
PHYSICAL H, E VIE%' 8 VOLUM E 7, NUMBER 8

Thermodynamic Properties of Electrons in Small Metal Particles

R. Denton~ and B. Muhlschlegel~

Institut fiir Theoretische I'hysik, Universitat zu ECiln, I&i'n, Germany

D. J. Scalapino~
University of California, Santa Barbara, California 93106

(Received 9 October 1972)

The electronic properties of an assembly of small metal particles are determined by and reflect their
distribution of discrete electronic energy levels. With the absence of strong correlations (arising from,
for example, the presence of localized impurities or surface states), it is reasonable to treat the
energy-level distribution statistically. The level distribution is determined by the symmetry of the
dynamics which governs the three ensembles of the statistical theory of spectra and characterized by a
mean slnglc-clcctron-lcvcl spacing 5 for partlclcs of R ccItaln slzc. In thIS papcI wc conflinc our
attention to thc thermodynamics of small particles. Thc exact solution of a model is presented which '

consists of electrons in equally spaced levels and which includes magnetic field and
short-range-interaction effects. %e report on detailed calculations of the heat capacity and magnetic spin

susceptibility, Here, the statistics of level distributions is applied in the whole temperature range, thus

generalizing the work done originally by Kubo and Gor'kov and Eliashberg for the limiting case in

which kT «'5.

I. INTRODUCHON

The pux'pose of this paper is to consider in detail
the static electronic properties of a collection of
small metallic particles. In treating the bulk
electronic yroperties of metals, one usually con-
siders the thermodynamic limit in which the parti-
cle numbex' and volume go to infinity with the den-
sity N/V finite. In this case, the single-particle
energy levels form a continuum. However, for
finite systems at sufficiently low temperatures the
discrete nature of the single-particle spectrum can
be expected to enter. For a finite system, the
average spacing 5 between single-electron states
is of order e~/N, where qz is the Fermi energy
and N is the number of conduction electrons. If
kT is of order or less than 5, then the discrete
character of the syectrum will affect the static
thermal pxoyerties such as heat capacity and mag-
netic susceptibility. As k7.' becomes large com-
pared to 5, many levels enter in determining the
thermodynamic properties and the discrete effects
are wRshed out,

The single-particle spectrum will appear dis-
crete so long as the level width F is less than the
spacing 5. Using the bulk low-temperature limit
Rs RD estimatey

I'- (kT) /s

and the condition for the spectrum to be discrete
becomes

Ã&(sJ/kT) .
This is of course satisfied when 5 &AT. However,
even when k T» 5, N can be such that the basic

level structure is discrete. In this case, although
the static thermodynamic properties will not re-
flect the undex'lying discrete nature of the single-
yarticle syectrum, it should still be possible to
probe it dynamically. Here we consider only the
thermodynamic problem and restrict our analysis
to the static electronic properties. '

Our basic assumptions about a single small
meta, l particle and about a collection of such par-
ticles will be similar to the work of Kubo. In this
context we want to dx'aw attention to a very read-
able short review on small metal particles written
by the same authox'. 3 In that work the justification
for using a noninteracting quasiparticle scheme at
low temyeratur es was indicated. The quasiparticles
take into account the main effects of the electron-
electron Rnd electx'oD-phonon lntex'RctloDS Rnd are
descrihed hy the single-spin density of s'ta'tes N(0).
This density of states varies negligibly over the
energy range one needs to consider, which involves
a relatively sma, ll number of levels about the
Fermi level. The avex'age level spacing 5 is given
by the inverse of the single-spin density of states
I/N(0). Since the density of states is proportional
to the volume of the particle, 5 then varies as the
inverse of the volume. A metallic particle of size
a of order 100 A, containing about 10 conduction
electrons, would correspond to a level separation
S/k-I K. To calculate properties of small parti-
cles at this low temperature, one needs to consider
all quasiyarticle excitations for levels near the
Fex'mi surface, with the enumex'ation of the states
consistent with the Pauli principle.

Kubo recognized the electrostatic energy asso-
ciated with the addition or removal of an electron
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from a small particle is extremely large com-
pared to the thermal energy available; the ratio
of the two is approximately given by e'/a5 which
is of order 10' for a particle 100 A in size. Thus
if the grand canonical ensemble is used, this in-
teraction must be included. Alternatively, the
number N of electrons in a particle can be treated
as a constant so that the canonical ensemble be-
comes appropriate for this problem. We will
examine the case of equal level spacings which
can be exactly solved and allows a comparison of
the canonical and grand canonical solutions for the
specific heat and susceptibility. In addition, the
exact solution displays a periodicity in the mag-
netic field which is a characteristic feature of the
equal level system.

Another feature of small particles at low tem-
peratures is the difference in behavior between
particles with an even and odd number of conduc-
tion electrons. This effect in the susceptibility
was first noted by Greenwood, Brout, and Krum-
hansl. At low temperatures such that only a few
levels are involved, the exact counting of the pos-
sible excitations for the even and odd cases leads
to this difference. In the grand canonical ensemble
the difference results from the positioning of the
chemical potential in the Fermi distribution. For
a measurement such as the specific heat for which
one cannot distinguish between the even and odd
particles in the collection, one can take a simple
average assuming equal numbers of each type.
For Knight-shift measurements, the frequency
separation of nuclear resonances in particles with
even and odd numbers of electrons may allow one
to study these as two distinct species. The even-
odd effects wash out as kT becomes of order 5.

Let us consider a collection of isolated small
particles all of the same size. The distribution of
electronic energy levels in these particles may
contain strong correlations arising, for example,
from the presence of localized impurities or sur-
face states. In the present work we assume that
such correlations are absent. For this case Kubo
has emphasized that the originally degenerate en-
ergy levels calculated for a regular object such as
a sphere are in reality split apart by atomic ir-
regularities on the surface; the resulting nonde-
generate spectrum has an average level spacing 5
of order 5=ed/N. The level spectrum of two
particles will then be different due to uncontrollable
surface irregularities but will have the same aver-
age spacing 5. Now for a given particle the one-
electron matrix elements arising from surface
perturbations can still contain minor correlations.
However, experimentally one deals with an ensem-
ble of particles, for which the surface perturba-
tions of one particle are uncorrelated with those of
another. For the purpose of calculating the energy-

level distribution for an ensemble of particles, we
feel it is a reasonable approximation to treat the
matrix elements as "randomly" distributed inde-
pendently of the others. The influence of the per-
turbation matrix elements in determining the level
distribution is then susceptible to a statistical
treatment, and only a knowledge of the symmetries
of the Hamiltonian is necessary to determine the
level distribution for the ensemble of particles.
The statistical description of the energy-level
distribution has been developed by Wigner, Dyson,
Metha, ' Porter Bnd others. The effect of the
various statistical level distributions on the static
properties of the collection of small particles will
be calculated. The measurements of specific heat
and susceptibility could test the validity of the theo-
retical considerations leading to the statistical dis-
tributions, such as the assumed lack of significant
correlation among the matrix elements.

The paper is divided as follows. " Sec. II contains
a discussion of the statistical description of energy
levels and its applicability to a collection of small
particles. Section III presents the exact solution
to the equal-level problem. The first derivation
is obtained by projecting the canonical partition
function from the grand canonical expression. The
second derivation involving the Tomonaga model
is generalized to include a simple short-range fer-
romagnetic interaction. A comparison between
the canonical and grand canonical results is made,
and the periodic features characteristic of equal
levels are also displayed. Section IV applies the
statistical description of energy levels to calculate
the specific heat and spin susceptibility. The fold-
ing of the results into a particle size distribution
is also discussed.

II. DISTRIBUTION OF ENERGY LEVELS

To calculate the thermodynamics of a collection
of small metal particles at low temperatures, one
needs the distribution of energy levels about the
Fermi level. Since very general theoretical as-
sumptions have led to a number of statistical en-
sembles for the distribution of energy levels, we
discuss their applicability to small particles in this
section.

The essential features in the statistical treat-
ment first appeared in the level distribution studies
of complex nuclear and atomic systems. Wigner
considered the possibility of describing the levels
of a complex nuclear system statistically as the
eigenvalues of a random matrix. The Hamiltonian

H&& of a single nuclear system is represented by a
matrix for some set of basis states, and in turn an
ensemble of matrices would correspond to an en-
semble of possible nuclear systems. The elements
in the matrices would be random in the restricted
sense that the individual matrices must still satisfy
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the properties imposed by the symmetries which
the individual Hamiltonians are assumed to have in
common. The possible ensembles of random n xn
matrices, corresponding to various symmetry re-
quirements, can then be diagonalized to yield the
respective distributions of ordered energy eigen-
values.

Now a single small particle has a well-defined
set of energy levels, which one could in principle
calculate. In the familiar case of a perfect metallic
sphere, the distribution of energy levels is not dif-
ficult to obtain; the degeneracy in magnetic quan-
tum numbers due to the spherical symmetry is pro-
portional to N' ', where N is the number of conduc-
tion electrons. However, atomic irregularities on
the surface are sufficient to split apart this large
degeneracy of energy levels. For a 100-A particle

a
the wave numbers of interest are of order 1 A '.
Thus in practice it would be extremely difficult to
calculate the actual distribution of energy levels,
due to the many small yerturbations on the sur-
face.

On the other hand, just as for the nuclear sys-
tem, the Hamiltonians for the collection of small
particles can be represented by an ensemble of
matrices. The actual distributions of energy
levels for the entire collection could be described
by a statistical distribution of one-electron levels,
obtained from diagonalizing the matrices. One
would expect the off-diagonal elements in each
matrix arising from the surface irregularities not
to be highly correlated with one another, except
in the case of actually conserved quantum numbers.
With no spin-orbit coupling, for example, the elec-
tron spin is a good quantum number and there would
be no matrix elements between opposite-spin
states. The energy-level degeneracy would then
be sylit apart except for the remaining twofold spin
degeneracy. Even if there is some correlation of
the matrix elements for a single small particle,
the irregularities on the surface of an assembly of
small particles vary from one particle to another.
Thus we feel it is reasonable to apply the general
theory of statistical ensembles, which is based on
random matrix elements, to the problem of small
metal particles.

In general, the Hamiltonian matrix has symmetric-
real, quaternion-real, or complex elements. Dyson
has shown in his fundamental work that these symme-
tries are completely classified in terms of the orthog-
onal, symplectic, and unitary groups, respectively.
Each group uniquely defines an ensemble, and we
summarize their applicability below. The orthog-
onal ensemble, which has already been applied to
nuclear and atomic systems, corresponds to sys-
tems with (a) time-reversal invariance and (b)
integral values of angular momentum, or rotational
invariance in the case of angular momentum with

half-integral values. In the limiting case of no
spin-orbit coupling in a small particle, the spin is
a conserved quantum number. Therefore, only the
orbital parts of the one-electron states mix to-
gether due to the irregularities on the surface.
The relevant angular momentum is the orbital
angular momentum which is, of course, integral,
so that in the absence of a magnetic field condition,
(b) is satisfied and the orthogonal ensemble is ap-
plicable. The symplectic ensemble applies to sys-
tems with (a) time-reversal invariance and (b)
half-integral values of angular momentum, with no
rotational invariance. If the spin-orbit coupling
becomes strong enough to completely mix the
levels which would have been determined accord-
ing to the orthogonal ensemble previously, then
the symplectic ensemble is appropriate to de-
termine the level distribution. For a rough
measure of the spin-orbit coupling strength of the
metallic particle one can use the appropriate
atomic spin-orbit couylinH; A.. The symplectic en-
semble is applicable when the ratio X/5 becomes
of order 1. For 6 of order 1 K the symplectic en-
semble would be appropriate for all but the lightest
metals. Finally, the unitary ensemble corresponds
to particles with spin-orbit coupling and no time-
reversal invariance. In this case the magnetic field
field must be strong enough to further mix the
levels together so that the symplectic ensemble no
longer applies. This should occur when —,

'
gp, ~H

becomes of order 5, where g is the Lande g factor
of the electrons. The above conditions fairly well
specify the applicability of each ensemble. How-
ever the actual details of the transition from one
ensemble to another, in going from one material
to another or in turning on the magnetic field, have
not been examined comprehensively.

The normalized distributions of N ordered eigen-
values for the three ensembles, obtained by diag-
onalizing the matrices in each ensemble, are given
by

where C~"' is chosen is give the normalization

f fz (&'& &2 &n) &cd& '' '2&N= ~ (2)

Here y takes on the values 1, 2, and 4 for the
orthogonal, unitary, and symplectic ensembles,
respectively. Each pair of eigenvalues in the
formula above displays a level "repulsion, " which
in the case of the orthogonal ensemble goes as the
first power as the two eigenvalues approach one
another. To the other ensembles correspond dif-
ferent power laws, due to the different symmetries
satisfied by their Hamiltonians. The repulsion
expresses the fact that an accidental degeneracy is
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Numerical results over the entire 6/5 range are
known for I'0"'. However, for larger numbers of
levels, exact results for the P„'",' distributions be-
come increasingly difficult to determine, and vari-
ous approximate schemes have been devised.

It is necessary for the calculations later to obtain
simple approximations to the exact formulas. As
has been noted by others, useful approximations
to the exact nearest-neighbor spacing distributions
Po"' are obtained by taking N 2 in Eg. (1), changing
variables to the spacing between the two eigen-
values, and integrating over the remaining variable.
For example, using the orthogonal ensemble this
procedure yields the "Wigner surmise ":

P«(g) =
2

(4)

This normalized distribution function was proposed
by Wigner to fit the nuclear data for the spacing

very unlikely; the perturbations represented by the
off-diagonal elements in the random matrices will
split apart any eigenvalues which approach one
another.

The physical properties of small particles de-
pend upon the distribution of eigenvalues near the
Fermi level. In general, the Fermi level will
have many levels lying both above and below it.
Therefore, the eigenvalue distribution near the
Fermi level can be obtained from the limiting be-
havior of 8'N"', for large N, by integrating over
all but a few of the eigenvalues in the middle of the
spectrum.
~(r) (Pn 1(&l-t ' ' ' ~ &l+n)

=lim
~

W«( „... , «)ds, ~ de&, ds, .„.(~)

g m oo

Near the center of the eigenvalue spectrum, the
absolute level position is irrelevant and I'„'",' is a
function of the n level spacings 4, = &&„-&„42
= Q]+2 f ]+&.& & 6& = f] f] &, The subscript
n- 1 denotes the number of levels between the two
outermost levels. Thus Po'"'(d, ) represents the
probability that two levels are separated by an en-
ergy b, ; PI"'(b,„h,) the probability that three levels
have the relative spacings 4, and Lh2; etc.

For the nearest-neighbor spacing distributions

P,'"'(b, ), exact numerical results as well as various
asymptotic forms are known, In the limit where
6 is small compared to the average level spacing
5, the orthogonal, unitary, and symplectic distribu-
tions vanish as various powers of b/5 reflecting the
level repulsion effects:

2 2 2

P '(&) = —— P (~)= ——(, g a (,) m

0 6 g2 y 0

(3)
s" '(s) = «—32 & 6 1

0 2VO g g
~

between two adjacent eigenvalues. The close
agreement between Po"'(6), given in Eq. (3), and
the approximate P«(b ) has been noted before. ~'9 ln
the Appendix, we generalize this procedure to ob-
tain approximate formulas for the more complicated
distributions

We mention also the Poisson or "random" dis-
tribution, which was first applied by Kubo. If the
irregular potential for the small particles merely
had diagonal matrix elements among the crystal
states, this uncorrelated or random distribution
would be appropriate. In this case, the nearest-
neighbor spacing goes as

P, (~) = e-'"/C .

There is no level repulsion since there are no off-
diagonal elements to cause the level separation.
Because of the neglect of the off-diagonal elements,
this distribution is unphysical, and we will use it
simply for comparison. Note that while the random
nearest-neighbor distribution, Eq. (5), approaches
the bulk density of states 5 ' as 6/5-0, the P~~"'

distributions, Eg. (3), vanish as (b/5) . This dif-
ference has a profound influence on the low-tem-
perature thermodynamics as pointed out by Gor'kov
and Eliashberg' who were the first to introduce
the P~(„"~ distributions into the small-particle prob-
lem.

III. CANONICAL PARTITION FUNCTION AND EQUAL-
LEVEL PROBLEM

For arbitrary spacing between the energy levels
in a small particle the canonical partition function
cannot be expressed in a closed form. Of course
at temperatures such that only the lowest excita-
tions are important, it is convenient to write out
the partition function term by term, and at higher
temperatures it can be calculated by the saddle-
point method. But before making any approxima-
tions, it is worthwhile to consider the case with
equal level spacings where one can calculate the
canonical partition function exactly. ' Since the
perturbations on the surface of a small particle
are expected to break apart degenerate energy
levels and produce an average level spacing 5, this
problem with equal level spacing 5 forms an initial
approximation to the actual case. The resulting
specific heat and susceptibility will be seen to dif-
fer from the grand canonical expressions. In Sec.
IV this equal level solution will then be used in an
approximation scheme to calculate the canonical
partition function for a distribution of level spac-
ings.

The canonical partition function is projected out
of the grand canonical form by the Darwin-Fowler
contour integration:

Q(N, P, K) = —.tl) «„Q(z, P, K), (6)
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where

q(z, P, H)= II (1+ze'"e ~~), h= ,'Pg-ij, sH.
l=1
gal

be written in the form

Z= (q '~'/wG') f dp 8, (rp ih-, q)8, (q, q)

2&y(g 1&e(r 1)h (9)

where

xII (1+ze'"e ~'&),
0=1
gal

Z, (N)=2 Z q, -wri, ;

0 even number of electrons

The energy levels g& are ordered with g, g&

It is convenient to factor out the ground state which
then allows Q to be expressed in terms of particle-
hole excitations. With a change of variables to
measure energies from the topmost occupied level

g~ at T= 0, one obtains a form originally discussed
by Kubo:

q(N, P, H) = e-'"'"'Z(H)

with
pm1

Z(H) = . ~
I
—z" II [1+(1/z ) e'"e ~ ]2' ~ 8 g 0

e-85/8

G= II(1-q'").
n=1

The 8 functions satisfy the important relationship'

8z(z, q) = 2Gq' coszII (1+2q'" cos2z+ q4")
n=1

=2 5 q'""'2' cos(2n+ I)z. (1O)
n=0

Substituting the series expansion of 8z into Eq. (9)
facilitates the integration over y, and the result is

Z„„= 1+2 e """'cosh2n+1 A' Za
n=0

z = 2 Z e '"'""'cosh(2n 1)h) z
n=0

with

1 odd number of electrons;
Z, = II (1- e "")'.

n=1
(12)

p- gp, -o

/pe, $ Qp ~ 0

In these formulas Eo(N) is the ground-state energy
of N= 2p —r electrons in zero magnetic field, and
so Z(H) still contains the H-dependent ground-state
contribution. The above expression for Z(H) is
valid at all temperatures, but one usually calculates
the integral by a steepest-descents integration;
this is justified when P5 «1, where 5 is the average
level spacing at the Fermi surface.

However, it is also possible to perform the con-
tour integration for all temperatures in the case of
equal level spacing. For this case one has &~ = 5k.
Because of thermal degeneracy p5p»1, one can
extend the limits in the first group of products to
infinity. After changing variables to z =re " and
integrating around the unit circle, one obtains

Z = (4/w)e'" ""f dy e '"' "cos (cp- ih) cos(p

x II [1+2 cos2(q - ih) e "'+e ' ']
%=1

xII (I+2cos2cpe z" +e z~"). (9)

Appearing in the integrand is the product of two

8 functions, 8z(y-ih, q) and 8z(y, q) in their prod-
uct representations, so the partition function can

Here Z~ is the canonical partition function for
spinless fermions, which one calculates similarly.

The form for the partition function implies that
the excitations which contribute to the canonical
partition function are bosonlike. In the standard
grand canonical case, the excitations consist of
linearly independent particle and hole excitations
which, of course, lead to the usual Fermi func-
tions. However, the restriction of electron num-
ber conservation implies that for each particle ex-
citation there must be a corresponding hole. That
within the equal-level-spacing assumption these
collective particle-hole excitations lead to the
boselike partition functions is in fact simply shown
using a scheme originally introduced by Tomo-
naga.

To begin with, consider a spinless fermion sys-
tem with equal one-electron energy levels k5 with
k running from 0 to m. In the ground state the
levels will be filled up to some level p with 0 «P
«m. Then the canonically allowed excited states
are generated by applying all possible particle-
hole excitation operators of the form c~tc~. . Here
c~. removes a particle from the k 5 state, and c~t

creates a particle in a k5 state. According to
Tomonaga, one introduces in place of the c~c„,
operators the linear combinations

e-q
a, = ~ ~~c„,c,

&=0
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and their Hermitian conjugates. Without loss of
generality one may assume q ~ q ', and one finds
then

c-1 fft+Q Q'

[a a.'=, Ee,'... c, — Z c... , t:,);vqq y=m-~'+S

(i4)
For a degenerate, noninteracting electron system
the levels 0 to q- 1 are occupied while the levels
m —q '+1 to m+q —q' are empty for the physically
significant q, q

' states. Therefore, the right-
hand side of Eq. (14) vanishes unless q equals q

'

in which case it reduces to unity, so the a~s and

a, operators obey Bose commutation relations.
While the degeneracy condition is usually well
satisfied, the effect of the Coulomb interactions
between the electrons lead to modifications of the
occupation numbers which break down this simple
Bose picture. However, for the present degener-
ate noninteracting canonical problem, Eq. (14)
provides an accurate representation.

The Hamiltonian for the equal-level- syacing
case is

H= Z k8c~tc, .

The equal spacing of the levels leads to the com-
mutation relation

E„„(S,) =S',8+gysHS, .

In a similar manner, Fig. 1(b) illustrates the
lowest energy S,=-,', S,= —,', —,', and —,

' states for an odd-
electron system. The general form for the odd
number of electrons is

(20)

Using Eqs. (19) and (20) in Eq. (18) and summing
over + S, values, the canonical partition functions,
Eq. (11), for the even and odd case, respectively,
are obtained.

Ne discuss now the canonical specific heat and
susceptibility, which are calculated from the parti-
tion function in Eq. (11). The results over the
entire temperature range must be obtained numeri-
cally. However, one can see the qualitative fea-
tures by considering the low- and high-temperature
limits. At low temperatures, where one has P5

»1, only a few low-lying levels are important.
The exact counting of the possible states then leads
to a clear distinction between the even and odd
cases. The lowest terms in the partition function
are

Z„,„=(1+2e 'cosh2k)

x(iy2e +8e +10e )+0(e ' ), (21)

[a, a,']=-kyat. (16)

Therefore, the particle-hole excitations allowed in
a canonical description are Bose-like with a spec-
trum k5. The resulting canonical partition function
for this spinless fermion case is just ZB given in(

Eq. (12).
In order to treat the spin case, it is useful to

classify the states by their total z component of
spin angular momentum S,. For each S, manifold,
there is a state of lowest energy E(S,), and the ex-
cited states in the manifold are generated by the
Tomonaga Bose operators at, suitably generalized
to the spin case

Q

~~8=.m ~ ca+cscas ~

n=o

The contribution of this manifold to the canonical
sum over states is therefore simply

(b)

Sz=O

S,= I/2

EVEN CASE

ODD CASE

Sz 3/2

Sz= 2

Sz=5/2

e-13&(Sg)z 8
B~ (18)

where the ZB reflects the two spin degrees of
freedom of the a~, excitations.

For the even-spin case the lowest energy S, = 0,
S,= 1, and S,=2 states are illustrated in Fig. 1(a).
Measured relative to the S,= 0 state, the S,= 1 and

S,= 2 states have energies 5+gp, BH and 45+2gp, BH,
respectively. In general, the lowest energy state
in a given S, manifold, measured relative to the
lowest S,=O state has an energy

-t-
-t—
—t-
-t-
—t-
-t— -4-

I"IG. l. (a) Lowest energy configurations for the S~
= 0, I, and 2 manifolds for an even number of electrons.
(b) Lowest energy configurations for the Sg= ~, 2, and 2
manifolds appropriate to an odd number of electrons.
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Z,«= 2(coshk + e ' coshSk)

x(1+2e '+5e +10e' ')+O(e ').
The specific heat calculated from the above is ex-
ponentially attenuated as T- 0. The susceptibility
will exhibit the Curie-law behavior for the odd case
while the susceptibility in the even case is exponen-
tially attenuated.

In the high-temperature limit, one has P5 «1,
and there are many excited states. The exact
counting of all states according to the canonical
scheme then becomes less important, and the
even-odd distinction washes out. With P5«1 the
logarithm of the partition function can be con-
verted into an integral form, where the lower
limit in the spinless partition function Z~ must be
treated carefully. One obtains

lnZ „„= + —,ln ——2 dx ln(1 —e ")0 P(g&sH) i v
~

-as

" 1/3

= ln Z,«.
The heat capacity and susceptibility are then

calculated from

tenuated, At higher values of kT/5 both even and
odd cases approach the Pauli susceptibility.

It is evident that the grand canonical ensemble
gives rise to a larger heat capacity at all tempera-
tures; this follows since there are more excita-
tions allowed when the electron number is not con-
served. In the case of even electron number, the
chemical potential is between the topmost occupied
level and the next empty level (at T = 0). There-
fore the smallest grand canonical excitations have
an energy —,'5, and the heat capacity is attenuated
like e '+ instead of e ' as seen in Fig. 2(a). In
contrast, for odd electron number the chemical
potential occurs at the topmost occupied level which
in turn explains a low-temperature behavior - e @

similar to the canonical heat capacities.
The difference between the canonical and grand

canonical ensembles becomes quite obvious by
co~paring the mean occupation numbers. In order
to obtain the Fermi function from the canonical
partition function of Eq. (7), one must assume the
usual thermodynamic limit P5 = 5/k T «1. This
allows one to make an asymptotic evaluation; in so

~ elnZ 1 &1ngC=ke~, and X=— (22) 7.0 I I I

HEAT CAPACITY

The results for both the even and odd cases are the
same in this limit:

C 1 2
~

xe" 2m kT 1
dx

k 2 P6.IN/2
(e"-I)a 2 ~ 2'

x=2(lN, )'/&.

This is just the usual Pauli spin susceptibility, but
the linear law in the specific heat is corrected by
the term —k/2. This added term in the specific
heat can also be calculated as the first higher-
order term in a steepest-descents integration of
the partition function given in Eq. (7); however,
since the correction is of order 1/N (where N
= electron number) compared to the linear term in
the specific heat, it is usually neglected. Never-
theless, for the canonical ensemble these correc-
tions of order one are important at low tempera-
tures kT& 5, since the specific heat per metal
particle is only of this order. Of course, experi-
mentally one deals with samples containing 10' or
more particles.

The heat capacities computed numerically from Eq.
(11)for H = 0 r asheown in Fig. 2 (a) together with the

grand canonical results which essentially have been
obtained by Frohlich in 1937. The canonical and

grand canonical susceptibilities also differ; these
are shown in Fig. 2(b). Notice the odd case leads
to a Curie-law behavior at sufficiently low values of
of kT/5 due to the unpaired spin, while the sus-
ceptibility in the even case is exponentially at-
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FIG. 2. (a) Comparison of the specific heat calculated
for the equal level model using the canonical ensemble
with that calculated using the grand canonical ensemble.
(b) Comparison of the canonical and grand canonical spin
susceptibility, with the results normalized to the Pauli
spin susceptibility.
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doing corrections of order I/N are neglected.
Therefore, one might expect the Fermi function to
adequately describe the canonical occupation num-
ber only as P5 becomes small, the condition which
is assumed in its derivation. To see this quantita-
tively we calculate the canonical occupation number
for arbitrary values of the parameter n = P5. For
the sake of simplicity, we confine our attention
here to the case of spinless fermions. Their ca-
nonical partition function is

Z= . I
—Q(I ze )Ql —e

1idz" E"1 1 ~

27FS ~ Z k-"1 g O Z

(25)
from which the canonical mean occupation numbers
follow"

8
(n, ) = —

( )
InZe,

f 9
(+l) = (@t) lnZB ~

(26)

By performing the differentiations and using the 8
function given in Eq. (10) for the equal level sys-
tem, we obtain for the canonical particle-hole
distribution function

ir
&-f e

n(lxl)=-, e "l «s.(~, e ~')p-;i..n.z&.„
where

= Z (- I)' exp [-—,'n (P + I )' —(P + I)
l
x

l ],
(2V)

n=Pg, x=x =n(m ——,'),

particles
0, —1, -2, . .. , holes.

The series expansion is a further consequence of
Eq. (10).

On the other hand, the Fermi function for a spin-
less equal level system is f(x )= (e" +1) ', where
at T=0 levels with m 0 are filled and levels with
m & 1 are empty. With m & 0 the probability of
finding a hole is 1-f(x ). Therefore, in terms of
particle-hole excitations the grand canonical oc-
cupation numbers are

f(l x. l ) = I/(e'"'+I), (28)

where m & 0 corresponds to holes and m & 1 corre-
sponds to particles. Comparing the geometrical
series for f(lxI ) with the series expansion of
n()x] ), we immediately recognize that the canon-
ical particle-hole distribution n(Ix l ) approaches
the grand canonical Fermi function as n = 0/kT
tends to zero.

An interesting formal relationship between the
canonical and grand canonical occupation functions
can be obtained by observing that n(x, n), defined

1.0
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FIG. 3. Comparison of the grand canonical Fermi
function f (x) with the canonical mean occupation number
n{x), for 6/kT=4. The curve has meaning only at the
positions of the equally spaced energy levels which are
given by egkT=x~=p(m —2)/kT, with m=0, + 1, + 2, . . .

by Eq. (27) with ]x[ replaced by x satisfies the
diffusion equation

1 9n Sn

2 ex' s(-n)
where we assume that x and e are treated as inde-
pendent continuous variables. Then since n([x (,0)
=f()x[ ), it follows that

l* exp[- (x'- [x[)'/2n]

(30)
This implies that in passing from the canonical to
the grand canonical ensemble by removing the con-
straint of number conservation, one arrives at the
familiar Fermi function by a "diffusive" process.
Mathematically, this observation is easily under-
stood since the 8 function (which, as we have seen,
is intimately connected with the canonical statistics
of the equal level system) itself obeys the diffusion
equation. " The "physical" values for x in f((x ))
are still x=x from Eq. (2'7).

The canonical occupation number n(x) has been
calculated directly by using the series expansion
of Eq. (2 I), and the results are compared to the
Fermi function in Fig. 3. It is seen that f(x) al-
ways lies above n(x) for x &0, corresponding to
the larger number of particle excitations in the
grand canonical ensemble. For x & 0, correspond-
ing to hole excitations, the results have been
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plotted as f(x) = 1-f((x I ) and 1 —n((x [ ); this allows
a more direct comparison of the canonical occupa-
tion and the Fermi function f(x). In this case the
greater probability for hole excitations in the grand
canonical ensemble results in its occupation num-
ber being smaller than that of the canonical ensem-
ble. Analogous results also hold for the system
with spin, but this simple case is sufficient to il-
lustrate the importance of carefully treating the
canonical occupation numbers or the actual number
of excitations at sufficiently low temperatures.

The solution to the equal level problem also dis-
plays an interesting periodicity. As the magnetic
field is increased from zero, the energy levels
with spins aligned parallel to the field direction
will be raised compared to the levels with spins
antiparallel. Increasing H thus alters the contri-
butions of the various total spin manifolds to Z(H),
and both the specific heat and susceptibility are
changed. When H is increased to the point that
—,
'

gp, ~H= 5, the levels are brought into coincidence
again, and the specific heat and susceptibility be-
come the same as for H=0. This process repeats
itself as one continues to increase H. Further-
more, the even and odd cases are "converted" into
one another as ~ gp. ~H is increased from 0 to —,'I5,
without changing the number of electrons t Mathe-
matically, this follows from the expression for
Z(H) in terms of 8 functions given in Eq. (10). The
8 function is "quasidoubly periodic":

82(z+ v, q) = —8z(z, q),
(31)

8z(z s ,in, q)—=(1/q) e' "8z(z, q) for q = e ' z .

Although the periodicity of the first expression is
exhausted in the integration over the y variables
in Eq. (9), the second periodicity leads to the fol-
lowing relation between the even and odd cases in
a magnetic field:

Z'.„,.(n, h+ ,'n—)= e"Z'„,(n, a),
Z'„,(n, h+ 2n)=-e""+Z'„.,(n, h),

n = P5, h = —,'Pgp, BH.

(32)

The exponential factors can be neglected, at least
in calculating the specific heat and spin suscepti-
bility, since these involve second derivatives of
lnZ. Therefore, for the two cases Z„and Z«d
one only needs to calculate the specific heat and
susceptibility over the range 0& &gp, ~H &-,'5, and
the results can then be periodically extended to all
values of H.

The magnetization has been calculated first,
using the partition function of Eq. (11). The results
for two values of temperature are shown in Fig. 4,
where it is seen that the curves smooth out rapidly
as the parameter kT/5 increases. The first tran-
sitions, corresponding to increases in the magne-
tization as ,' gp, sH/5 in—creases, are indicated in the
inset. The specific heat and spin susceptibility
have also been calculated as a function of H for
fixed values of AT/5, using the partition function of
Eq. (11). The resulting periodicity for this equal
level system is displayed in Figs. 5(a) and 5(b)
where the magnetic field H is measured in units
of —,'gp, sH/5. In agreement with Eqs. (32), it is
seen that the behavior is periodic in H with period
25/gps. A small value for kT/5 has been chosen
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the low-temperature results remain valid. The
approximation method developed for calculating
this solution will utilize the equal level solution of
Sec. ID, and mill involve an average over just a
few levels close to the Fermi level.

But before considering any approximations, it is
interesting to note that one can avoid numerical
methods in showing how the periodicity of the sus-
ceptibility discussed in Sec. III is smeared out when

the levels are "randomized. " For this purpose
the low-temperature susceptibility for the case of
negligible spin-orbit coupling will be considered.
Here the orthogonal ensemble is appropriate, and
it is convenient to introduce the probability func-
tions P„(x), where P„(x) is defined as the probability
that two energy levels are a spacing x apart with n
levels in between them (x is normalized to the aver-
age spacing between two adjacent levels: x =e/II).
ln terms of the P„ functions, ' the probability R(x)
of finding tmo levels a spacing x apart regardless
of the position of the other levels is

6

FIG. 6. (a) Specific heat for the case with an odd num-
ber of conduction electrons, for several values of the
parameter A. The value of 5 is given by K=AD; hence,
a decrease in the value of A from unity corresponds to
turning on the short-ranged interaction. (b) Specific heat
in the even case, for the same values of A as in Fig. 6(a).

for increasing exchange coupling these spin-flip
terms are scaled to contribute closer to T =0. As
can be seen, the spin-flip terms in the odd case
monotonically reach a contribution of &, while
these terms in the even case give an anomalous
contribution before approaching the limiting value

As A increases to 1, the scale is such that the
anomalous contribution is very broad, so that it is
barely noticeable.

IV. LEVEL DISTRIBUTION AVERAGE

We now turn to the general problem of calculating
the specific heat and susceptibility where equal
level spacing no longer applies. The formal solu-
tion requires an average of the energy levels over
the probable distribution of levels for the small
particles, so the statistical distributions discussed
in Sec. II will be applied in this section. For very
low temperatures, when only one or two levels are
involved, the results can be obtained analytical-
ly. ' However, one desires a means of calculat-
ing the specific heat and susceptibility for all tem-
peratures, and this will require a numerical solu-
tion. The solution will be compared with the ana-
lytic results for low temperature, which allows a
determination of the temperature range over which

EVEN CASE ODD CASE

f

I

E2
I

l
2 I

FIG. 7. First spin-flip
transitions, for an even
and odd number of conduc-
tion electrons.

At small x, R(x) varies as P&,(x) and for x &1, R(x)
approaches unity. A general expression for R(x)
has been obtained by Dyson.

At very low temperatures as H increases, there
will be abrupt changes in the spin magnetism and
thus large values for the susceptibility at the points
when it is energetically favorable for a spin to
flip; representative energy levels are sketched in

Fig. 7. One can show in applying the canonical
partition function at these low temperatures that
the susceptibility reduces to pairwise contributions
corresponding to the possible "transitions" in the
figure, with each contribution behaving like the
derivative of a Fermi function. These pairs of
levels are averaged over the appropriate distribu-
tion P„describing the probable spacing between
them. For example, in the odd case levels 1 and
1' are averaged over P„ levels 2 and 2 are aver-
aged over P3, etc. Similarly in the even case one
uses po, p~, p4, etc. Finally, if a simple average
(appropriate for a collection of small particles) of
the even and odd cases is taken, one obtains:

(rgPs) h2( iP If) (~ k'4 s)
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gps& w' d'8(&/6)x
6 d&

The first term, apart from the 2 which arises from
averaging the even and odd cases, comes from the
unpaired spin in the odd case. As gp~+ increases
past 5, 8 goes to 1 and its second derivative goes
to zero, so one just has the Pauli paramagnetism
with no periodic effects. The behavior of the sus-
ceptibility has also been described by Gor'kov and
Eliashberg, who calculated just the second term in
the equation above.

To calculate the specific heat and susceptibility
for a collection of small particles, one must start
with the appropriate partition function. For H = 0
the statistical distribution of levels is described
by the orthogonal ensemble for weak spin-orbit
coupling, and the symplectic ensemble describes
the level distribution as this coupling is increased.
Both of these ensembles have levels which are two-
fold degenerate; for the orthogonal ensemble there
are two spin directions, and in the symplectic case
there is the twofold Kramers degeneracy. There-
fore, in these cases the canonical partition function
of Eq. (7) is appropriate, where the magnetic field
H is set equal to zero. On the other hand, with
both a sufficiently large magnetic field present and
spin-orbit coupling, the unitary ensemble describes
the energy-level distribution. In this case there is
no longer any energy-level degeneracy since the
previously twofold degenerate levels with average
level spacing 5 are split apart, which produces a
system with average level spacing &5. In this case
the partition function would be that appropriate to a
spinless system, and there would no longer be any
even-odd distinction. Finally, for comparison
with the orthogonal and symplectic results, we
will also consider the random distribution of energy
levels (Poisson distribution) which was first used
by Kubo. For this case the levels are taken to be
twofold degenerate for H= 0, so the partition func-
tion in Eq. (I) will be used again.

Once the partition function Z is specified, its
logarithm must be averaged over the statistical
distribution describing the levels in the collection
of particles. The statistical average of lnZ is
denoted as (lnZ). In the partition function the en-
ergy levels g, and g,' are ordered with respect to
the Fermi level q0, where the g, referred to parti-
cles above e0 and &, referred to holes. The
ground-state energy is chosen to give q0=0. In
carrying out the numerical calculation, it is con-
venient to use as variables the energy-level spac-
ings d& defined as

~f = ~f —~f-1-0 ~

Since the average level spacing at the Fermi sur-
face is 5, the 6, will appear in the dimensionless
form x, = 6, /5. The zero-field partition function
Z(. . . , Ps„Pe„.. . ) can be written in terms of the
x, as Z(. . . , x,', x„.. . ; P5). Setting all the x,
equal to one would then correspond to the equal
level case treated in Sec. III.

The calculation of the specific heat for the col-
lection of small particles will be considered in de-
tail, and the susceptibility calculation is similar.
Since the statistical averaging is done numerically,
instead of calculating from (lnZ), it is more con-
venient to average the thermodynamic quantities
directly. Denoting the statistical average over the
specific heat as (C), one has

(C), s'
~ lnZ(. . . , x„x„.. . ; IN))

"0 "0

x~'"'(. . . , x,', x„...). . . dx, dx, . . . . (41)

Here 5'"' is the spacing distribution obtained from
the eigenvalue distribution Wz'"' in Eq. (1), and we
have dropped the N index since the N- limit is
implicit.

In order to develop a suitable approximation
method for evaluating the level ensemble averages
of thermodynamic quantities such as Eq. (41), we
consider first the low- and high-temperature lim-
its. In the low-temperature limit (P5» 1) the
populations of only the lowest levels in the partition
function are important, and the integration of S'"'
over the remaining variables in Eq. (41) yields the
exact distribution functions I'„"' of these lowest
level spacings. Consider as an illustration the
even case at extreme low temperatures where
only the level && is significantly populated. In this
case, the integration of 5'"' over all x, x' except
x, yields the exact nearest-neighbor spacing dis-
tribution Po"'(x). The partition function Z for the
single level &, is given by

g 1 4&-t'e~, e-aI'ox&

Therefore Eq. (41) becomes in this limit

~ OO

—P dxP'"'(x)ln(1+4e ~'"+e '~ ")
k spm ~

(43)
The averaging over possible values of x then re-
moves the exponential decrease in C/k for kT/5
«1 and produces a power-law behavior in T. The
lowest-order term in kT/o = I/P5 is given by re-
placing Po"'(x) with its leading behavior, Eq. (3),
for x «1. The resulting low-temperature behavior
of the specific heat and susceptibility for the dif-
ferent ensembles is listed in Table I. Of course,
at this point it is not evident how large kT/6 can
become for the leading low-temperature behavior
to remain valid.
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TABLE I. Leading low-temperature behavior of the

electronic heat capacity and spin susceptibility for differ-
ent ensembles, with even and odd electron number.

Even odd

Poisson
Orthogonal
Symplectic
Unitary

5.02k T/0 3.29k T/g
3.02 x 10(kT/6) 1,78 x 10(kT/6)
3.18 x 10 (pT/6) 1.64x 10 (kT/6)

5.88 x 10 (kT/g)

Poisson
Orthogonal
Symplectic

3.04(ygps) /P
7.63(ygpz) kT/6
2.02x 103(ygp~) (kT/p) /p

(~it.,)'/kT

In the high-temperature limit k T & 5, there are
many thermal excitations present. In fact, one
can show for the equal level canonical system that
energy levels up to E=256 contribute to the specif-
ic heat for kT- 6. This is because of the large
multiplicity of the higher energy levels. For
example, for the equal level model, the multiplicity
of states with E=255 is of order 10'. With such a
large number of levels involved, the high-tempera-
ture behavior of averages such as the specific heat,
E|l. (41), are insensitive to the fine details of the
actual level distributions, and only the existence
of an average level spacing 5 is important. There-
fore when AT & 5, the distribution averages ap-
proach the canonical equal-level- spacing results
discussed in Sec. III. This convergence to the
equal level results is, in fact, quite rapid for the
Dyson ensembles because of the level repulsion
effects which statistically favor level spacing of 5.

Thus the high-temperature limit approaches the
equal-level- spacing results and the low-tempera-
ture behavior depends only upon the low-lying
states. Therefore, a useful interpolation scheme
consists of removing the low-lying states and

averaging their contribution over the appropriate
distributions while replacing the higher-energy
states with their equal level values. For this
purpose, it is useful to classify a many-electron
excited state of energy E by its corresponding
"equal level energy" E. E for a state is obtained
by setting each of the single-particle levels which
contribute to it equal to its equal-level-spacing
value. For example, if E=e, +&,'+&2, then E=46.

The nth-order approximation is given by taking
the appropriate statistical average over the spac-
ings appearing in all energy levels with E &n5 and
setting all spacings appearing in levels with E&n5
equal to their average value 5, including those
spacings 4, which were present and therefore aver-
aged over in the states with E n5. Since n adja-
cent level spacings are involved in the nth-order
approximation, only the distribution function for n

spacings is required for the averaging. This makes
the problem tractable because one now integrates

over a spacing distribution with only a small num-
ber of spacings, and furthermore, one is not re-
quired to keep track of a 6, through the many com-
binations in which it aypears in all the various
possible excited many-electron states. Within this
scheme, the "zero-order" approximation is just
the equal level ease. The method is illustrated
below for a particle with an even number of elec-
trons.

The first-order approximation involves averaging
over the nearest-neighbor state &, of the Fermi
level:

(
82

k
dx1P0 "'x1

ep2 in~even 1i P~ ~

(44)
The notation Z(x, ; P6) is meant to imply all && in-
cluding b,, = g, —g0 appearing in states with E & 5 are
set equal to 5, which corresponds to &&

=j5 for g»
Thus the averaging over 6, is limited to

the state with E= 5. The next order of approxima-
tion for the even-electron case takes into account
states with equal level energies E=35. This is
third order, according to our convention, and in-
volves the energy-level differences 42 = &2 —E1 and

f0 Once again, replacing all excited
states having E&35 by their equal level values and

integrating Eq. (41) over all single-particle vari-
ables except for 42= $2- 61 61 ~1 ~0 and +1 ~1

I

—g0, we obtain the third-order approximation

(
w oo 0 oo + oo

= P
f I /

xxdxzdxa&a ( i~ x~ a)
(1')

"0 "0 "0

82x, lnZ„„(x', x„x; P5). (45)
spa

The odd-electron case is handled in a similar
manner; however, both 6, and h,' are important at
low temperatures; holes and particles enter in a
more symmetrical fashion than in the even case.
Therefore, instead of integrating over just b1,
both b,1.and 61 must be averaged to guarantee the
correct leading low-temperature behavior. In
higher order, the odd-electron case involves ap-
proximations of the fourth, sixth, ... order.

In practice, only the first several orders of ap-
proximation have been carried out. Furthermore,
we have used the approximation forms for P„'"1

discussed in the Appendix. As discussed there, the
approximate distributions are unlikely to contribute
more than a few percent error, and the major er-
ror is associated with the finite-n approximation.
In order to check this for the specific heat, the
even case with a distribution of energy levels given

by the orthogonal ensemble has been considered.
The numerical integrations for the first- and third-
order approximations have been carried out. Fig-
ure 8 shows the syecifj. c heat calculated in these
approximations, together with the equal-level-
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spacing solution„As can be seen in the figure, the
initial extrapolation between the low- and high-
temyerature behavior is reasonably smooth, and
this linearity is improved as the order of the ap-
proximation increases. By the third-order ap-
yroximation it is clear that nothing anomalous ap-
peal s in the extrapolation between low and high
temperatures. One can compare these results
with the leading low-temyerature behavior in Table
I to estimate how large kT/5 can be for the leading
low-temperature behavior to be appropriate: This
turns out to be kT/0 = O. l. Since the leading low-
temperature behavior for the other ensembles has
a similar limited range of validity, experimental
confirmation of the low-temperature power-law
behavior of the specific heat will involve measure-
m.ents in the region AT'&O. 15.

In Fig. 9 a simple average of the C,~d and C,„„
results is plotted for the orthogonal, symplectic,
RIld x'andoIQ encl gy-level distributions. The spe
cific-heat results for the unitary level distribution
are also shown on the graph. As discussed earlier
in the section, one uses the partition function cor-
responding to splnless ferIMons fox' this ensemble.
The appropriate average spacing is &5, which re-
sults from the twofold-degenerate levels in the
symplectic distribution with spacing 5 breaking
apart as the field H is increased. Apart from the
orthogonal case discussed above, only the first-
order approximations were calculated for the even
case, while the second-order approximations were
calculated for the odd case, For temperatures
larger than 5/0 the heat cayacities for the various
distributions all converge to a linear behavior
which is —,k lower than the familiar grand canonical
result. The blowup of the low-temperature region
in Fig. 9 clearly shows the difference between the

distributions. The finite probability of infinitesi-
mal level spacings in the Poisson distribution gives
rise to a low-temperature linear specific heat

POISSON (RANDOM) —-—
ORTHOGONAL

0
0 O. f 0.2 03 0.4 0.5 0.6 0.7 0,8 09 f.O

0.8
I

0.7—

A

v 0A-

O. t—

0
0 0.05 0.10 0.1 5 O.PO

kT

FIG. 9. (a) Resulting specific heat after averaging
over the level distributions. A simple average of the re-
sults for the even and odd cases has been taken. (b) Blovr-
up of the specific heat fox' the region 0~ j'gT/g ~0.23.



MIC PRQP ERTIES OF E I EC TRONS I 3603

5.0

4.0—

2.0—

1.0—

0 0. 1 0.2
I I I I I I

03 0.4 0.5 0.6 0.7 0.8
kT

0.9 1.0

FIG. 10. Spin susceptibility resulting from an average
over the level distributions, normalized to the Pauli
value y&

——2(gp&/2) /A.

similar to that of the bulk metal. The energy-level
correlations implicit in the other distributions are
responsible for the higher-power-law behavior at
low temperatures. The level repulsion effects are
largest when spin angular momentum is not con-
served and the Kramers degeneracy is present.
This is evident in comparing the orthogonal and

unitary results with those obtained from the sym-
plectic ensemble.

The zero-field limit for the spin susceptibility
has been calculated using the random, orthogonal,
and symplectic level distributions. For negligible
spin-orbit coupling the orthogonal ensemble is ap-
propriate, where the g factor is 2. When the spin-
orbit coupling becomes sufficiently strong, the
symplectic ensemble must be used. In this case
the susceptibility then depends on the effective g
value of the Kramers states which are split apart
by the magnetic field. The results are shown in
Fag. 10, where only the lowest-order approxima-
tions were calculated. The unitary case has not
been calculated since it is not appropriate for
H= 0.

Just as in the equal-level-spacing case, the
extra electron in the odd case gives rise to a
Curie-law behavior for kT «5. The difference be-
tween the distributions is clearly evident in the
even case. Here the finite density of states at
vanishing level spacing characteristic of the ran-

Xeven w endom distribution gives a finite value for h

T «5. However, the level repulsion effect con-
tained in the other distributions leads to a spin
susceptibility which is proportional to kT/5 for kT
«5 in the orthogonal ensemble, and (k T/5 ) in the

symplectic ensemble. Both the even and odd cases
rapidly approach the Pauli expression as kT ex-
ceeds 5.

In comparing the above results with experiment,
the effects of the particle size distribution must
be taken into account. In describing the distribu-
tion of energy levels for a collection of small
particles, with all of the particles taken to be
spheres of the same size, the average level spacing
5 has been introduced. The size enters only in
determining this average level spacing 5 which
varies as a '. Thus the results must be folded into
a particle size distribution. For a realistic size
distribution the behavior for small a must be
handled carefully because of the strong dependence
of 5 on a. For simplicity consider a "square"
particle size distribution P,(a) centered at aa with
width bn. As an example of folding in the size
distribution the average heat capacity (C) becomes

O'T
&C& =

I C
(

P, (a)da. (46)

Expanding this in powers of ha/ae, one finds

(c)-=c(—, )

where 50 is the level spacing for a particle of size
ao. Therefore, in both the low- and high-tempera-
ture regions the particle size distribution modifies
only the coefficient of the leading temperature-
dependent term and not the form of the power-law
dependence. Figure 11 shows the effect on the
specific heat of folding in the particle size distribu-
tion, where we have considered the orthogonal

I I I I I I

HEAT CAPACITY FOR ORTHOGONAL ENSEMBLE
AVERAGED OVER PARTICLE SIZE DISTRIBUTION:
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FIG. 11. Heat capacity after averaging over a square
particle size distribution of width ba. The initially un-
averaged curve (M/ap= 0) is the heat capacit thiyxn e
o ogonal ensemble, where a simple average of the even
and odd cases has been taken.
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case with Aa/ao as large as 0. V. For lower values
of ba/ao the specific heat is not greatly altered.

V. CONCLUDING REMARKS

We have focused our attention essentially on a
detailed discussion of two problems connected with
electrons in small metallic particles. The first
problem was to show how discrete single-electron
energy levels basically do affect the thermodynam-
ics of small particles. Here, our "model speci-
men, " described by equally spaced energy levels,
proved to be the most suitable system to study the
differences between the predictions of the canonical
and grand canonical ensembles for finite particles.
The second problem was considered in Sec. IV
where we have developed for a collection of small
particles a general approximation scheme in order
to incorporate fully the effects of level statistics
in the whole temperature range.

Experimental observation of small-particle ef-
fects could be used to test the fundamental assump-
tions made for both the thermal ensemble and the
single-particle level distribution ensemble.
Whereas even-odd effects have been suggested for
the susceptibility' ' no measurements of the elec-
tronic specific heat have been performed to our
knowledge. '7 Recently the preparation of probes
containing small particles of definite size has been
greatly improved'8 which eventually may lead to
more conclusive experiments.

Thermodynamic properties of superconducting
particles with dimensions smaller than the coher-
ence length may be studied experimentally more
conveniently because of large fluctuations in a
broad critical region. A simple theory which
treats these fluctuations statically and includes
equal level spacing has been worked out by us pre-
viously. '

Studying the behavior of isolated small particles
should perhaps also be viewed as a first approxima-
tion in an understanding of the situation where
there exists a coupling between the particles them-
selves or between particles and their surroundings.
It seems that in normal-metal granules the inter-
action is mainly governed by the electrostatic
activation energy of adding or removing an electron
from a small particle, and this process does not
reflect the level spacing of the isolated particles
in an important manner. In superconducting
grains, however, a Josephson-type coupling be-
tween particles leads to interesting consequences
as was recently pointed out by Deutscher and
Imry. Several experiments have been reported
within this context. '

The properties of electrons in small metal par-
ticles in an electromagnetic field, and relaxation
phenomena have been discussed by Kubo, '

Kawabata, and Gor'kov and Eliashberg. ' The

latter authors claim that there should exist a large
enhancement of the static dielectric constant
caused by the finite level spacing. This phenom-
enon has been disputed experimentally, although
recently it has been indicated that small systems
of interrupted metallic strands contained in cer-
tain compounds of platinum may exhibit the effect.

From a more fundamental point of view, dynamical.
processes in small particles are more difficult to
treat than the static properties we have discussed
in the present work. In thermodynamics we deal
solely with energy levels, and the equal level sys-
tem is a reasonable model which can be enlarged
by employing the general fluctuation theory of
spectra. In dynamical and relaxation processes
we need additionally some ideas about the electron
wave functions, matrix elements, and their depen-
dence on statistical averages. Also, the surround-
ings of the small particle may play a more crucial
role than for thermodynamic properties. Some
further model calculations which include these fea-
tures would be highly desirable.
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APPENDIX

For the calculations of Sec. IV, a number of ap-
proximate formulas for the level-spacing distribu-
tions have been used. These approximate formulas
will be discussed in this Appendix. The general
spacing distribution is labeled by 'P'(x„xz, . .. ,
x„), where the label y referring to the orthogonal,
unitary, or symplectic ensembles, has the values
1, 2, and 4 in the respective formulas. The exact
formulas for the nearest-neighbor distributions
Po"'(x) have been calculated previously. ' In Sec.
II of the text we have given the small-x limit ob-
tained for Po"'(x). As mentioned, approximate
formulas for the nearest-neighbor distributions
have been calculated from Eq. (I) by specializing
the equation to just two eigenvalues as described
in Sec. II. This leads to the Wigner surmise P~(x)
for the orthogonal ensemble. The results for the
nearest-neighbor distributions are collected to-
gether in Table II, which lists the approximate
formulas and the leading term from the exact for-
mulas. For reference this table also includes the
Poisson distribution. The spacing x is normalized
with respect to its average value.

The coefficients of the leading small-x terms of
the orthogonal ensemble and the Wigner surmise
have a small relative difference of a few percent
given by (6 v —2v)/6 w =4 —,'/o. In fact, over the
entire range of x the approximate Wigner surmise
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Nearest-neighbor distribution

Ensemble (E)

Orthogonal

Symplectic

Unitary

Poisson

Approximate formula

yet. x exp(- @7t x2)

(y) (x /7) ) exp(-& x)
(32/7( )x' exp{-4 x /7t)

~(Y)( )
First term,

exact formula,

~2 4 4
270 X

1 g2X2

TABLE II. Nearest-neighbor distribution function for
the different ensembles: approximate formulas and the
leading terms in the exact formulas.

P'-"i(~i ~ ~ ~ A. ) = f.„«iW'~i(&i~ ~i~ ~"
(Al)

The distribution P„'.",'(b,„h2, . . . , b„) satisfies

f dS, "f"da„P„'",'(A„. . . , a„)=1. (A2)

The 5, do not have the correct normalization at
this point. The average values of the b,, here are
generally different, while the average values for
the exact spacing distributions are equal. This
problem is resolved by scaling the variables 6, in
terms of their average values,

»/»—-xi (As)

and the exact formula P2"'(x) are in very good
agreement. A similar close agreement for the
other two ensembles is also indicated in the coeffi-
cients of the leading small-x terms. The leading
term of the exact formulas has been used to cal-
culate the leading low-temperature behavior of the
specific heat and susceptibility found in Table I.
However, in the interpolation scheme used to ob-
tain results over the full temperature range, the
approximate formulas in Table II were applied for
the even case in the first-order approximation. At

temperatures such that kT/6 & 0. 1, where the
averaging is most important, this leads to errors
of order a few percent. These small errors from
the use of the approximate formulas decrease as
one goes to the higher-order approximations, as
discussed below.

The exact solution of a general spacing distribu-
tion P„'",'(x„x2, . . . , x„) is very difficult to calcu-
late, since the limiting N- ~ behavior resulting
from integrations taken over Wz'"' [Eil. (1)]must
be determined. Of the spacing distributions with
more than one spacing variable, exact results are
only available for P2"'(x„x2). Mehta has presented
a numerical tabulation of this function for a limited
range of the variables. ' However, in Sec. IV of
the present work one needs to integrate over these
level-spacing distributions. For this purpose it is
desirable to have reasonable approximations which
are easier to handle. The approximation to the
exact P„".,'(x„x2, . . . , x„)which we use is the gen-
eralization of the procedure which led to the ap-
proximate near est-neighbor distributions. To ob-
tain the approximate distribution of n spacings,
Eil. (1) which gives the distribution of N ordered
eigenvalues W„'"'(s„.. . , s„) is specialized to the
smallest number of levels needed to have n spac-
ings; thus one uses W„+',(s» s». .. , s„+,). The
variables of the n+1 successive levels are changed
to n spacing variables given by 5& =g&,&- &&, with
the energy variable &, remaining. This variable
is then integrated over, to produce the spacing
distributions from the eigenvalue distributions:

which yields the properly normalized approximate
distributions. In terms of the normalized spacing
variables xi, the distribution Pt„"',(x„x2, . . . , x„)
then satisfies

x, = f dx, ~ J dx„x, P„'",'(x„.. . , x„)=1 (A4)
0

with

f "dx, "f dx„P„'",'(x„.. . . , x„)=1.
The calculation of some specific distributions by
this method is described below.

For the calculation of P,'"'(x„x2), one sets n = 3
in Eil. (1), with spacings 6, defined as 62 = s2 —s2
and 4& =Ez- g&. Integrating over E, from — to ,
one obtains the spacing distributions

(A6)

i"'( i, 2) = ~2"'(»/8y)'" [»A2(»+ &2)l"

4 (v/2y) [»~2~2 (~1+ ~2)(+2+ ~2)(»+ ~2+ ~2)]
(A7)

&«xp[- 2 y(8&i+ 4&2+ 8&2+ 4»A2+ 2»+2+ 4+2+2)].

The normalization coefficient C„'"' has been given
before.

Next the average values 5,, must be computed
for the different ensembles in order to scale b,

&-»/ d, —=xi. In general, this is difficult to do
analytically, 27 but since the integration in Sec. IV
must be done numerically, we have also resorted
to the computer to find most of the average values.
The values of 6, for the two-spacing distributions,
E21. (A6), are found to be

Z& = Z2 = (27/4m)'~ orthogonal,

6& = 43 = 1.2853 symplectic, (A8)

Z, = 4& = 1.3464 unitary.

For the orthogonal thrqe-spacing distributions one
finds

x exp[ —2 y(hi+»52+ b2)]. (A6)

Similarly for the distributions with three spacings
one finds

P2"'(», 62, h2)
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Ai ——h3 ——0. 9412,

P(x)= f dx, 1, dx, P,'"(x„x„x,). (A10)

For small x the first term of P(x) goes as P(x)
= 1.625x, while the exact solution goes as P, '(x)
=

6 v'x=1. 645x. Thus the error is =1%, as com-

Using these values according to the substitutions
of (A3), one finally obtains the distributions
P„'.",'(x„x2, . . . , x„)which fulfill Eg. (A4), and
which were applied in Sec. IV.

The distributions are good approximations to the
exact syacing distributions. One might susyect
this since the simplest approximate distribution,
the Vhgner surmise, agrees closely with the exact
nearest-neighbor distribution for the orthogonal
ensemble Po'"(x). Some of the exact formulas
have been tabulated elsewhere. ' To check our
approximate distributions we have compared vari-
ous moments such as (x, ), (x,x2), etc. , with re-
sults from exact numerical calculation. The
agreement is good to within a few percent.

The more complicated formula, P2" (x„x2,x~),
has also been examined by another approach. If
one were to consider calculating the exact Po" (x),
the first "symmetric" approximation past the
%igner surmise would be the function

pared to the initial error of =4—,'% for the Wigner
surmise, indicating convergence of the ayproxi-
mate spacing formulas as the number of initial
levels is increased.

This convergence is important in calculating the
low-temperature behavior, where the averaging
over spacings has the most effect. In Sec. IV it
was stated that for the even case at low tempera-
tures the general solution for the specific heat,
Eq. (41), reduces to the simpler form Eq. (43) in-
volving the exact spacing distribution. Now the
exact spacing distributions are never used in the
ayyroximation scheme of Sec. IV, but nevertheless
the errors are not large. In the first-order ap-
proximation of Eq. (44) at low temperatures, the
exact Po~" (x) in Eq. (43) is replaced by the Wigner
surmise Pv(x). For this case the error of 4—,'% is
introduced into the coefficient multiplying the low-
temperature behavior. In the third-order approxi-
mation at low temperatures only the first level in
the partition function remains important similar
to Eg. (43); however, due to the integration over
the two spacings as in Eq. (A10), the spacing dis-
tribution in Etl. (43) is replaced by the distribution
P(x). But as we have noted, P(x) differs from the
exact Po~" (x) by an error of 1% in the low-tempera-
ture behavior. Thus the higher-order approxima-
tions converge rapidly to the exact low-tempera-
ture behavior given in Table I.
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Low-energy-electron-diffraction calculations have been extended to the (110) and (111) surfaces of
aluminum in order to determine the spacing between the surface and bulk layers of the crystal. The

Al(110) surface is found to be contracted by 10% to 15% from the bulk interlayer spacing, and the

Al(111) surface is found to deviate from the bulk spacing by less than 5%. This amounts to a
0

determination of the surface-layer position to within 0, 1 A. Results of calculations on all experimentally

measured beams for these surfaces are compared with the experimental results for several assumed

interlayer spacings. These comparisons are made with respect to qualitative peak shapes, peak positions,

and relative peak amplitudes of the specular and all measured nonspecular beams from each surface. In

order to achieve this agreement, it has been necessary to include the four outermost crystal layers and

to describe the ion-core potential with five phase shifts in the 40-150-eV energy range.

I. INTRODUCTION

Encouraging progress has been made recently
on the problem of crystal-surface-structure analy-
sis by Iow-energy-electron diffraction (I RED).
Several theoretical approaches to the multiple-
scattering problem have led to the assembly of a
variety of computer programs whose results have

appeared recently in the literature. Multiple scat-
tering has been taken into account by calculations
based on a band-structure approach, ' 3 a, t-matrix
approach, 4 6 and the layer Korringa-Kohn-Ros-
taker (KKR) method. ~'8 In addition, two perturba-
tion methods have been proposed to reduce the
computer-time requirements of the more exact
methods.

In this paper we report on I.EED calculations
performed on several beams of the aluminum (110)
and (111)surfaces. In Sec. 11 we describe the
multiple-scattering method employed to construct
the computer program. In Sec. III we discuss the
parameters used throughout the calculations, and
in Secs. IV' and P we present the results of the
aluminum (110) and (ill) calculations, respective-
ly, and compaxe them with experiment.

These calculations indicate that the position of
the surface layer with respect to the bulk can be
determined to within - 5% of the bulk interlayer
spacing. The Al (110) surface layer is found to be
located between 1.285 and 1.214 p from the next-
underlying layer which represents a contraction of

10-15%from the bulk interlayer spacing. The
Al (111)surface-layer spacing is found to be equal
to the bulk interplane spacing to within - 5%. In

each case the surface-layer spacing is determined
to within 0. 1 A.

II. DESCRIPTION OF CALCULATION

The computer program we have developed is
based on the t-matrix approach to the multiple-
scattering problem as formulated by Beeby, and
extended by Duke and Tucker to include inelastic
damping of the electron beam. The reader is re-
ferred to a paper by Laramore and Duke' in which
the formalism that we employ in our calculation is
set forth. Finite-temperature effects are accounted
for in the Debye approximation, and the bulk lattice
and surface layer can be assigned different Debye
temperatures.

The scattering amplitude from a subplane X,
parallel to the surface, is proportional to a quan-
tity T~(g, k;; E) [see Ref. 12, Eq. (5)], which is
the t-matrix element for scattering from an incident

plane wave whose wave vector is k& into an outgoing
wave k&, at constant energy E. This quantity is
expanded in an angular-momentum representation
and one is concerned with evaluating a square ma-
trix of dimension (I+ 1) x(l+ I), Tz, where I is the
angular-momentum quantum number corresponding
to the highest-order phase shift [5,(E)] used to
characterize the ion- core potential.

The evaluation of this matrix can be accomplished


