
of a single adatom. This interaction has an exponentiallike dropoff and sign alternations as
one moves along the (10) direction. Under reasonable conditions, the nearest-neighbor inter-
action is often repulsive while the next nearest, third nearest, or fourth nearest is attractive,
suggesting the patterns c(2 && 2), (2 x 2), and c(4 && 2), respectively, which are frequently ob-
served in the adsorption of simple gases on the (100) surfaces of transition metals. On the
basis of two-dimensional Ising-model calculations including second-neighbor interactions, one
can estimate the strength of V from the observed disordering temperature of the adatom lat-
tice; the result is similar to that obtained from estimates based on the heat of adsorption.

I. INTRODUCTION

An intriguing aspect of the chemisorption of
simple gases onto transition metals is the variety
of surface structures observed. Below a critical
temperature, the pattern within surface adlayer
islands is highly dependent on the substrate, but
not always are these arrays identical in structure
to the surface layer of the adsorbate. The nearest
site occupied (relative to some occupied site) is
often the second, third, or even fourth nearest
neighbor rather than the (first) nearest neighbor.
Over a decade ago, Koutecky~ deduced that these
adatoms interact (share electrons) via the sub-
strate-metal electron band and therefore exhibit
oscillatory behavior reminiscent Ruderman-
Kittel-Kasuya- Yosida (RKKY) inte ractions. In
the last several years, Grimley ~ and Newns' have
formalized this "indirect interaction" on the basis
of the analogy to the Anderson model for dilute
magnetic impurities. However, the interaction
energy has only been evaluated in the asymptotic
regime and/or in the simple (and often invalid) ap-
proximation that a virtual level could describe
the interaction.

This paper presents a first attempt "..t the theo-
retical evaluation of the two-adatom indirect inter-
action at nearby binding sites. As such, we have
allowed ourselves a number of simplifying assump-
tions. We deal with the (100) surface of a simple
cubic semi-infinite lattice, using the formalism

and program of Kalkstein and Soven to obtain sur-
face Green's functions. Since we are interested
in covalent binding, we work with transition-metal
substrates, as these provide the strongest bond.
A tight-binding model replicates the d band, and
the sP band is neglected, as in Grimley and
Newns. ' Thus the possibility of hybridization as
an explanation for H on a W (100) surface, sug-
gested by Tamm and Schmidt, '0 is excluded from
the beginning. The adatoms are assumed to have
a single energy level, a reasonable approximation
for a simple gas atom or an atom with a partially
filled d shell. Correlation effects are not consid-
ered explicitly, but can be roughly accommodated
by self-consistently adjusting the parameters of
the problem, such as the adatom level. This ap-
proximation is reasonable in systems where there
is only a weak tendency toward localized-moment
formation on the adsorbate, i.e. , U/ml ( 1, where
U is the Coulomb repulsion and I' is a measure of
the half-width of the adsorbate density of states,
corresponding to the conventional half-width in the
case of a Lorentzian level.

In Sec. II we describe our general calculational
method for dealing with the single-adatom and
pair-interaction problems. The method extends
easily and naturally to the three-or-more-body
problem but this generality is not required to ex-
plain surface patterns. Since the n-body interac-
tion energy falls off by an order of magnitude for
each additional particle (at least for n small) we

362S



T. I . EINSTEIN AND J. R. SCHRIEP FEB

0 0 0 ~
5I 52 53 54

0 0 ~ 0
2l 22 25 24

0 0 0 0
I I I2 I 3 l4

~ ~ 0 0
X

0 0 0
X

0 0 0 0

0 0 0X
0 0 0

X
~ 0 0 0
X
0 0 0 0

need only consider the one- and two-body terms.
The calculations distinguish binding directly above
the surface (called "atop" or A here, "and on-site"
or "linear" sometimes elsewhere), at a centered
site (symmetrically between four surface atoms;
called C), or at a bridge site (symmetrically be-
tween two; called 8). In tbe last case, we dis-
tinguish bridge B and bridge-perpendicular BP
binding in the pairproblem: In the former case, a
line joining the two surface neighbors of an adatom
tends to be parallel to a line joining the two
adatoms (i.e. , the angle between them is less than
45'); in the latter case, the lines are more nearly
perpendicular (angle greater than 45'). If the two

adatoms sit diagonally, the two cases become
identical. Figure 1 illustrates the four binding
symmetries, and also describes our labeling con-
vention for surface sites: %'e label sites by the
subscripts (ij) of R sguare IRttlce so 'tllRt (11) ls
the "origin" and i, j are generally positive in-
tegers —symmetries in the interaction energy, and
ultimately the surface Green's functions, allow all
discussions to be framed in texms of one quadrant
of the plane. In dealing with the problem of adatom
pairs, we will denote the location of one adatom
by (ll) [i.e. , the lattice site (ll) or the associated
symmetry site, as illustrated in Fig. 1j and tbe
other adatom at some other (ij). Since the pair
interaction tends to be weaker than the variation
in single-adatom adsorption energy with binding
symmetry, we calculate here only the case that
both adatoms select the same binding symmetry.
It is straightforward to generalize the calculations
to a more general situation. The pair intexaction
then determines the configuration within an island

FIG. 1. Charts indicating the labeling convention for
the binding of adatom pairs on the (100) surface of a sim-
ple cubic crystal, and the four possible types of binding.
The first diagram shows atop (4) binding. One adatom
is always taken to bind to site (ll); the second can sit at
any other side, and that site then labels the interaction.
Thus, the pair-interaction energy and the Green's function
corresponding to this chart are referred to as 4W'23 and

G», respectively. The other charts describe the 23 in-
teractions for centered (C), bridge(B), and bridge-per-
pendicular (BP) binding.

of adatoms: After the first adatom bonds, we

visualize a second adatom approaching the surface
nearby. Since any site (with the same binding

sy~~etry as the first) will provide the same one-
body energy lowex'ing, it is the pair intera, ction
which determines the most favorable position for
this second adatom. Correspondingly, a third
adatom will bind with the same site symmetry as
the first two at a relative position that is most
favorable in terms of the sum of its two-body in-
teractions with them. We view this process as
continuing as more adatoms join the domain.
Thus, from a chart of the pair interaction it is
generally easy to determine the structure of an
island.

Section II discusses in detail the analytic prop-
erties of the solution. Contact is made with
Grimley's work, ' and many of his approximations
and derivations (that parallel ours) are discussed.

The reader who is principally interested in cal-
culational results should refer directly to Sec.
III, where computations for the interaction energy
for a single adsorbed atom and between two nearby
adatoms are presented. General characteristics
for a large range of input parameters are de-
scribed, and experimental information (binding

energy, surface-array critical temperature for
disordering, probability of occurrence of particu-
lar adlayer patterns) is used to evaluate the
adatom-surface hopping parameter and to check
that the calculational results are reasonable. Sec-
tion IV summarizes the investigation and discusses
possible extensions.

II. MODEL

A. Green's Functions

In our model we consider a pertux'bed Hamil-
tonian of the form 3C=K + V. Ko is tbe Hamil-
tonian for a semi-infinite solid, with eigenstates
Ik) and eigenvalues e„plus the Hamiltonian for the
isolated adatoms relevant to the problem, one or
two here, with eigenvalue E,. The potential V
connects the adatom state ia& with a binding site
ii), allowing hopping between them. In this paper

we restrict ourselves for simplicity to the (100)
face of a simple cubic crystal. iij) denotes the
Wannier function associated with site (ij). For
binding directly above a surface atom. Ii) = i ll);
for binding at a bridge site,

Ii& = (111&+112&) [or li& = (111&+121&)~

and for binding at a centered site,

The semi-infinite metal + we use here is that
of Kalkstein and Soven, since we will use their
Green's-function calculational technique in comput-
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~ = E+ 2T(cosk„ao+ cosk„ao) (2. 2)

ao being the lattice parameter and the root is
+isgn&o (&g —4T ) ~ for v &4T . To obtain this
"atop" surface Green's function, one must perform
a sum over the surface Brillouin zone:

G" =-G" (E)= 2 G (E k)e'"~'"~~ "»'
]A I lk„) s:ff/O

2. 3
Since the first index of G will generally be 11, one
can usually omit it, as indicated, with no loss of
clarity. The following remarks concerning the
Green's functions calculated by the Kalkstein-Soven
program are helpful in the subsequent analysis.

(i) The atop diagonal Green's function can be
rather well approximated by a triangular density
of states (with E in units of 2T)—although this
simplification was not employed in the present
calculations:

s w(l —3 l E I), I E I & 3
h 0 lEI &3

(2.4)

RG Z-'Zl

The sharp corners of the triangle obviously are
smoothed in the actual result. This gives a better
fit than the semi-elliptical density of states of the
one-dimensional chain~:

ing the interaction energy. Using linear-combina-
tion-of-atomic-orbitals (I CAD) or tight-binding
formalism, the most realistic simple approxima-
tion for d-band metals, they start out with a per-
fect-crystal Hamiltonian Xo with only one-center
and nearest-neighbor two-center real-space ma-
trix elements. The one-center element, i.e. , the
atomic-orbital self-energy, implicitly defines
their energy zero. We take their isotropic two-
center element Ez to be —T, where T is a positive
number. In three dimensions, these choices lead
to an energy band of width W, =12T, which is cen-
tered at the energy zero. Unless otherwise
stated, we will measure energy in units of 2T (or
equivalently ~~ W~); and will thus drop 2T when

clarity does not require it. Kalkstein and Soven
then add a potential to cancel interactions across
the cleavage line (which divides the metal into
semi-infinite halves), and a perturbation U to ac-
count for surface effects such as electron redistri-
bution. Since we are not putting in Coulomb cor-
relations, we neglect U. Invoking periodicity in
the two directions parallel to the surface, one an
show that the one-electron Green's function for
an atom on the perfect surface is

G„(E,k„)= (I/2T ) [+(a+i(4T' —(um)~12], (2 1)

where for our simple surface

f(9-Z')"', tz I & 3
0, IE I &3

(2. 5)
IEl

&[E~(z'-9)'"], Izi &3 and Z&'0.

(ii) As suggested in (i), the imaginary part of
G»(E) is symmetric about E = 0, the center of the
band, while ReG (E) is antisymmetric. This re-
sult arises as follows. G»(E, k, , ) is symmetric in

ko i.e. , k„and ky G»(E k~~) Ggg(Q) (Ep k~~)) whe1 e
&u =E+ 2T(cosk„ao+ cosk, ao), and coskao is sym-
metric in k. Hence the sum over —v/a & k„,
k, & v/a can be reduced to four times the sum over
a quadrant, say, 0&k„, k, & v/a. If we let k„-w/a
—k» k, v/a —k„and E- —E, then the regionof
summation remains the same, but (d changes sign.
From the explicit form of G„(E, k„) given 1n (2i. 1),
it is obvious that ReG»( —&u) = —ReG»(~) and
ImG„( —z) =ImG»(&o). Since this is true for all
k„and hence for all k„ in the quadrant, the sym-
metries of ReG»(E) and ImG"„(E) follow. The fact
that the real and imaginary parts of G have op-
posite symmetry can be viewed as a result of the
fact that they satisfy a Kramers-Kronig relation.

(iii) The symmetry of G», ,~(E) alternates with
each lattice spacing of separation, i.e. ,

ImG"„(-E) = (-I)""ImG"„(Z),

Re G"„(-Z) = —(-1)"'"ReG"„(Z),

where I=i —1 and n=j —1. By using the sym-
metry in k„which permits the reduction of the k„
sum to a quadrant, we see that the contribution of
e' ()'"&& "~~' is just cosmic„ao cosa', ao. In per-
forming the co inversion of (ii), i. e. , k„-v/a —k„,
etc. , we use the fact that

cosmk„ao = ( —1) cosm(v —k, a)

and similarly for k» and the above symmetry is
obtained.

(iv) Since, as we saw in (iii), the distance factor
enters only through the factor cosmk„aocosnk, ao,
we can write down various mirror equalities
[where the 2's are required by our choice of (ll)
rather than (00) as the origin]:

G,", ,(E) = G"„(E)= G". ..(E) (2 'I)

to account for Green's functions outside the quad-
rants, j&1. Moreover, by the symmetry in Q„
and k, in the summation, we find G"„(E)= G~, (E). .
With the aid of these three equalities, we can write
any Green's function G», „., (E) as G&~(E), where
j is the larger of lk -O'I + 1 and I

E' —l l + 1, and i
is the smaller; that is, we can reduce all. formulas
in 6 into expressions of |""'sin the octant be-
tween (10) and (11), inclusive.
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('„(E(= ij ~ . 1() (2. 8)

formally. To express bridge binding of the same
separation, ap[(i —I)P+ (j —1) ]'~P, with the
adatom's surface neighbors both in the same row
(for i~ j), we substitute

G„(E)= Gg, (E) + —,
'

[G". . .(E) + G". ..,(E)] . (2. 9)

The choice of the symmetric combination of per-
turbed atomic orbitals indicates the selection of
the bonding state, i.e. , the combination lowering
the metallic energy distribution hp, z(E):
= (I/v) ImG, &(E). Section III elaborates on this
manifestation of the importance of the symmetry
of the orbitals, describing the skewing of bp„(E)
and its effect on the binding energy of adatoms.
Alternatively, to have the antidomain, with the
bridge neighbors in the same column, we would

(v) It is easy to check that ImG&&(E) vanishes out-
side the band, i.e. , for (E~ 3. Then co is always
«1 (i.e. , 4T ), so that there is no imaginary part
in G«(E k((). For E just above the bottom of the
band, z & 1 only for k„and k, nearly zero, so that
cosk„ao+ cosk~ao= 2. For such E, the leading fac-
tors cosmk„apcosnk, ap will be near unity, or at
least positive. Hence we have the general result
that for any ij, ImGf&(E) increases from zero as
one initially increases energy from the bottom of
the band: the extremum nearest the bottom is
positive. By similar but more tortuous reasoning,
or more simply by looking at the Kramers-Kronig
relation

1
I

1mG"„(E')
e;g = ——(P

~
Ei

one verifies that ReG",,(E} is negative at the bottom
of the band, for any ij. A more detailed look
shows that ImG(E) is initially proportional to the

& power of the magnitude of energy difference from
the upper- or lower-band edge.

(vi} The number of extrema in the parts of G",
&

increases rapidly with i and j. For i, j 3, there
are i+j —1 (m+ n+ 1) extrema in ImG", &(E), or
equivalently, there are m+n internal zeros, or
i+j zeros including endpoints. If i or j 4, there
are more than m+n+1 extrema, although no

simple empirical formula seems to fit the computa-
tional result. For use in Sec. III, we point out in
particular that (ij) = (14), (15), and (16) have 4, 9,
and 10 extrema in ImG", &(E), respectively. From
(iii), we find that if one of the indices is raised by
one, the number of extrema must increase by an
odd number. With the Kramers-Kronig relation
one can demonstrate the observed result that
HeG", &(E) has one extremum more than ImG", &(E).

To determine the Green's function for other
binding positions, we note that

substitute

1»&s. = p (I »&+
I
»&)

,p&ijl =-.'(&ijl+&i+I,j I
&,

respectively, to get

G„'(E)=G",~(E)+-,' [G", , ~(E)+G",„,(E)] . (2. 10}

The assumption 1~i~j is convenient, and possible,
as elaborated in remark (iv). Moreover, should
an index not be positive in a general formula, re-
mark (iv) indicates how to reduce the errant G"
to the selected octant. Thus, for example, Gyp

Gg f + Gf p Note also that G& &
= G

& j ~ Finally, for
centered binding, one makes substitutions of the
form

lfi&c=~ (lfj&+ If+I, j&+ li j+1&+ Iz I+,j +1&)

for lij& to find, t'or example, that G~, =G"„+2G",~
+ Gpp, using the two mirror symmetries of (iv).
Figure 1 illustrates the different types of binding.

We present two additional remarks concerning
the surface Green's functions with any of the four
binding position symmetries.

(vii) ImG«(E) and ImG(, (E) are both positive
throughout the band. Recall

ImG«(E) = ImG«(E) + ImG~(E)

(1 + cosk gp) ImG(E k(()
Agp A~

where ImG(E, k„) ~0. But 1+cosk„ap&0. Similar-
ly, for ImG«(E), the factor is

(1+cosk„ap+ cosk&sp+ cosk cp cosk&sp)

= (1+cosk„ap) (1+cosk, ap) ~ 0

By the symmetry in k„and k„one might write

(1+2 cosk„ap+ cosk„ap cosk, ap)

in actually performing the sum. Figure 3, which
reproduces the calculated ImG„, confirms the
claim of this remark.

(viii) ImG»(E) ~
I ImGO(E) I, i. e. , ImG"„(E)

+lmGf~(E) ~ 0. This dift'erence (sum) is just the
sum over the positive G«(E, k„) times the factor

1+cos(mk„ap) cos(nk„ap) ~0.

More generally, we can apply the Schwarz in-
equality since ImG;& is a Hermitian inner product
on a Hilbert space:

(„(ij~~, ~(((„(-=, i, (m (()„.1
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X=Xo+ V (K and + have eigenvalues E& and e~,
respectively) can be derived as follows. We ob-
serve that

Det . E -K-ig =
E — —z5 ~ E —e~ —H

(2. 12)
Thus we can write

FIG. 2. Diagram illustrating a possible system in
which V is the same for atop Q.), bridge (8), and centered
(C) binding: for approximately spherica1ly symmetric
orbitals this statement about the potential is true if the
adatom is the same distance h from its nearest substrate
neighbor(s) regardless of binding type. The minimum
value for h is ao/A, for which a "centered" adatom lies
in the surface plane. Although convenient, the assump-
tion of the same V for all binding types is not at all neces-
sary in our analysis.

= li G"i(z)I =I Gx»(z» (2»)

=Z [n(z E,)--V(z-~,)]=~p .

If we define Go = (E —3CO- &&) ', then

det . E-3C-i5 =det 1 —G V

so that

(2. 12)

where the last step follows from (vii), and the pre-
ceding step from surface translational lattice
symmetry.

The potential V represents the entire interaction
of an atom with the bulk; we assume no overlap
with nearby adatoms. V is nondiagonal. It has the
form V,~, or V~, = V,z, where small italic letters
denote an adatom's noninteracting level and num-
bers signify a surface atom. %e define V = i V,& I .
For atop binding, an adatom electron can hop
only onto the bulk atom just below it. For bridge
(center) binding, it can hop to any of the two (four)
nearest metal atoms. This potential parameter
can be scaled separately for each of the three bind-
ing positions to fit single-adatom binding energies.
For the sake of comparison, it is convenient to
assume that regardless of binding type, the hopping
potential has the same strength: V,„=V„ if ad-
atom i and surface atom n are nearest neighbors,
and 0 otherwise. This assumption would certainly
be justified in the case of spherical orbitals and
similar adatom-surface-atom distances for the
three types of binding. If we take the adatom to be
in the surface plane for centered binding, then this
distance h is ao/v'2, where ao is the lattice constant.
An atop adatom would be assumed to be this far
above the surface, while for bridge binding it is —,a0
above the surface (45' angle) (cf. Fig. 2). This sce-
nario is not at all unreasonable as a first approxima-
tion, and we shall see that for single-atom binding, one
gets very similar binding energies for the three
types at fixed V.

B. Interaction Energy

1. Busic Formation

A general method to calculate the change in the
density of states of a perturbed Hamiltonian

b,p = —Im lndet(1 —G V) (2. 14)

Egf apdz = —mr po(EJ,),
where Ap = p —p0. Hence

@0
bW=2( J EpdE —f "Ep,dE)

(2. 15)

= 2( f„ tz ~p+ Er «r po(zr)l dz'f

=2 f ' (E-z,)~pdz . (2. 16)

The factor of 2 accounts for electron-spin degen-
eracy. This proof works for infinitesimal ~~,
which is the case for a very large system. Hence-
forth, we can let EJ; =E~. Inserting our expres-
sion (2. 14) for hp and integrating by parts, we
find

LW= —(2/w) f "Imlndet(l —G'V)dz. (2. 17)

Let us investigate this expression for adsorption
of one and two atoms. For the single atom,
connects only the states a and 1 (where 1 may be

%e select the representation with the eigenstates
of K0 as basis vectors, so that G is diagonal, and
the mn matrix element has the form 5
—G V „. If V has matrix elements only between
a set of states 1, . . ., n, then outside the nxn
submatrix in the upper left-hand corner, one will
have only 1's along the diagonal and 0 off it. Thus,
the determinant of the matrix is that of the sub-
matrix.

As Grimley discusses, conservation of elec-
trons implies

0
gp g

f pdz fp, dz-=o

or
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a symmetric combination ofstates). Thus

1 so «1 G Gx Va
—G V,11 1a

(2. 18)

define C„as
G,./(I —G..G'„I V,.I

') = [E —E, —V'G„,(E)] ',

= det

1
—G„V,)

0
0

X

1
—GasV

0

0
0
1

G»V

X—G~2V2~

0
X

G~p Vaq

1

= (I —G-Gjr
I
V~.

I
)(I —GaaGaa

I
Vaa

I

')

GOING jaGbaG811 V16 I I
Vaa I

(2. 2O)

the final expression being an algebraic rearrange-
ment after expansion of the determinant by minors.
By symmetry, V2~= V„, G»=G„, G22=G», and

Ga, =G~a. G~a is shorthand for G», (~(E), i.e. , 2

denotes the second position ij. Our formulation
allows an adatom electron to hop to the nearest
solid atom, propagate to the surface atom nearest
the second adatom, hop out to this second level,
interact, hop back to the solid, propagate, and hop
onto the original. adatom. We find

det(1 —G V) = [(I —G„G»l V~, l
) —G„Goal V~, l ]

x((I G..G»IVi. l')+G..GialVi. l']

Since we are seeking the pair interaction, we must
subtract from this expression, which applies to
two adatoms on a surface, the det(1 —G V) for two
single noninteracting (i. e. , infinitely separated)
absorbed atoms. We recall that V=-

I V,&l. If we

a' VaGx (E)
E —E —i5

(2. 18)
The form of the determinant indicates that we are
calculating the interaction for an electron hopping
from the adatom to the nearest solid atom, inter-
acting with the metallic d band, and then hopping
back to the adatom orbital. G„(E) is shorthand for
G» „(E), as discussed above, where X=A, B,
BP, and C. Recalling that Im ln is just the arc-
tangent, we note that for small V, AW~ V, the
perturbation-theory prediction. For V very large
(relative to the band width Wa), the integrand ap-
proaches tan '(V ImG„/V ReG„). Hence the in-
tegral over the band approaches a constant (with
respect to V). In addition, there is a pole term
arising from a split-off state. As discussed later
in this section, the split-off contribution, and
hence hW, is linear in V for large potential. In
this regime, the adatom and nearby surface atoms
form a surface molecule, which bonds to the in-
dented solid. "

In the two-adatom problem, we find that

det(1 —G'V)

det(1 —G V)y„,=l —(C,g) (G~~) V

so that
g

&W,«, = —— Imln[1-(G„(E)) (G&a(E)) V ]dE

(2. 22)

2. Commentary

Equation (2. 22) is essentially identical to
Grimley's. ' Our G„corresponds to his G~„ if
one rescales our E, by Un, or assumes U=O. In
Grimley and Walker it is assumed that n, is re-
placed by n„, the adatom occupation number for
single-particle adsorption. Thus, they neglect
Grimley's Anderson-model correlation term AW~
= —2U(n —n„), as we do in not treating Coulomb
interaction effects explicitly. Their q„corresponds
to our V G» while q„s, q a, or q„goes over to our
V G,a, i.e. , V«G,aV». As the matrices in (2. 18)
and (2. 20) illustrate, our perturbation also has no
diagonal part. Since 1 —G„„q„is equivalent to our
1 —G„G,aV', we see that our results for bp and

AW~«, agree with the results of Grimley and
Walker up to a minus sign, which arises from our
use of an imaginary infinitesimal of opposite sign
to conform to the convention of Kalkstein and
Soven. " This choice of sign means that the im-
aginary parts of our Green's functions will have
the opposite sign from theirs. Since "Im ln" is
just the arctangent of the imaginary part of the
argument over the real part, our integrand will
have the opposite sign from theirs, canceling the
sign discrepancy.

In Grimley and Walker's derivation of the pair-
interaction energy (called P,„) in their Appendix,
they suggest that the final expression requires the
approximation (S/SE)G„„=-—G„„, at least in the
region where the integrand is large. In our lan-
guage, this approximation becomes V 1(S/SE)Gyral
«1. For physical potentials V, such an approxi-
mation is not valid, and our derivation has not re-
quired it. In fact, Grimley and Walker's formulas
do not require it either, as one might suspect since
our answers agree. Their use of the approxima-
tion in the appendix cancels an implicit use of it in
the text: In their equation(29), (I/q„a )(sq a/se)
should be replaced by (1/q~a)(eq a/Se)+ (1/G„„)
x (sG„„/se)+ G„„.

It should be noted that the approximation that
V G„(E) can be replaced by a complex constant
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This expression is analogous to the first-order
expression derived by Kim and Nagaoka" for two
bulk impurities. If we assume V G»(z) = oil+'

and V G»(z) = P+i 6 to be independent of energy
(an extremely poor approximation for us), as in
Grimley (Secs. 3 and 4) (except that our I' and A

,have the opposite sign from his, so that F is al-
ways positive), then

V'G'
AW = ——Im

2 (P —b )+iaPA
(z, -z.-n}-il

In the case (Grimley's Sec. 4. 1 )

[E,—E —n[ =- /Z~ —Z»/ «I «Z
we see that

(a. 24)

2 P —b,

r r
which differs from Grimley's Eq. (34) for this
case, with U= 0. Careful expansion of Grimley's
functions f shows that

4pAE, 2(s' —p')
W' =

appears in most applications of the Anderson .

model. In particular, it is used in the original
paper' and most subsequent treatments of two bulk
impurities. ' ' ' In fact, there is evidence that the
approximation is not always valid in the bulk-im-
purity problem. Except for weak binding the ap-
proximation is invalid for the problem considered
here. In the localized moment or divacancy prob-
lem, one assumes that the free-electron-like s
bands are dominant. In chemisorption, the inter-
action between the "impurities, " i.e. , adatoms,
is mediated by d-like electrons, which are better
represented by a tight-binding model. The treat-
ments of two close bulk impurities' further as-
sume that the interaction propagating term
V G»(z) is a complex constant or, equivalently,
that it is overshadowed by a constant direct inter-
action term. Such an assumption would clearly be
unreasonable in the present study, except in cer-
tain cases of unphysically weak binding.

It is usually a reasonable approximation (al-
though we shall not need to make it in our actual
calculations) to take I G~„G2»V'I « I and hence write

'~Ep

&W=AW, +bWs =
g (az» —az»)

apb
3 nr'

2(b —P ) 2 P —6
~r & r (a. ae)

since Iz„—E„l/I' is small. Indeed, Grimley's
expression, which is proportional to (4E„—az»),
is physically unreasonable since it depends on the
zero of energy.

In the case (Grimley's Sec. 4. 2') that I z„—E» I

»I'« I,E~l], our simple expansion suggests

4 PA
b,W'= ——

g E~-E~
while Grimley's expansion gives (after a bit of
algebra)

4 Ph E»
g E~-E~ E~

which essentially agree for IE~ -Eyl «Ey. Only
in this limit does Grimley's expression satisfy
independence of the energy origin, a general con-
sequence of electron conservation.

As Grimley and Walker (Appendix I)~ note, the
interaction energy goes to zero as the Fermi en-
ergy approaches +~. (If there are no split-off
states, then it vanishes for a filled band. ) This
very general result is one of the few checks one
has when performing actual numerical calculations.
In essence, it arises from the fact that our per-
turbing potential is purely off diagonal in the site
representation. Hence TrR= TrSCO; that is, there
is no interaction energy (difference in energy from
the unperturbed case) if all band levels are oc-
cupied, even though individual levels may shift.
Since this result is of such importance and utility,
we will present short explicit proofs for the single-
and pair-adatom cases. Both rely on the fact that
all the poles of the Green's functions are in the
upper half of the complex energy plane.

For single-atom adsorption, we consider the
integral (2. 19),

LW= —(2/v) J Im in[1 —G„(E)G„(E)V ]dE

where G„(z)= (E —E, —is) ' and

I ilk I"( )=~ z-z -'s
where ik) are the eigenstates and the eigenvalues
of the unperturbed Hamiltonian, and I 1) is the
binding-site vector (possibly a symmetrical com-
bination of a few surface positions). An integra-
tion by parts gives

+ [higher-order terms in I"/Z» or (E„—Z»)/I'];
(a. as)

in Grimley's paper, 8 incorrectly appears instead
of 4. Hence, with U=O,

hW = ——E Im in[1 —G„(E)G u(Z) V ] ~

"„

.' .l.z (E-z.-is)'
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+v'a. .(NZ ., )
1 (I lk) I

a

dE
1 —G„(E)G„(E)V'

The surface term vanishes since for any energy
outside the band, the argument of the log is pure
real. Hence the term vanishes for large but finite
E, and therefore also in the limit E-+~. The
second term can be made into a contour integral
and closed in the lower half-plane of the energy
plane, where there are no poles. [Note
(1 —V'G„G») essentially has the properties of
(E —E, —V Gr„), and ImG» 0 by remark (vii),
so the poles are also in the upper half-plane. ]
Since the integrand approaches E asymptotically,
the semicircular path vanishes, and the integral
must be zero. Hence AR'=0.

Similarly for the two-atom case, we integrate

b W = —(2/v) f Im ln(1 —G„G;&V ) dE

by parts. The surface term vanishes as above,
so that

~W= — Elm (V G„G„)

Again it is easy to show that the derivative term
is analytic in the lower half-plane. Also,

1 —G„G()V

[E E. V-'(G»—+ «~)][E E. V-'(Gz»— Gf,)]-
(2 2

By remarks (viii) and (vii), the positive ImG„(E)
dominate ImGo(E), so that its zeros are above the
real axis. Again, then, we can close below to
obtain the vanishing of the integral.

3. Analysis ofSplit-Off States

Finally, we come to split-off states, sharply
localized energy states lying above or below the
band. In the case of single-adatom adsorption, one
is manifested by a zero of E —E, —V ReG»(E) out-
side the band. In the pair problem, E -E, —t/"~

&&(ReG»+ReG, &) vanishes outside the band. The
following observations will aid our analysis: Re-
mark (vii) indicates that for any binding position
the imaginary part of the "self, " or 11, Green's
function is positive throughout the band [and
vanishes outside, by remark (v)]. Hence, since
the Green's function satisfies a Kramers-Kronig
relation [written down in remark (v); the range of
integration need only extend over the band to pick
up all contributions to ReG], we find that

I ReGf, (E) I must be monotonically decreasing out-
side the band as IE I increases. Moreover, with
our choice of sign for the imaginary infinitesimal

—f Im ln[E —E, —V G"„(E)—i5]dE], (2 21)

which is the form in which the actual computer
computation is made. Within the band, the i5 of
the second term is unimportant since ImG»(E) is
positive. Below the band, i5 gives the only imag-
inary part, so that the integrand of either term
is —v (0) if the real part of the argument of the
natural logarithm is negative (positive). For all
E below the band, the integrand of the first term
is —z. For E sufficiently below the band, E -E,
—V ReG»(E) will also be negative, so that the two

integrals cancel for E sufficiently negative. This
cancellation eliminates any difficulty at —~. If
there is a split-off state, then between E~ and Eo,
where E, is the energy of the bottom of the band
(i. e. , ——,

'
W, ), the integrands do not cancel, and

we find a contribution of (2/v)( —w)(EO Ea), or-
2(E~ -Eo), to b, Wx. Equation (2. 19) can be written

EW, q gq, = 2(Es —Eo)

gp

'tr

@0
(2. 22)

i5, we have that positive imaginary G» implies
that ReG»(E) is positive above the band and nega-
tive below.

Now below the band E —E, is negative, presum-
ing E, to be within the band. The above observa-
tions indicate that —V ReG„(E), i.e. , V I ReGqq(E) ~,

decreases as E becomes more negative. Hence

f(E) =E —E,—V ReG»(E)

is a decreasing function below the band as the
energy E becomes more negative. For small V,

f(E) will be negative at the band edge, and merely
increase in magnitude as E separates farther from
the bottom of the band. For large potential, how-
ever, it will be positive at the lower edge. As E
approaches —~, f(E) approaches E and is negative.
Since f(E) is continuous and monotonicallydecreas-
ing, it must have a single zero below the band,
which we denote by E~. Thus,

Ea —E, —V ReG»(Eq) =0, Ea & —2W~
(2. 20)

Similarly, there can be at most one such split-off
energy above the band. This discussion parallels
Newns's' graphical analysis and applies to any
case where the change in density of states (i. e. ,
the spectral-weight function) is positive throughout
the band.

In determining the contribution of a split-off
state to aW„„„,it is convenient to write (2. 19)
as

&W„„„=(2/w)( f Im ln (E —E, —H) dE
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b W() = 2(E, +E —2zq)if we set E~ =ED when no split-off state exists
below the band.

As was noted above, the integral term of (2. 32)
approaches a constant in V. Hence as the potential
becomes very large hW~„„-2E~(V). In this
region IE~ I » lEOI, so that we are in the asymp-
totic region of the Green's function, where

ReG„(Z) - (I/vz) J
' ImG„(E') dz'= 1/Z,

0

where the equality holds for any binding type and
reflects the addition of the single-adatom electron
to the system. In this region, (2. 30) reduces to
a quadratic equation with the solution

—(2/v) J Im in[1 —V'(G, r) (E)(Gf&) (E)]dz
(2. 36)

again with the understanding that if there is no
zero below the band in any one of the three real
parts in the arguments in (2. 34), the correspond-
ing E, or E~ is taken to be Eo, so that in the event
of no splitting off, the first term of (2. 36) vanishes.
Recall from remark (v) that ReG, &(zo) is negative.
Hence, as potential decreases, E will be the first
split-off state to disappear (enter the band), fol-
lowed by E~, and finally E,.

Finally, we examine the asymptotic form of
LWf&(V). As suggested by the factorization of
(2. 29), as V becomes very large, the integral term
of (2. 36) becomes independent of V, with the value

2 /* (G„(E))'i
dEImln 1 —

(G
0

To analyze the split-off-state term, we must write
ReG in terms of a moment expansion:

z, =-,' [z.—(z'. + 4v')"'] (2. 33)

Thus, as V grows very large, E~ approaches —V,
so that AW(V) —2V.

A state split off above the band can be treated
in similar fashion. Such a state must be included
if the trace theorem proved just above that AR'=0
as Z„grows large (or merely at Ez =

I zo I
= 2 W&

if there is no split-off state above the band}. Since
we restrict the Fermi energy to be within the
band, this upper state is unimportant in our com-
putation.

In the case of the pair interactions, the inclu-
sion of split-off states is more complicated, but
not more difficult. As suggested by (2. 29), it is
convenient to decompose (2. 22) as

ReG- —Q „ for

ized

iz iE Eft

where

p„= (I/v) J (Z )"ImG(E') dE'

is called the nth moment. Now for atop binding
(X=A), po is finite (and equal to unity) only for
(ij) = (11). Since G» = G»+Gqq and G»=Gqq+ 2Ggg

+ Gz~, p, o is unity for all X when (ij) = (11). For
(ij) not equal to (11), the zeroth moment of ImGf&
vanishes in general. There are three exceptions
to this statement: G,~, G», and G~~. The source
of the exception is that the two adatoms share the
surface atom between them as a nearest neighbor.
In the formalism, this is manifested by the pres-
ence of G» as a component, e.g. , Gfa=Gfg

A. B

+-,' (G»+ G",s). In these special cases we need not
go to higher moment to find the contribution of the
split-off states. Solving (2. 30) and (2. 35) for
large V, we easily find that

Again, the imaginary infinitesimals are important
only outside the band. By remark (viii), ImG»(Z)
vimGf&(E) is non-negative throughout the band
Hence, as in the single-adatom problem, the
Kramers-Kronig relation indicates that ReG»(E)
+ReGf&(E) is positive above the band, negative
below it, and monotonically decreasing in magni-
tude with increasing lz l (outside the band). For
sufficiently large I]E I, the real parts of all three
arguments will be negative. Each will contribute
an integrand of —g, leading to cancellation. For
sufficiently strong potential, however, the real
parts will become positive below the lower band
edge. Let E, be defined by

2(E, +E —2Z ) = —2V[(1+ p) ~ +(1 —P)'~ —2],

where p is the zeroth moment of ImG, &, or equiv-
alently the coefficient Gf fp e.g. , p, =

& for G,~.
The physical ramification of this special case is
the growth of a surface macromolecule rather than
merely an island composed of dimers. However,
in this case the direct interaction may also be im-
portant and must be added on in any detailed cal-
culation of the energy of the configuration.

In general, however, b, Wf&(V) is not asymptoti-
cally linear in V. In fact, 4W(V} approaches the
constant determined by the limit of the integral
term in (2. 36)! The split-off states give a net

E, —E, —V [ReG»(E,) +ReGf&(Z,}]=0, E,&EO.
(2. 35}

Then it is clear from the single-adatom problem
that the contribution of split-off states to the pair-
interaction energy is

—(2/v)(v)[(E, -E.)+(E,-z ) -2(Z, -Z, )]
when E~ is within the band. Thus we can rewrite
(2. 22) as

E~
SW&&= —(2/v) f dz(rmln(E —E, —V [Gr»(E)

+ G+) (E)] f5] +Im ln(E- E; V [G(~(E)- Gf)(E)] t5]-
—2lmln(E —E, —V G»(E) —f5}} . (2. 34)
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0.4

FIG. 3. Imaginary part of the
"self" (ll) Green's function, or 7(

times the change in the density of
states, at a binding site for atop
(A), bridge (B), and centered (C)
binding. The curves verify the
downward shift in energy of the
symmetrized surface W'annier states
The implicit energy unit used
throughout is twice the tight-binding
hopping matrix strength, i.e. , 2T,
or equivalent one-sixth the band-
width.

—I.O 0.0 I.O 2 0 50
EF

2(E -E )

0
(3. 1)

where X=A (atop), 8 (bridge), or G (centered);
BP (bridge-perpendicular) is redundant to B. The
second term is nonzero when a split-off state of
energy E, lies below the lower band edge
Eo= ——,

' W„E, is de—termined by Eq. (2. 30). For
homonuclear diatomic adsorbates, the single-
particle interaction energy 4W is minus one-half
of the sum of the heat of adsorption and the dis-
sociation energy of the molecule. We note that

G'„(E) = G"„(E)+ G,",(E)

G„(E)= G"„(E)+2G,"p(E)+ G,",(E) (3.2)

From remarks (ii), (iii), (v), and (vi) concerning
the G&&(E), or from direct computation, we have
(a) ImG»(E) is symmetric and positive, with a
single extremum in the middle of the band; (b)
ImG»(E) is antisymmetric, with its positive peak

contribution of order 1/V in this region if ImG&&

has a nonvanishing first moment p, [That is,
E, +E —2E~ = —

4 (p,/V). ] If ImG&&(E) is even in
E., then the split-off contribution is even higher
order in 1/V.

III. CALCULATION RESULTS

A. Single Atom Adsorption

As noted earlier, the implicit energy unit of our
calculation is 2T, i.e. , 6 8"~, the natural unit of
the tight-binding model. We evaluate numerically
the integral

in the lower half of the band; (c) ImGzz(E) is sym-
metric, with a negative bulge around the center of
the band, and a positive extremum toward each
end. Thus, np = (1/v) ImG»(E) is skewed into the
lower half of the band, lowering the average elec-
tron energy, as one would expect of a bonding
state. This effect is even more pronounced for
hp, where aB three addends combine construc-
tively near the bottom of the band, while 2G»
competes with G»+ Gzz near the top (see Fig. 3).
In essence we are saying that p peaks at lower en-
ergy for non-atop binding because the adatom's
electron mixes with a suitably phased combination
of orbitals on the nearest neighbors in the sub-
strate surface, resulting in only plus signs in Eq.
(3.2).

We compute 4W for E„ the adatom noninteract-. ,

ing level, at and near the center of the band, and
at 4 8"~ from each edge, The Fermi energy sweeps
through the band in increments of 0. 1. We have
Carried out computations on adatom-surface
couplings of the following strengths: V/T= 1, 2,
3, 4, 5, 6; that is, V/W, in the range I'-, -—, . For
V/T= 5 or 6, and often for weaker potential
(V/7 = 4), when E, is far from the band center, one
finds split-off states of energy E~.

Our calculation of AW' revealed the general
structure (cf. Fig. 4) of an inverted triangle (the
base being the Ez axis), smoothed at the base
edges. Starting at zero (when there is no split-off
state) at the lower edge, n W begins falling with
increasing Ez (within a range of abouts Wy de-
pending on V), soon becoming linear until it res.ches
its largest (negative) value when Ez---E,. In es-
sence, j hW I is maximum when E~ = E, because in
this case the maximum number of electrons have
their energies lowered with few electrons having
their energies raised (i.e. , the lower half of the
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FIG. 4. Interaction energy for the
adsorption of a single atom. E„de-
noted by the small circle on the ab-
scissa, is —0.3. A, 8, and &denote
atop, bridge, and centered binding, re-
spectively.

-2.0—

virtual level is occupied, the upper half is empty).
Alternatively, the adatom level is broadened by the
interaction with the substrate; when it is half-filled,
electrons take optimal advantage of this broadening,

I 4WI then decreases linearly and smoothly van-
ishes near the top of the band. There are no posi-
tive (repulsive) peaks and no noticeable substruc-
ture. If one assumes V is the same for all binding
types, then invariably hW begins falling first,
fol1owed by hW, and hW" trailing; similarly,
they follow the same order in rising toward the
axis. Thus, when E~ is not too near E„one has
Ib,W I & i&W I& l&W" I for E~«, and I b, W I

& IhW I & IAW" I for E~&E,. This is in accord
with the observation that Ap for centered binding
is most strongly skewed downward in energy, with
the change in density of states for bridge binding
skewed moderately, and the atop Ap not skewed

at a1.1.
When a state has split off below or above the

band, the interaction energy curve is negative at
the appropriate band edge rather than going to
zero there (cf. Fig. 5). The other qualitative fea-
tures of the curve remain the same. Hybridiza-
tion skewing dictates that a state splits off below
the band for C binding first (as V increases), then
8, and finally 2, assuming the same V for each
binding type. At a given potential, the magnitude
of the split-off energy, and hence the absolute
value of hW at the lower edge, will be greatest
for C, weakest for A. For states split off above
the band, the symmetry order naturally reverses".
A. splits off first and most strongly, and so on.

Recently, Messmer and Bennett 6 have proposed
an extension of the Woodward-Hoffman symmetry
rules of reaction chemistry to the problem of

-3'0 -2.0
I

0.0 I.o 2.0 3.0—— ~——-I

F

—2.0

FIG. 5. Interaction energy
for the adsorption of a single
adatom. E,= —1.5. A (doubly
occupied) state has split off
below the band for each of the
three binding symmetries.
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chemisorption. They argue that the binding energy
is determined primarily by the matching of the
symmetry of the adsorbate orbital and the substrate
orbitals of energy equal to Ez. Our results sug-
gest a more involved picture in that the binding
comes from states throughout the band, with states
near Ez and/or E, playing a dominant role only
when E,—E& and V is small.

Hybridizing also accounts for the following
phenomena: For E, near the center of the band,
the spread among the three b W» (Ez =E,) relative
to their average is quite small, on the order of a
few percent. (This percentage decreases as V
increases. ) For E, = —1.5, I r W (Ez =E,) I & I LW I

& l hW" j, the relative spread ranging from 35 to
13/o (as V increases). Correspondingly, for
E,=+1.5, IbW" (E~=E,) I &

I r W I & I AW I, with
an even greater spread (50-24%). For E,= —1.5,
—0. 3, and 0. 0, the average maximum binding
energy, —, [hW"(E,) + hW (E,}+ n W (E,)] is about
the same, to within a few percent, with E,= —0. 3
consistently highest and E,= —1.5 least in magni-
tude. The average binding at E„=E,=+1.5 is only
about 4--', the strength at the other three adatom-
level values.

For most of our range of hopping potential, the
interaction lies well between the perturbation
regime (hW~ V') and the surface-molecule limit
(b,W~ V}. If we try to fit the data with a relation
b, W(E,)~ (V/T)', we see that n increases (within
the range 1-2) as V decreases or as E, moves
into a region of relatively weaker binding. In the
case of largest V/T, we find ourselves quite near
the surface-molecule extreme 0. = l. %e also find
here the familiar result that the interaction energy
increases as the band narrows: Since both b,W

and Vare scaled by T, and thus W„~W~ W,
'

In the surface-molecule limit, bW becomes inde-
pendent of the bandwidth, so that the band appears
to the adatom as essentially a single energy level.

The maximum binding energy (averaged over
%=A, 8, C) at E, =O. O, —0. 3, or —1.5, is rough-
ly —,', —,', —', , or 6 the bandwidth for V/T=3, 4, 5,
or 6, respectively. The data in Table I suggest a
ratio of binding energy to bandwidth of about 3 3.
Thus, within our model, we obtain agreement with
experiment when the hopping matrix element
between adatom and substrate atom is about three
to six times that between substrate atoms.

B. Pair Interaction

To obtain the pair-interaction energy, i.e. , the
energy difference between two atoms adsorbed at
nearby sites and two adatoms infinitely separated,
(Table II), we must compute the integral

E~
&Wx&= —— Imln 1 — Gx E G,z E dE

Ep

2(E, +E —2E,)
( )0 t

where

V,",(E) = G„(E)/[1 —V G„(E)G» (E)]

The second term is nonzero when there are split-
off states below the band. E, is given by Eq.
(2. 30), E, by Eq. (2. 35). When a particular state
has not split off, it is replaced by Eo in Eq. (3.3).
%e find a structure much richer than for single-
atom adsorption. Again we compute with the pa-
rameters E,= —1.5, -0.3, 0.0, and+1. 5 or
+2.0; V/T=1, 2, 3, 4, 5; and E» in steps of 0. 1.
The interaction is computed for eight values of
(ij): (12), (22), (13), (33), (14), (15), and (16).
With the aid of the symmetries of remark (iv), we
know the interaction strength at the 24 lattice
points (excluding the origin) within or on the bound-

ary of a square of side 5ap centered at the origin,
i.e. , at points less than 2. 9ap away from the
origin point. In a (10) direction we know 6W for
points as far as 5ap. In order to improve accuracy,
we also linearly interpolate Green's functions and
then calculate the integral in steps of 0.05 rather
than 0.1.

For the calculation of split-off states, steps of
0.025 were used within 0. 2 of the band edges,
since when a state is about to split off from the
band, violent oscillations often occur there.
Moreover, for large V it proved advisable to
linearly approximate the Green's functions and to
thereby evaluate an exact integral over a mesh
spacing rather than performing a trapezoidal-rule
summation. The sum rule given at the end of Sec.
II 8 is generally reasonably well satisfied, except
for the more distant points and stronger potentials.
In the latter circumstance, often states are split-
ting off only below the band, and the most rapid
oscillations occur near the lower edge. Here it
becomes very desirable to integrate down from the
top of the band, as permitted by the sum rule.

In this calculation, split-off states occur for
weaker potentials than for the single-atom case,
as in suggested by the factorization

1 —V'(G.".(E))'(G";,(E))'

(E —E,—V G~~ —V G(~)(E —E, —V Gu + V G~~)

(E —E, —V Gn)'
(3.4)

where the first factor in the numerator represents
the downward-shifted state and the second term
the upward-shifted one (cf. Grimley'). For
E, = —l. 5, splitting off occurs for V/T& 3. For
E,=+ 1.5, it just begins to happen at V/T = 3. With

E, near the center of the band, split-off states ap-
pear when V/T=4.

In the pair problem we find a more dramatic
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dependence on potential than in the single-atom
case. For V/T= 1, the strongest interaction oc-
curs for E~ =E~ with a spread of about 6 8'~ in
each direction (less for E,= —l. 5). It is charac-
terized by one or two pronounced crests and
troughs inhW.

&&
(see Fig. 6). For V/T=2, the

interaction is scarcely localized, but still largest
near E~=E,. (With E, = —l. 5, the strong variation
of the interaction energy is still largely confined
to the lower half of the band; by E~=l.o, the in-
teraction fades away. ) When V/T=3 there appears

to be no localization within the energy band, and
one begins to see the precursor(s) of split-off
states (cf. Fig. 7). Such precursor states are
characterized by a narrow pronounced oscillation
of the interaction-energy curve near a band edge.
For V/T = 4, splitting off has begun (i.e. , for E,
in the lower half or middle of the band, at least the
state corresponding to 6»+ t",

&
has fallen below the

lower band edge; for E, well into the upper half,
a similar state has split from the upper edge).
For V/T = 5 or 6, splitting off is generally com-

TABLE I. Tabulation of data used in estimating the adatom-surface atom hopping parameter V. The energy of binding
a single adatom to a surface, -AR', is obtained readily from experiment. The rd-] band width of the substrate can be
extracted crudely from bapd-structure computations. By comparing the ratio of -~S'/S'~ thus obtained with calculations
based on the present model, we fix V/T —= 3-5 to describe chemisorption.

Substrate

W

Crystal structure

bcc

+, (eV)'

10.5(14.1)'
Adsorbate

H

0

CO

—AS' {eV)b

3.2
6.8

7.0

3.6

—AS'/8'g

Mo bcc 9 2e H

0
3.1
6.3

bcc 6 9c H 3.2

bcc 6.0 H

CO

3.0
6.4
2.0

fCC

fCC

4.6e

6.44f

H

CO

H

0

2.9

1.8

2.9

2
5

3
7

4

fcc 5.08' H

0
2.8

4.0

4
7

4
5

fccPt 7.16 0 4.1

'These bandwidth values are based on augmented-plane-wave calculations. For bcc substrates, the d-band width is
taken to be the energy difference E(FS».) -E(H&2); for fcc substrates, it is estimated by E(I 2) -E(L&). Since the repre-
sentation of an actual d-band by a single tight-binding band is very approximate, these values should be considered to
give the bandwidth to one significant figure at best.

Experimental heats of chemisorption for diatomic gases from D. O. Hayward and B. M. W. Trapnell, Chemisorption
2nd ed. (Butterworth, London, 1964), pp. 203-4. Dissociation energies for H2, 02, and N2 from HancSook of Chemis-
try and Physics, 44th ed. , edited by Charles D. Hodgman et al. (Chemical Rubber Publishing Co. , Cleveland, 1962),
p. 3519.

'L. F. Mattheiss, Phys. Rev. 139, A1893 (1965). For tungsten, two results are given, corresponding to slightly dif-
ferent crystal potentials. It is suggested that the first smaller value is the more accurate prediction of the actual 5d
bandwidth of W.

J. H. Wood, Phys. Hev. 126, 517 (1962).
'L. Hodges, H. Ehrenreich, and N. D. Lang, Phys. Rev. 152, 505 (1966), citing J. G. Hanus, MIT Solid State and Molecu-

lar Theory Group Quarterly Progress Report No. 44, 29 (1962) (unpublished).
~0. Krogh Andersen, Phys. Rev. B 2, 883 (1970), a relativistic calculation.
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FIG. 6. Nearest-neighbor
pair-interaction energy for weak
potential (equal to the tight-bind-
ing hopping constant); E~= —0.8.
In this and subsequent figures,
A, C, B, andBPdenote atop,
centered, bridge, and bridge-
perpendicular, respectively.

-3.0—

pleted from one edge (e.g. , even the G» —G&& state
has separated), and precursors or actual splitting
off is beginning at the other band edge, as in Fig.
8. For the stronger potentials (V/T= 3 or 4, or
more), the curving of hW, z is no longer so sensi-
tive to V, especially away from the edges; in-
creased potential tends to scale up (and possibly
slightly shift) the curves. This discussion is
capsulized in Fig. 9, which shows the effects of
increasing V while holding the other parameters
fixed: we see (a) state split off below the band and

(b) little difference (for stronger V) in the shape of
the curves in the band interior.

Also unlike the single-atom case, we find many
smoothly peaked extrema of ~$' as E~ varies over
the band. The number of extrema of hW&& is
greater (often by as much as a factor of 2) than the
number of extrema of ImG", » as given in remark

(vi), except apparently for some types of binding
at the distant sites —(ij) = (15) or (16), a distance
&3.5go from the origin —although in these cases
there are so many bumps of small magnitude that
some may be smothered by the finite mesh size.
Almost always, atop binding has the greatest num-
ber of extrema in the energy band, while centered
binding has the fewest, the difference being of the
order of a quarter of the total number. Converse-
ly, the. centered extrema are usually greatest in
magnitude while the atop are smallest. Bridge
binding tends to track-centered binding, especially
for near sites toward the (10) direction —(ij) = (12),
(13), and (23), a distance & 2. 5ao from the origin;
also in this region, bridge perpendicular tracks
atop. By tracking, we mean that two curves have
the same, or nearly the same, number of extrema
of comparable relative height, but often displaced

l0 6W~~

2.0—

1.0—

-5.0
0

—l.0

—2.0—

n
I

I ~ vs

:2.0 '.

/
v~ ~

V/T= 5

5.0
1

EF

FIG. 7. Pair-interaction
energy for fourth-nearest
neighbors with a potential not
quite strong enough to split
off states; E,=0.0. Note that
(i) the interaction is much less
localized within the band than in
Fig. 6; (ii) the energy scale of
the ordim. te is similar to that
in Fig. 6, indicating that the
effect on (bS'( of the increase
in potential is compensated by
the increase in interaction dis-
tance; and (iii) the precursors
of split-off states are beginning
to emerge near the band edges.
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FIG. 8. Pair interaction for
third-nearest neighbors with a
potential in the split-off state
regimes E,= —0.3. For all but
atop binding, splitting off be-
low the band has been completed
i.e. , E„E~, and E are all
less than Eo. Near the upper
band edge, precursor states ap-
pear.

—!.0—

by up to ~z W&. In the (11) direction bridge and
bridge perpendicular are identical, and their
curve lies between centered and atop binding. The
tracking relations begin to fail at the intermediate
sites —(ij) = (33) and (14), a distance between 2. 5ao
and 3. 5ao from the origin —and collapse at the dis-
tant sites. At distant sites, most of the variation
of hW' is concentrated in a sharp center peak for
E~ near the bottom of the band for strong V and
near E for weak V. On the other hand, as the po-a
tential increases, the tracking relations improve
in the sense that the curves grow remarkably sim-
ilar in amplitude and in the position of extrerna and
nodes. For the strongest potentials, in fact, all
four binding types track to a degree: While the
number of nodes might differ, the over-all general
shapes have similar patterns. The difference in
number of extreroa in the band for different sites
and binding types leads to a multiplicity of patterns
as the Fermi level rises, with some sites attrac-

tive and others repulsive in a rather unpredictable
fashion. Obviously, since there are fewer oscilla-
tions for the nearest sites, they are the most
stable to sign change as the band fills. Only near
the bottom of the band (and when there are no
states split off below it) do all eight independent
sites (i.e. , all 36 sites, by symmetries) have the
same sign:

bW()(E~~ —~z Wq) &0

This property is a consequence of remarks (v),
(vii), and (viii), and can be verified by rewriting
the integrand of (3.3) in the form of (3.4). Taking
the logarithm breaks the expression into three
summands. The imaginary part of the log, the
arctangent, can be expanded to first order in the
imaginary part over the real part of each of the
three arguments, since Ima-0' at the lower edge
and the denominator is finite and negative when
there are no split-off states. A bit of algebra and

80—

4..0

-4.0 .—

-8.0

C
IO hW„

~ ~
~ ~
~ ~
~ ~

~ ~
~ ~

~ ~
~ ~
~ ~
h

2.0 3.0
EF

FIG. 9. Pair interaction for
third-nearest neighbors, with
bridge binding and E~=-0.3,
illustrating the effect of increas-
ing the potential from V/T =1-5
in integer steps. For stronger
potentials, the curves in. the in-
terior of the band merely increase
in amplitude with increasing
potential, with little change in
shape. At the lower band edge,
one sees the evolution of a split-
off state: for V/T=3, there is
a precursor; for V/T=5, split-
ting off is completed.
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the fact that ReG, &(
—2 W~) & 0 shows the integrand

to be positive, and hence LS' to be negative initial-
ly»

The large number of sites along the (10) direc-
tion for which AR',«, is calculated enables us to
say something meaningful about the decrease in the
interaction energy with distance in the local (non-
asymptotic) regime for potentials sufficiently weak
so that no split-off states occur. For V/T~4,
numerical difficulties preclude any quantitative
discussion of the distant sites; hence the sub-
sequent paragraph is restriced to V/T~ 3. We find
an exponentiallike dropoff with roughly the form

yew( J"1) ye+8/uo (3.5)

where y is of order unity for V/T = 3. The best
value for P is about ~ or 2, depending on how one
measures the amplitude of 4R'&&. lf one charac-
terizes the interaction by the largest absolute mag-
nitude of EWE&(E~) for the Fermi energy at any
place within the band (as one must for localized
binding), then the lower value of P applies, giving
a dropoff of about —,

' (though ranging from f'~ to —,')
in the pair interaction as the separation between
the adatoms increases by one lattice constant.

This method is used in I'ig. 10, which substantiates
the claim of exponential falloff with increasing pair
separation. A second method characterizes hg x&

by an envelope containing most extrema but ex-
cluding unusually large isolated peaks; this view-
point gives a range of ~ to 4 for the falloff ratio
per lattice constant. If we examine the actual fall-
off ratios as a function of separation, we find a
nonmonotonic behavior that is distinctly not in-
verse powerlike in the range of pair distances con-
sidered. Our preliminary analysis suggests that
the asymptotic form of the interaction energy goes
as an inverse power, but as B~ rather than as the
familiar B" which occurs for bulk impurities. In
any case, a virtual-level approximation, as enun-
ciated by Grimley and Walker, marked by in-
verse-power behavior even for small separations
between adatoms, seems quite poor for the range
of V considered hexe. The Green's functions are
highly energy dependent, and of magnitude com-
parable to the energy parameter.

Again, we attempt to fit the dependence on po-
tential to a relation of the form b.W,&~ (V/T),
where e ranges from 4 in the perturbation limit
down to 0 in the surface-molecule regime (1 in

TABLE II. Display of the pair-interaction energy suggesting the sensitivity of adatom arrays to changes in the Fermi
level, the hopping potential, the adatom noninteracting level, and the binding type. One adatom sits at the origin (11)
(denoted "0"); the pair energy for a second adatom at each of the nearby sites is indicated by the number at the site. The
magnitude of the number given is 10 plus the common logarithm of the magnitude of the interaction. A plus (minus) sign
means that the interaction is repulsive (attractive). Thus, AR"=-2.7 x 10 vrould be represented by -6.4 in the table.
Each chart is labeled by the symmetric surface array predicted. Since AR'&&, j~ 4, is unimportant for this determination,
only X= C is shorn.
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V- 21

ll
Ep 1s2 V@7

E,=-0.3 +8.9
V/V =3 o

-7.5 +7.5
-8.1 —7.5
+8.9 —V.7

c(2x 2)

—8.3
—9.0

0

+7.1
-8.0
—9.0

(1x

+7 ~ 1
—8.3

1)
-6.6 +6.1 +4.6

+8.4
—9.3

0

+8.3 -6.1
-8.4 +8.3
—9.3 +8.4

(1 x 1)

—7.9
+8.2

0

—7.4 —6.1
-8.4 —7.4
+S.2 —7.9

g(2x 2)

Ep--1.2 —7.8
E~= —0.0 +8.8
V/r=3 O

Ey =1.2 —7.7
E~=-0.3 +8.6

-V/r=4 o

-6.7 + 7.4
—8.4 —6.7
+8.8 -7.8

g(2x 2)

+7.7 +6.9
-8.6 + 7.7
+8.6 —7.7

p(2x 2)

—8.6
—s.4

0

+8.5
—S.3

0

—6.2 -7.8
—8.6 —6.2
-9.4 -8.6

(1 x 1)
—7.5 +7.8
—8.4 —7 5
—9.3 +8.5

O. x 1)

+7.7 -5.8 +5.3

+7.6 -6.1 +4.9

+8.7
—9.3

0

+8.5
-9.1

0

+8.1 -7.6
-8.3 +8.1
—9.3 +8.7

(1 x 1)

-7.9 -7.8
+ V. G -7.9
—9.1 +8.5

Ox 1)

+7.6
+9.0

0

—7.8
+9.1

0

+7.0 -7.6
—8.3 +V. o
+9.0 +7.6

g(2x 2)

+6.9 —V. 8
+7.5 +6.9
+9.1 —V. 8

(2 x2)

Ep= 0.9 —7.5
E~= —0.3 +8.5
V/x=3 O

Ey =1.5 —6.7
E~= —0.3 +8.7
V/x=3 O

+7.7
—8.5
+8.5

g(2 x

-7.8
+8.3
+8.7

g(4x

—700
+7.7
—V. G

2)

—V. S
—6 7
2)

+8.1
—9.3

0

7 ~ 3
+6.2

0

—7.9 +7.7
—8.4 -7.9
-9.3 +8.3.

(1 x 1)

+5.8 -6.8
—7.2 +5.S
+6.2 -7.3

g(2 x 2)

+7.5 -6.3 +4.7

-6.3 +5.5 +4.5

+8.4
—9.2

0

—S.4
—8.9

0

Vo 7 Vo 7
74 1 7 ~ 7

-9.2 +8.4
(1 x 1)

—7.7 +7.0
+6.2 —7.7
—8.9 —8.4

(1 x 1)

+6.3
+9.0

0

+6.7
-8.7

0

+V. 8 —V. 7
-7.1 +7.8
+9.0 +6.3

g(2x 2)

-7.0 +7.0
+6.2 —7.0
—8.7 +6.7

(1 x 1)
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FIG. 10. Pair interaction,
with bridge binding and E~
=-0.3, of adatoms separated
by 1-5 lattice constants in the
(10) direction. The curves
are scaled by (5.3) raised to
the separation minus one (in
units of ao), to show the ex-
ponential character of the de-
crease in interaction with in-
creasing separation.

the special case of surface macromolecules men-
tioned at the end of Sec. DB 3). For peak-to-peak
measurements with E, near the band center, n
averages l. 1 + 0.7 in going from V/T = 1 to 2, and

3.4+1.1 in going from 2 to 3. For envelope mea-
surements between V/T= 2 and 3, o. is 2. 6+-I.0
and 2.4+0.5. We can alternatively consider the
various y. For V/T= 1, y=0. 2; for V/T=2,
y=0. 4 or 0.38 (method one or two). Hence, in
going from 1 to 2, e - 1, while going from 2 to 3.
~-2. For stronger potentials, the features of the
interaction curve in the interior of the band are
relatively insensitive to variations of V; we can
therefore focus attention on a particular interior
extremum and compare its value for V/T ranging
3-5. We find that in general o. is a fraction (be-
tween 0 and 1), and that n determined from V/T
= 3-4 is usually greater than ~ determined from
V/T= 4-5. (For the special cases of surface
macromolecules, z is anomalously large, as ex-
pected from the discussion at the end of Sec.
IIB3}. We find it to lie between 1 and 2. Most
importantly, we can definitely conclude that our
parameters fall within the covalent area, as in
the single-adatom case, and that the physical re-
gion is that in which we are approaching the sur-
face-molecule limit.

Finally, we consider the dependence of AS;&

on the adatom level E,. We recall that for the
single-adatom problem, a shift of E, by ~ would

roughly shift the interaction-energy extremum,
and consequently the portion of the 4S' curve giv-
ing strongest binding, by ~ along the E~ axis.
For small shifts in E„and for both E~ and E, not
too close to a band edge, we can say that 4W is
locally well approximated by a function of only

EJ; -E,. While a similar statement might be made
for the case of two adatoms in the weakest poten-
tial, for stronger physical V we find this claim no

longer so. In this range the interaction-energy
curve (for E~ not near a band edge} is still basical-
ly just shifted along the E~ axis, but by an amount
that is only a small fraction of ~. Figure 11
illustrates this behavior with ~=

Q Sg MLS'yap

cannot reasonably be fit by a function of Ez -E„
even to lowest order. Moreover, it is not hard
to show that in the unphysical limit of very strong
potential (the asymptotic regime discussed at the
end of Sec. II 8 3), the dependence on E, vanishes
entirely. The weak dependence of ER'x&& on E,
(compared with E~) in the physical range (of V) is
fortunate if one is trying to find the appropriate
calculated curve for experimentally determined
values of the input parameters E„E~, S'~, and V
(from heat of adsorption) since E, is the most dif-
ficult of these four to determine: We recall from
the discussion at the beginning of Sec. IIB2 that
our E, is in fact a rather phenomenological pa-
rameter which should be rescaled to give at least
a Hartree-Fock account of the (nonmagnetic)
Coulomb interaction U between an up- and a down-
spin electron on the adatom. Clearly, in this ap-
proximation E, is increased by U times the occupa-
tion number of the adatom for either spin direc-
tion; to lowest order this occupation number can be
replaced by that for single-particle adsorptio~.

C. Surface Arrays

Armed with a general understanding of the para-
metric dependence of the pair-interaction en-
ergy, we are ready to consider the surface arrays
suggested by our results. In about half of the
cases, the nearest-neighbor site is attractive
(hW, z & 0) and is the most attractive of any site
In these cases, the model suggests that a (1x1)
adsorbate pattern form. However, in this case one
can in general no longer legitimately neglect over-
lap effects —that is, the direct interaction between
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FIG. ll. Pair interaction for
next-nearest neighbors, with
on-site binding, for E =-2.0,
—1.0, 0.0, 1.0, and 2.0. The
curves verify the relative in-
tensitivity of 4S'~&~ to changes
in E~ for physical potentials.

adatoms —so that the treatment here is unreliable
for any details. Moreover, the model tends to
overestimate the number of (1x1) arrays. Since
all 4W are negative nea, r the lower band edge, and
since AW&2 has the fewest oscillations of all (ij)
as a function of E~, a disproportionate number of
these (1x 1) patterns fall near the edges (especial-
ly for weaker and intermediate potentials U),
where not much dissociative chemisorption takes
place. (Recall from Sec. Ill A that the binding en-
ergy is smallest near the band edges. ) In general
our model can suggest adlayers of the form (k xk)
or c(2kx2f), k and I integers. Specifically, if the
next-nea. rest-neighbor site, (22), is the most at-
tractive, c(2x2) is favored; if (23) has b, W most
negative, c(4x 2) has an energetic advantage; if
(33) is most attractive, c(4x4) results; and if (13)
is most negative, (2x 2) should prevail [unless (22)
is also attractive, in which case after some (2x 2)
growth the centered site will be filled, giving
c(2x 2)]. As a rough check of general reasonable-
ness, it is interesting to compare the frequency
of occurrence of each array predicted by our model
with that found by experiment, even though this
procedure can do no more than establish that we
are in the correct ballpark. From Somorjai and
Szalkowski's' table summarizing su' face arrays
on substrates with fourfold symmetry, we extract
the data for the binding of the simple (presumably
single level) adparticles 0, CO, 8, and N, on the
(100) surfaces of ten transition metals (so we
hopefully get some average of Ez/W~) Using no.
weighting factor, we count the number of occur-
rences of each of the four binding arrays our
model predicts. There are seven occurrences
each of (lxl), (2x2), and c(2x2), plus three
cases of c(4x 2)." (Also there were single in-
stances of seven other surface lattices. ) Neglect-
ing (Ix 1) structures —for the overlap question

mentioned above and because the table underesti-
mates the frequency of (1x 1) patterns in nature'—
our calculation predicts remarkably similar
ratios. In the band range —1.8 E„-1.8 and for
the gamut of parameters without or with split-off
states, assuming uniform weighting of parameters,
we find roughly the same number of (2x 2) and

c(2x 2) (slightly more of the lattice), and about
2-4 as much c(4 x 2) patterns.

As forecast by the preceding discussion of gen-
eral properties, the viability of a particular pat-
tern for a particular binding type is quite depen-
dent on the parameters, particularly for weak po-
tential. A change of E, or especially E~ by ~&' W~

within the band interior will destroy a particular
non-(1x 1) array's energy advantage about a half
to a third of the time —for stronger V, the latter
factor being much more typical. Changing the
potential from weak to intermediate has a more
potent effect, altering structure in about & of the
instances. On the other hand, going from inter-
mediate to strong potential, there is remarkably
little change in structure. In going from V/T=4-
5, with all other parameters fixed, the pattern
changes significantly for only about ~ of the "sam-
ples. " Finally, changing binding symmetry has
a far more profound effect than varying the param-
eters listed above: It is extremely rare that for
the same E~, E„and V, more than two of the four
types will exhibit the same pattern. This is to be
expected from Figs. 6-8.

%'e do have one reliable test for the interaction
energy of a c(2x 2) pattern. To a fairly good ap-
proximation one can view this structure as a two-
dimensional square-lattice gas with repulsive
nearest-neighbor interaction and attractive next-
nearest interaction (and neglect more distant in-
teractions). Recalling that a lattice gas is equiv-
alent to the Ising model, we can use the results of
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Fan and %u for the Ising model with second-neigh-
bor interactions. ' Since electrons have spin 2,
to transfer between the two models we make the
substitutions

cvg=—bW, ~(E~) = —4Z

where J and J' are the Ising nearest and next-
nearest exchange constants, and gy& and m~ are both
positive. The c(2x 2) structure falls into the
domain called antiferromagnetic, for which the
approximate solution for 7'„

e "~~'=VYe ~~~'+e 3 (P=l/kr, ), (3.6)

applies. This equation for the ordered lattice
critical temperature T, is accurate to within a few
percent for avj

~
A@3. Most of our patterns fall into

this range, with se2 ranging from about so& to an
order of magnitude smaller. For co& =rum, (3.6)
becomes a cubic equation with the solution e
=0.68946. . . (as compared with a Pade-approxi-
mant value of 0. 683V. . . ); for gu, =V. 83go2, one
can show by direct substitution that e"~ 3 = 0. 909.
Consequently, Pcu, ranges from 0. V4V to 0.648.
Experimentally, the critical temperature is on the
order of 3'0 eV, ' so that so&-0. 037-0.032 eV. In
our units of 6 W» I),-0.04 for 8'~ = 5 eV and

m, -0.02 for 8'~=10 eV. These values are in rea-
sonable agreement with calculated ur, for V/T=3-
and E, near the band center.

iV. CONCLUSION

Within the context of a tight-binding model, we

have carried out a calculation of the indirect in-
teraction energy AR'between a pair of atoms ad-
sorbed on the (100) surface of a simple cubic solid.
To 4g must be added the direct interaction between
the adsorbate atoms. The model involves four
parameters, the bandwidth 8'~ and the Fermi en-
ergy EJ,- of the bulk solid, the atomic energy E, of
the free-adatom orbital rp„and the hopping matrix
element V which mixes y, and the orbitals p& on
the surface atoms at the adsorption site. Our
procedure is to fix 8', and Ez from data on the bulk
solid. For an assumed value of E„Vis fixed to
obtain the observed chemisorption energy for a
single atom at low coverage. hW is then deter-
mined uniquely as a function of the positions of the
adsorbates relative to the substrate.

Three binding symmetries have been consid-
ered, namely, atop (over a single surface atom),
bridge (equidistant from two nearest-neighbor
surface atoms), and centered [in the center of the
four atom square on the (100) surface]. We have
considered 4W only for pairs of atoms of the same
bonding type so that AR' is a function of the dis-

crete surface unit cell indices of the two adsor-
bates z a d ~.

Our work is related to that of Grimley, who cal-
culated h, R' in the asymptotic limit of large spac-
ing between adsorbates for a surface characterized
by a parameter which allowed for variable reac-
tivity with the adsorbates. The essential distinc-
tion between Grimley's work and the present,
analysis is that our model includes crystal struc-
ture effects and calculations are carried out nu-
merically so that AR" can be calculated as a func-
tion of adsorbate separation, even for closely
spaced adsorbates. These differences are of con-
siderable importance since we find the interaction
is quite sensitive to the binding type and the inter-
action is of significant strength only for inter-
adatom spacing of a few substrate lattice spacings
or less, the interaction falling off in scale roughly
exponentially for the first several lattice spacings,
whereas Grimley found a power law for large
spacings. Furthermore, the virtual level approxi-
mation of Grimley is pxobably not valid for pa-
rameters appropriate to observed binding energies,
since split-off states occur in this range of cou-
pling, i.e. , a tendency for surface complexes to
be formed, which then couple to the indented solid.
Nevertheless, the present model is sufficiently
crude that the calculations are primarily of qual-
itative significance, i. e. , it is not possible to this
stage to draw comparisons with specific systems.
%e note that the interaction at small spacing varies
from attractive to repulsive, generally on the
scale of the lattice spacing, with the sign of hR'
for.a particular spacing varying moderately with

E~, and significantly less so with E, and V for po-
tentials of physical interest.

It is gratifying that one finds for a reasonable
range of parameters that many of the overlayer
structures observed in low-energy-electron-dif-
fraction (LEED) data appear to be the stable struc-
tures based on the calculated hW curves. In addi-
tion, the rough agreement between the melting
temperature for the c(2x 2) lattice of H on (100) W
and that calculated from AR" fit to the observed
chemisorption energy shows that the scale of 4g
is correct. Estimates indicate that explicit 3,
4. .. body forces are negligible compared to the
pair interaction even at high coverage.

A distinctive feature of this work is the strong
dependence of AR" on the symmetry of the adsorp-
tion site (relative to the substrate). Unfortunately,
our present analysis does not permit the hazarding
of predictions of which adsorption-site symmetry
exists in particular experimental systems. Sev-
eral new approaches to analyzing experimental data
should, however, provide information on this
subject: Park has commented on effects of the
antiphase relationship between surface subdo-
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mains —certain LEED beams are broadened while
others remain unchanged. In some cases, it be-
comes possible to distinguish bonding at fourfold
symmetry sites (atop or centered) from that at
twofold symmetry sites (bridge or bridge perpen-
dicular). Andersson and Pendry ' are using in-
tensity versus energy LEED spectra to investigate
the structure of the surface unit cell, in particular
to deduce the spacing between adatoms and their
substrate neighbors. %ebb and associates are
seeking similar information from the kinematic
(single-scattering) intensity, which they extract
from (multiple-scattering) LEED data by averaging
at constant momentum transfer.

The present analysis should 'be generalized in a
number of directions. A more realistic substrate
having d orbitals and self-consistent potential ef-
fects are clearly of importance. Clearly, the
direct interaction between adsorbates must be
added to AS" in calculating the properties of tightly
packed overlayers.
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