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We have derived expressions for the cyclotron-resonance line-shape parameters by means of a new

formalism. The formalism is based on a "damping iteration" for the exact expression of the

conductivity tensor in the presence of static impurities. We have applied this theory to the case of a
nondegenerate semiconductor in the quantum limit and have obtained an expression of the
cyclotron-resonance linewidth for the case of dilute and weak scatterers. We nave considered

electron-impurity interactions with a screening radius, separately, of Gaussian and isotropically screened

Coulomb forms. In both cases we have found that the cyclotron absorption line broadens and

approaches a constant value with increasing magnetic field, in the limit of a strong enough field so

that the screening radius is much larger than the cyclotron radius. This result is in contradiction to
earlier theoretical calculations and a recent interpretation of some experiments. A discussion of the
earlier theoretical works as well as of the experimental work of Apel et al. is given.

I. INIODUCTION

The high-frequency cyclotron-resonance experi-
ments' performed with the far-infrared lasers
have opened up a new domain in semiconductor
physics. Recently, not only the position of the ab-
sorption peak, but also the shape of the absorption
line have been investigated. The absorption shape,
and in particular the linewidth, depends sensitive-
ly on the scattering mechanisms, and thus such
investigations can yield information on the detailed
character of these mechanisms. In particular,
the magnetic field dependence of the cyclotron-
resonance linewidth can complement that of the dc
magnetoresistance, which is also sensitive to the
scattering mechanisms, especially in the quantum
limit.

Qf special interest in this regard is the recent
experiment of Apel et al. who measured the cy-
clotron-resonance linewidth in high-purity n-type
InSb in the quantum limit at different values of the
magnetic field. They have concluded that the line-
width decreases with increasing magnetic field,
and cited the theoretical works of Kawamura et al. 3

and Kawabata, which predict such a narrowing of
the absorption line for the case of scattering by
unscreened ionized impurities.

We have carried out a quantum-mechanical cal-
culation of the cyclotron-resonance linewidth for a
nondegenerate semiconductor in the quantum limit
for a more realistic impurity potential. Specifical-
ly, we have considered a screened electron-im-
purity interaction, with a large screening radius,
of the Gaussian or the screened-Coulomb type. By
means of a new formalism' '" based on a damping
itexatio~ of the exact expression for the conductiv-
ity tensor, ' we have obtained the resonance line-
width through a system of coupled integral equa-
tions. For the magnetic fields and temperatures
of interest, we have found that, for sufficiently
large screening radius, the linewidth of cyclotron
resonance increases with increasing magnetic field
and reaches a constant value. This contradicts the
results of the work of Kawamura et al. 3 and Ka-
wabata for an unscreened impurity potential. In
the limit of an infinite screening radius, our theory
for the isotropicaQy screened-Coulomb interaction
predicts a linewidth that increases with the mag-
netic field (as for a finite screening radius), but
its limiting value diverges. Interestingly, for the
case of an unscreened-Coulomb interaction, we
obtain a linewidth with a field dependence identical
to that of Kawamura et al. , but, again, with a
divergent coefficient.
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In Sec. II we formulate the problem and the

method of calculation, the more technical steps
being relegated to the Appendix. Application to
the cases of an electron-impurity interaction of
the Gaussian and the screened-Coulomb types is
carried out in Sec. III and IV, respectively. In
Sec. V we discuss our results in relation to those
of Kawamura et al. ' and Kawabata, ' as well as the
experimental results of Apel et al. We conclude
that more detailed theoretical and experimental
work is desirable.

II. PROBLEM AND METHOD OF CALCULATION

The absorption of a circularly polarized elec-
tromagnetic wave of frequency + is proportional to

Re(x, (&o) = Re [(r„„(&o)+c„((o)]+ Im [c„,((o) - o„(&o)],
(2. 1)

whe~e (&„.(&o) (i,j = x, y, z) is the complex conductiv-
ity tensor for the system. For a system of dynam-
ically independent electrons of density n„ the ex-
act expression' for the conductivity tensor is

a&~(&o)= (eon, /n&o) f "dte '"(fv;, v;(t)]), (2. 2)

where z =&o —i0' (0' stands for a positive infinitesi-
mal) and

~ iHt lh e-iHt /0 el&&' t/h v (2. 3)

is the ith component of the velocity operator in the
Heisenberg picture. Here 2 is the Liouville opera-
tor corresponding to the one-electron Hamiltonian

H=Hp+ V, (2.4)

with

&ov'-[Ho v&1

2&v&= [V, v&].

(2. 6)

(2. 7)

In Eq. (2.2) () denotes the thermal equilibrium
average

(g) = tr(fa)/trf, (2. 8)

where f=f(H) is the Fermi-Dirac distribution opera-
tor

f(H) (e B(H-0 & + I)-& (2.9)

The chemical potential i; is determined from trf
=n,A, 0 being the volume of the sample and P
= 1/hsT. Finally, though not explicitly indicated,
expression (2. 2) must be averaged over the random
distribution of the impurities.

The spectral properties of the power absorption

where Hp is the Hamiltonian of the electron in the
presence of a static magnetic field 8 and V(r)
= $«o(r R, ) is th—e interaction of the electron with
the static impurities. Thus

(2 6)

are thus determined, according to (2. 2) and (2. 3),
by

(ih) ' f dt e '"v, (t) =6t(z) v;,
where

e(z) = (a —nz)-'

(2. 10)

(2. 11)

x v;R(- &o'+i0'). (2. 12)

This can be proved most simply by considering its
matrix elements in a representation that diagonal-
izes H. The resonance-line-shape parameters are
thus determined rigorously by $(z) of (2, 10). In
the following we shall obtain them by generating a
so-called "damping iteration" for $(z) and by
keeping the leading terms.

The damping iteration can be carried out either
directly for Q(z), 'o'o &~ or for the resolvents R(z).
In the latter case we obtain first the comPlex level-
shi ft (i.e. , energy shift and level broadening), but
still need to carry out the &o' integration in (2. 12),
which is often complicated. By carrying out the
damping iteration for $(z) '" directly, we avoid
the ~' integration. We derive such a damping
iteration for $(z), and derive its dominant terms
for weak electron-impurity interaction in the Ap-
pendix. We find, according to (A16), that if Ia),
If&) are eigenstates of Ho with corresponding en-
ergies E t ~ b~

&afe(z) v&/ Z»=[~.,+inr(z)(. ,&

—nz]-' &a/v&ff&),

(2. 13)
where &,B-=&, -e, . The comPiex linesuidth I"(z)&,,»
for the transition I&-a is obtained from (A18),
namely,

i ~~. 1(a IVIc)l'""n, (~„+inr(z),.„-nz

I(c I VI ')l
(2 14)c„+inr(z)&„,&-nz '

where the prime on the summation sign indicates
exclusion of the diagonal matrix elements of t/'.

An average over the random distribution of the scat-
terers is understood for I (a I VI c) I and I (c I VI 5) I .
The real and imaginary parts of r(&o)&, », namely,

r( )(&,oBY&(&o) B i+((o) B (2.15)

define the lineN&idth and line shift, respectively,
for the resonance transition 5-a. From Eq.
(2.14) we have for the positive definite linewidth
r (&o),B,

is the resolvent for the Liouville operator Z. This
Liouville form of the resolvent is related to the
regular resolvent R(z) =—(H —nz) ' by the integral'

8.(z) v; = (n/2&&i) f d(o' R((o —(o' —i0')



SHINp ARGYRES, AND I AX

1 +i 1(a I V lc) I"'

F ~ 'L(&d —
&d~») + r((d)~»

1(c I Vjf&) I

((ro —ro„)+ y (ro)„)
and for the line shift &&, (&d) &),

1 I l(a I V I c) I

6(&d)b»p Im

(2. 16)

t ))»
= (n +» ) @&()~ + k k 8 /2m ~ (2. 23)

It is convenient to adopt the asymmetric gauge
A=- (0, Bx, 0) for the magnetic field B in the a direc-
tion. The eigensta. tes la) and eigenvalues q, of Hp
for a guasifree electron with effective mass m are
then specified by n = 0, 1, 2, . .., and k = (k„, k,), a
two-dimensional wave vector, so that

(r
f
nk) ~ i()„(x—X») e" ', (2. 22)

I(cl Vlb)I
( )

i(&d &d )+ r(&d)

where

&d.,=- (e, —e,)/k+ a(&d ),. (2. 18)

is the modified energy difference. Note that the
line-shape parameters for the transition 5-a de-
pend on those of transitions b-c and c-a for all
scattering states c.

The simplest, but not always justified, approxi-
mation to Eqs. (2. 16)-(2.18) is to solve them by
iteration and keep only the first iteration obtained
by putting y = 5 = 0 in the right-hand side and to
evaluate them at the resonant frequency &d =&,»/5.
In such a case they reduce to the familiar "golden-
rule" formulas of the simple perturbation theory,
1~ e. )

where q)„(x -X„)are the eigenfunctions of a simple
harmonic oscillator of frequency &d, = le I

B/mc-
the cyclotron frequency —centered at X,= —kk, /
m&d, . (As all interactions considered here are
spin independent, we can ignore the spin quantum
number. ) In this representation the matrix ele-
ments of the operator v, = [p„+i(p +m&d, x)7/m that
enter the expression (2. 21) for the power absorp-
tion obey the selection rule

(n'k'
f
v. fnk) = 2i(k&d. /2m)'~'(n+ 1)'~'6». » 6„. &„„&.

(2. 24)

For the determination of r(&d)&„,»» „„from Eq.
(2. 16) we need the matrix elements I

(n'O' IV Ink) I

of the impurity potential V, averaged over the ran-
dom distribution of the scattering centers. We
have"

f

&n'k'
f

V fnk) f'
r.»= ».=- (2r+ r)&»

r.=—'5'
f&a f

Vfc) f'6(e.,),
C

I +) l&alVlc)I'
(~„),

(2. 19a,)

(2. 19b)

(2. 20a)

(2. 20b)

= —» Z f»&)(g)
f G(p)„,„5„,, „5, , „, (2. 25)

where n,. is the concentration of the impurities,
n)(&T) is the Fourier transform of the potential of a
single impurity at the origin, and

G(i )„,„=
f f dxe'""q„,~x+&,'(k, +q, )7

x q „(x+& 'k, ) I', (2. 26)

More generally, however, the symmetry apparent
in the approximate Eqs. (2. 19) under the inter-
change (a, b) —(f&, a) is broken in Eqs. (2. 16) and
(2. 17). The same symmetry is restored, however,
in r(&d)„and n, (&d)„when evaluated at the peak
frequency &d =&,»/5 and at high enough magnetic
fields so that hh, ~«q, ~. In the calculations to
follow, we shall assume that this is the region of
interest.

Combining now Eqs. (2. 1), (2. 2), (2. 1.0), and
(2. 13), we have that the power absorption is pro-
portional to

)
8 ~ I p [f(»») -f(& )7 I &ajv. l f&) I

k&d n, , i(&d —&d„)+ r(&d).,
(2. 21)

where v, —= v„+iv, . In obtaining (2. 21) we have
ignored the effect of the electron-impurity inter-
action on the thermal distribution of the electrons.

with i& = Z (q„+q~) and X = (k/m&d„. ) being the cy-
clotron radius for the electron in its ground state.
In particular, we have

Q(i&) —e 4/p G(p)«=e ' (I —2p) ~

(2. 27)
G() )&p

= G(u)p& = —
I e

We note that the necessary matrix elements of t/

depend on (k,' —k,,), while e „,„,-e„,are independent
of 0, and k,'. It follows that there exist solutions
r(&d)„,», „» of the system of coupled integral equa-
tions (2. 16) that are independent of k„k'. These
are the desired solutions, appropriate to a spatial-
ly uniform system.

As mentioned earlier, we are interested in the
power absorption in high enough magnetic fields
so that h(&d, )&„„&»„»«&d, . Furthermore, we con-
sider a nondegenerate semiconductor at low tem-
peratures so that k&T «k~, . Thus the electrons
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are in the n= 0 Landau state and the resonance is
dominated by the (n = 0)- (n' = 1) transition. In
such a case, we have from (2. 21), (2. 18), and

(2. 24),

( )
e' 1 g f( )

l(1)'plv+l0k)l

hp)c fl o y(p)c)»c, oo,

0 ~c 00

G(~)i.
c &[(I n)P)c P)«]+ 'Yc«,oo

G(tu)co (3 2)
i(np), +p)«)+ y(p, ~

2e +e
m

1

y(~.)io
' (2.28)

yap= f Re ~ IN)(q)

Here () indicates the thermal average with respect
to the normalized Maxwell-Boltzmann distribution
function proportional to exp(- PK koc/2m)) and the
last approximate equality follows from the fact that
since @ k, /2m) =-,'keT« f)p), for the temperatures
of interest, we can approximate the thermal aver-
age of I/y(p), )»,o„by its value at k, = 0 (or some
mean value of k,), to be denoted by 1/y(p) )yp 1/y„.
Clearly, for the experimentally interesting case
of (&uc/y, o)'» 1, y, p is the resonance linewidth.

Now, according to (2. 16), (2. 18), (2. 23), and
(2.25), we have for high magnetic fields [p),
» 4(p) )]

where p)« = Iq, /2m. The y~, „... in the right-hand
side of (3.2) are, in turn, determined by (2. 16),
thus constituting a system of coupled integral equa-
tions.

However, since the main contribution to the q,
integral comes from values of ~q, ~

& 1/a, one may
approximate the y's by their values at q, =0, espe-
cially for large a, thereby supposing a smooth de-
pendence of the linewidths on q, . This approxi-
mation yields for the y„„.a system of coupled al-
gebraic equations. In order to obtain the coef-
ficients of this system, it is consistent to ignore
the p), = Iq, /2m in the denominators of (3.2) for

8 2large enough a, i.e, p)„y»5/4ma, or equi-
valently (a/X)» 1 (since usually p), & y). We then
have for the linewidths y(p),)„„.= y„„.the algebraic
system of equations

+amy„„,=He Z i(l —m+n')td, + y„„.

G(~)&.
c )[(1 —n) p)«+p)«] + yc«pp

We consider here impurities of low concentra-
tion n; and with single-center scattering potential
of Gaussian form with effective range a. The
Fourier transform N)(q) is then

M202
gg(g) =n)pe (3.1)

The resonance absorption linewidth, according
to (2.29) and (S. 1), is given in this case by

G(i))co
(2 29)

L(n(dc +4)«) + 'y/P, c«

where all y's are evaluated at p) =p)„p)«, =))fq, /2m,
and G(p, )„„.are given by (2. 26) with p =))o(q„+qo),
as before. The terms in (2. 29) proportional to
G„„describe the contribution of the "adiabatic"
scattering processes, while those proportional to
G„„(n'en) describe the "nonadiabatic" processes.
It is clear that their contributions to y, o are not
simply additive.

In Secs. III and IV we shall consider two ex-
amples of an electron-impurity interaction with
long-range shielding and solve the coupled Eq.
(2.16) in order to obtain the magnetic field depen-
dence of the cyclotron-resonance linewidth.

III. GAUSSIAN SCATTERING POTENTIAL

+ mn' (3 3)i(l -n+m) p), + y„„

=A' f, dy e 'G [()).'/2a') y ]„„., (3.4b)

A -n s)p/f) (Bv)'ioao (3.5)

independent of the magnetic field.
It is now clear that for large magnetic fields the

contributions of the Landau states diminish with
increasing quantum number m. Not only the de-
nominators become larger, but also n„~ become
smaller, since G(y)„ for n, m & 1 have their maxi-
ma away from y = 0, while the factor e ' in (S. 4b)
weighs heavily the region around y =0, especially
for (a/X)» 1. We shall thus keep in (3. 3) only
the states m = 0, 1, thereby obtaining the system
of three equations for yoo, y„, »dy, o..

y = 00+ 011 y00 y11
y10 ++10 2 2 + 2 2

y1o c+ yoo &c+ y11
(S.6a)

=2@ +Q +y 1
00 00 2+ 2 ' 10 4 2 2p)c+ yop y10 )dc+ y10

(3 6b)

Here n„„.= a„.„are the real quantities

Q„,.=[n;/(2r)'8'] J d'q
~
N)(q) ~'G(p)„„. (3.4a)
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x-=z'/4a'=I/4m(o, a' (3.9)

is «1 for the magnetic fields of interest. We note
'that @10«000 011 and &&A for the fields of
interest, and thus (3.7) gives

Xzo= (ooo+on)' +nip ~ (o'op+on) ~ (3 10)

Note that even in this limiting case y, 0 does not
separate into a simple sum of "adiabatic" and "non-
adiabatic" contributions, although clearly the first
term, described solely in terms of the "adiabatic"
processes, dominates over the second, which in-
volves "nonadiabatic" processes, as the magentic
field increases.

We can now look at the magnetic field dependence
of the resonance linewidth y(&o,),p= y, p for high
magnetic fields. For such fields, x=X /4ao«1
and all approximations made so far are consistent.
Thus for x«1, we have from (3.10) and (3.8) that
the "adiabatic" processes dominate and

y»=-(noo+n )' '=A(v'2) (1-x), (3.11)

where A, as given by (3.5), is independent of the

magnetic field and varies as a . Thus as the
magnetic field B increases, the resonance line
broadens like [1—(—,'hc/I e I a )B '] and res.ches a
limit y (~),o = opo(2n, ) '~'/K(8va')' ~'.

IV. SCREENED-COULOMB SCATTERING POTENTIAL

As a more realistic scattering potential of range
a, we consider now the Coulomb potential screened
according to the Debye- Thomas-Fermi approxi-
mation. In such a case we have

co(q}=opo/(4'+a '), (4. 1)

where
ooo =+ 4veo Z/Kp (4. 2)

for an ionized impurity of charge +Z I e ~ and a
crystal of dielectric constant K~. According to

y 11 y10y11-2+11 2 2 +&10 +
4 2 2&&+ y11 y10 c+ y10

(3.6c)
which are valid for aribtrary values of &u, /y. Now
for the magnetic fields of interest we have (&u, /y)
» 1. We find then from (3.6) for the linewidth y, p,

" 1/2
y10 +00+ +11++10 2 + 2

20'00

(3.7)
The n„„,of interest are obtained from (3.4b) and
(2. 2V), and are explicitly

npp=A (1+x) =-A (1-x+x — ~ ~ ),

o.,i=A (1+x ) (1+x)~=-A (1 —3x+ Vx — ~ ~ ) (3.8)

o.go=A x(1+x) =-A x(1 —2x+ ~ ~ ~ )

where the parameter

(4. 6)

Thus, as the magnetic field B increases the reso-
nance line broadens as

1 -Po(vbc/2 I e I
as)

and reaches a limit

y( ), =[2(n;x)'~oZe /8Ã~]a'~o. (4. 7)

Thus the broadening of the resonance line and its
"saturation" with increasing magnetic field for this
case are similar to the results of Sec. IQ, except
that the B dependence of the approach to the limit-
ing value is different, owing to the different kind
of screening.

Up to now the screening radius a has been taken

the simple theory of screening of Argyres and
Adams2 for a nondegenerate semiconductor in the
quantum limit, the screening length a in (4. 1) is
independent of the magnetic field and equal to the
classical Debye screening length.

As in the previous case, the main contribution
to the q, integral for the y's [see Eq. (3. 2)] comes
from I q, I

& 1/g, and thus for high magnetic fields,
so that ~„y» b/ma, the y„„. are given by the
system of equations (3.3). The coefficients n„„.
are again obtained from (3.4a) with op(q) now giv-
en by (4. 1). We have explicitly

o.„„,=C'f"dy(y+a ') 'i'G(x'y)„„, , (4. 3)

where C is independent of both the magnetic field
and the range of the potential, namely,

C' = n, x (e' Z/aff, )'. (4.4)

As before, for high magnetic fields and for ao/xo
» 1, we can ignore in (3.3) the terms m & 1, and
thereby obtain the system of three equations (3.6)
which determine the linewidth y,0. Note for fu-
ture reference that Eqs. (3.6) were derived with-
out any assumption about the relative magnitudes
of (dc and y10y yooy y

The coefficients a„„,of interest are obtained
from (4.3) in terms of the incomplete I' function,
and for the fields of interest for which x =X /4a
«1, they are explicitly

noo=-2C'a [1—(2')'"]
(4. 5)

o.'„=2C a [1—f (2vx)' ], n, p=- C a(2vx)'

Now, for an impurity potential of arbitrary but
finite a, the linewidths y are finite and the mag-
netic fields of interest are high enough so that
(w, /y)»1. Then, as in the previous case, Eqs.
(3.6) can be solved simply, and y, p is given by
(3.10). For x «1 the "adiabatic" processes domi-
nate and

1/2
Vip= (noo+ o'ii)
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=C'~ f'"dyy-"'G(y)„„, .
Then the quantity y, o becomes

y,o= (noo+n„)'~o=C'X'~ =C'(h m/co, )

where

(4.9)

(4. 10)

C'=C(f dyy ' '[G(y)„+G(y)„]P ' (4. 11)

is independent of B, but clearly infinitely large,
as the integrals diverge. If one introduced an ad
hoc cut-off parameter in order to make the integral
convergent, then y, o mould decrease with increas-
ing magnetic field according to B

It is clearly important for such a calculation
how the screening, or, equivalently, an effective
cutoff, is introduced into the theory. This is, in
fact, the main purpose of the discussion in the
last two paragraphs. The consideration of a
screened-Coulomb potential with large screening
radius a that we presented above is the most de-
pendable approach. In another publication we
shall, in fact, show that a more precise treatment
of the screening in the presence of a magnetic
field ' yields a finite linewidth that increases and
reaches a constant value with increasing B.

The divergence of the linewidth as a- ~ is most
probably a consequence of the Born approximation
for the cross section, and a better approximation
can yield a finite linewidth. However, the dis-
cussion above indicates that an electron-impurity
interaction with very large screening radius is an
ineffective scattering mechanism insofar as the
cyclotron-resonance linewidth in the quantum limit
is concerned. Therefore other scattering mech-
anisms could dominate in this region, although

to be large but finite, so that (co, /y)o» 1. It is of
some interest to inquire about the case of an un-
screened impurity potential —unrealistic as this
might be. This may be found as the limiting case
of the screened potential by letting a- ~. Antic-
ipating that in such a case y, o might increase with-
out limit, we cannot uncritically use expression
(3.10) for y~o, since it was derived under the as-
sumption (&u, /y)» 1. However, from (3.6) we can
see that as a-~,

'Y so —(o'oo+ an) (4.8)

as it easily follows from the structure of Eqs.
(3.6) and the fact that, according to (4, 6) Goo,

Q f o as a -~. Thus for the limiting case of
a-~, y, o is again given by (4. 6), which clearly
diverges as a-~.

If we consider from the start an unscreened-
Coulomb interaction, the coefficients 0.„„,are given
by (4. 3) with a o=0, i.e. ,

coos = C f dy y G(X y)ooi

they might not be the dominant mechanisms for
the case of weak fields, or for the dc conductivity,
with or without a magnetic field. However, for
the parameters of the experiments of Apel et al.
we have calculated that the linewidth as given by
this theory is roughly equal to the observed one.

V. DISCUSSION

The previous two model electron-impurity po-
tentials with a finite, but large, screening radius
yield, according to this theory, a cyclotron-reso-
nance linewidth that increases and reaches a con-
stant value with increasing magnetic field. This
is in contradiction to the results of Kawamura et
al. and Kawabata, which give a linewidth that
decreases with increasing magnetic field for an
unscreened electron-impurity interaction.

The work of Kawamura et al. is of an intuitive,
semiclassical nature, and thus it is difficult to
compare it to ours. (See also the criticism of
Miyake. 7) However, we may observe that the field
dependence of the linewidth in the quantum limit
in the theory of Kawamura et al. is essentially
determined by the ad Roc introduction of a cut-off
length, taken to be equal to X = (5/m&o, ) ~o, for
short distances of an unscreened-Coulomb inter-
action. The discussion in Sec. IV shows that the
field dependence of the linewidth is critically de-
pendent on the detailed character of the scattering
potential, and that the ad hoc introduction of cut-off
lengths is, therefore, untrustworthy.

The work of Kawabata is entirely quantum mech-
anical, but it is concerned only with the linewidth
due to the "nonadiabatic" processes. These, as we
have seen, make a negligible contribution to the
linewidth in the quantum limit, especially for a
large screening radius. Thus a comparison with
our results is meaningless. We must note, how-
ever, that according to our theory the contributions
of the "nonadiabatic" and "adiabatic" processes to
the linewidths are not additive, as Kawabata's cal-
culation seems to imply.

The experimental results of Apel et al. , as anal-
yzed by the same authors on the assumption of con-
sidering the charged-impurity scattering as the
dominant mechanism, are also at variance with the
results of our calculations. It must be pointed out,
however, that a somewhat involved analysis of the
experimental data is necessary before one can as-
certain the field dependence of the cyclotron-reso-
nance linewidth; as the effects of plasma, freeze-
out, size, etc. , have to be taken into consideration.
Apel et a/. have considered such effects in their
interpretation of the data, but perhaps a careful re-
examination is desirable. In addition there are,
unfortunately, only three experimental points, one
of mhich may not be as accurate as the others, in
view of the proximity of an impurity resonance line
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APPENDIX A: DAMPING ITERATION FOR 8(z) AND
BASIC APPROXIMATIONS

Consider an operator 0, which, asdoes tR(z), 2,
etc. , operates in the space of the operators of the
system, and define its diagonal part OD so that for
any ordinary operator A of the system we have

(afO,~ fb&=O„. „&al~ fb&, (Al)

where the states )a&, [b& are the eigenstates of

Ho, i.e. ,

to the cyclotron-resonance line for that value of
the magnetic field. Be that as it may, more ex-
perimental data are clearly desirable.

Finally, the theory we presented above has its
limitations. The neglect of the contribution of the
nondiagonal part of the resolvent $.(z) (see the
Appendix) to the power absorption is certainly an
approximation, which, however, is felt to be valid
for sufficiently dilute and weak scattering centers,
at least near resonance. Furthermore, as men-
tioned in the Appendix, the averaging over the ran-
dom distribution of the impurities is not performed
rigorously. The possible consequences of the ap-
proximate treatment presented above, insofar as
the field dependence of the linewidth is concerned,
are difficult to assess in the framework of this the-
ory. The other convenient simylifications made—
such as the energy spectrum of the electron as well
as the momentum dependence of the denominators
of the coupled equations (2. 2)—do not appear to be
crucial approximations for sufficiently lar ge screen-
ing radius. It is clearly desirable that a more criti-
cal theoretical investigation be carried out for this
and other possible scattering mechanisms.

Clearly, g is a projection operator, i.e. , 6 =5
and (P 0 ' = g'g = 0. Also, both 6' and 6" commute
with any diagonal operator, such as Zo.

We consider now the equation

(2O —Sz) 6t(z) = 1 —il,(R(z), (A7)

which follows from the definition of $(z) = (2 —hz)
Operating on (AV) with 6' and separately with tP'

and using in the right-hand side

6t(z) =(Rv(z)+6tg(z),

we obtain

(Z, -bz)6t, (z)=1-5 2, 5t„(z),

(AS)

(A9)

(R~(z) = —(20+(P'2, -8'z) '2,5tv(z),

(All�)

which, upon substitution in (A9), yields an equa-
tion for Sv(z) with the solution

(R~(z) = [20+ihT'(z) -Rz] '.
Here I'(z) is the diagonal operator

iM'(z) = —6 S,(2 —8'2, —hz) '2,

(A12)

= -5'[2 6t(z)C +2 5t(z)tpa 5t(z) C + ]
(A13)

expressed in the last line in terms of 6t(z) =(RD(z)
+ (R~(z). Now expanding

(Zo+ (P'Z, —hz)"' = (2 —(PZ, —hz) ',

(20 —Az) 6ty(z) = —2g5ty(z) —6"Z,tRn(z). (A10)

Here we have absorbed the diagonal elements of V

in Ho, i.e. , (62,)=0. Solving (A10) for 5tz(z), we
obtain

e, fa&=~, fa&. (A2)
which appears in (A11), inpowers of 5 8, and com-
paring with (A12), we obtain

The remainder 0 —OD is called its nondiagonal
part Oz . Thus in (a ~0+A ~ b) no elements involv-
ing the matrix element (a [A [b& exist. Therefore,
the Liouville operator go is diagonal and Z«, »

~a ~ b =~ ah' In contrast, gy ~gD+~yy Ilas diago-
nal and nondiagonal parts, where

6tN(z) = —a"(R(z) [2, —i'(z)] (Rv(z). (A14)

Replacing (R(z) by the sum of its diagonal and non-
diagonal parts, making use of the definition of {P

and &P' and solving the resulting equation for 6t&(z),
w.4. get

(af&,& fb&=(&a fp'fa&-&bfl'fb&) &afAfb&,

(al&»&lb&= ~'&&.ll fc& &c

(As)

(Ry(z) = -(p'6tv(z) 2, [1+(Rv(z)2,] '6tD(z)

= —(p' [(Rv(z) 2,5tv(z)

—(RD(z) 2,6tD(z) Z,(Rv(z) + ~ ~ ]. (A15)

—(alA
I
c) (cl Vfb&), (A4)

OD= 6'0,

Og= (1 —(P )0 =—(P'O.

(A5)

(A6)

and the prime on the summation sign indicates that
c Wa in the first term and c c b in the second term.

We may represent OD and 0& in terms of an
operator {P, i.e. ,

From Eqs. (A8), (A12), and (A15) it is evident
that for a weak electron-impurity interaction V the
dominant contribution to (a[6t(z) v& [b& is given by
(a [6tc(z)v, [b), which clearly remains finite even
at the resonant frequency. Thus for weak scatter-
ing we have

=[&.n+ibr(z)&. , a& Ifz] '
&'I vl-b&

(A16&
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where c,~=a, -e ~+20&, ,» as before. Although a de-
tailed analysis of this approximation is desirable,
it is roughly equivalent to ignoring "indirect" pro-
cesses comp@".ed to the "direct" processes of ab-
sorption, but with the fundamental difference that
in this formalism the "direct" processes are cal-
culatedamong states whichhave alreadybeen shifted
and broadened by the presence of the impurities.

Now, the diagonal operator I"(z) is given implicit-
ly by (A8), (A12), (A13), and (A15). To the lowest
order in V these equations give the following implicit
equation for I'(z):

r(z) =- (ii)f) (Z, [Z, +ill" (z) —nz]-'Z, ],. (A17)

More explicitly we have, bearing in mind that I'(z)
and 20 are diagonal operators,i, I (a I Vlc) I

+Nl (z) - hz

(A18)
~.,+i'(z)., nz -'

where the prime on the summation indicates exclu-
sion of the diagonal elements of V.

Since the diagonal operator I'(z) modifies Zo, in
the denominator $~(z) [Eq. (A12)], we may identify
it as the complex limeaoidth. Thus the real part of
I'(z)&, » is the linecvidfh of the transition 8 a and
the imaginary part (multiplied by —h) is the line-
shift for the same transition.

Finally, we must average (A16) over the random
distribution of impurities. Such an average is dif-
ficult to carry out rigorously, as the random quan-
tities appear in the denominator. We shall make
the approximation of replacing I"(z) in (A16) by its
impurity average, and of finding it from Eq. (A18)
by taking the impurity average separately of the
numerator and denominator of (A18).

Such an approximation for the impurity average
is also made in the calculation of Kawabata. It
is difficult to assess the effects of this approxima-
tion on the field dependence of the cyclotron-reso-
nance linewidth.
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