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This paper contributes to the theory of the electron density distribution induced at a metal surface by
a small static external charge distribution. As a first application, profiles of the charge induced by a
uniform external electric field are obtained for metals of different bulk electron densities. A quantity of
particular interest is the position of the center of mass, xo, of these profiles, for which we present
numerical values. (The x axis is taken along the surface normal. ) Next, the case of a small point
charge q with x coordinate x, well outside the surface is treated. It is shown that the image potential
experienced by such a charge has the form —q'/[4(x, -x )],wherex is the above-mentioned

quantity. We locate xo, the effective position of the metal surface, relative to the last lattice plane of
the crystal. We discuss the implications of these results for alkali adsorption on metal substrates, the
capacitances of small-gap condensers, and field-emission experiments.

I. INTRODUCTION

In two previous papers '~ we have developed a
theory of metal surfaces, based on a density-func-
tional formalism. 3' We have applied this theory
to calculations of the electron charge-density dis-
tributions, surface energies, and work functions
of metal surfaces. These are all properties of
unperturbed surfaces. In the present paper we add
a discussion of the screening charges induced in
a metal surface by the application nf a uniform
electric field or by the presence of an external
point charge. These induced charges are familiar
from elementary electrostatics. However, there
they are idealized as being located on a mathemat-
ical surface of zero thickness. In reality they are
of course spread out, extending over a thickness of
the order of 2 A. The detailed nature of these in-

duced charge densities and its physical implica-
tions are the subject of the present paper.

The main contents of the paper are the following.
(i) We formulate the general linear-response

theory.
(ii) We present the profiles ot the additional

surface-charge distributions induced by a uniform
perpendicular electric field in metals of different
bulk electron densities. In particular, we note the
positions of the center of mass xo of these density
distributions, relative to the positive charges, for
various bulk electron densities.

(iii) We show that, to a good approximation, the
results of classical elementary electrostatics are
valid, provided the idealized mathematical metal
surface is taken to pass through xo. Thus the
image potential for a charge q located at xq is given
by
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V"(x,) = —4'/4(x, —x,),

II. SELF-CONSISTENT EQUATIONS

In this section we develop the necessary general
theory of the linear response of metal electrons
to an external static charge density. Several
studies dealing with the response of metal-surface
electrons to perturbing electric fields have re-
cently been made. The present discussion dif-
fers from these in that it includes many-body ef-
fects, does not assume an infinite potential bar-
rier at the surface, and includes quantitative re-
sults for charge-density profiles. " We shall, in
common with other authors, regard the positive
charges as undisplaced by the external fields. A
posteriori, we shall see that this is, in fact, a
good approximation.

We shall use atomic units, le I
= m=5= l. In

our previous papers' we worked with the electron
number density n(r) and the electrostatic potential
energy of an electron, P(r). In the present paper,
because of its close relationship with classical
electrostatics, we shall work primarily with the
charge density p(r) and the electrostatic potential
P(r). Because of the negative charge of the elec-
tron,

y(r)= —y(r), p(r)=-n(r) . (2. 1)

The unperturbed electron density and uniform
positive-charge background are shown schemat-
ically in Fig. l. We employ the uniform-back-
ground model for the sake of simplicity. However,
our principal results [Eqs. (3. 9) and (4. 12)] are
also valid for a realistic metal, with a lattice of
positive ions.

A. External Perturbing Potential

Since we are interested in linear response to
external charges, it is sufficient to consider the
effect of an external charge density of the form

p'*'(r) = 5(x —xg)e"-'-, (2. 2)

where x& is well outside the electronic surface-
charge cloud (see Fig. 1) and p and v are two-di-

and the capacitance per unit area of a parallel-
plate condenser is given by

1

4v( (&& (b&
)

where the superscripts refer to the two plates of
the condenser.

(iv) We discuss the implications of these results
for the positions of alkali ions adsorbed on metal
surfaces, relative to the ion planes of the metal,
for the capacitances of closely spaced condenser
plates, and for the results of field-emission ex-
periments.

mensional vectors,

p = (p„p,), v = (y, z) . (2. 3)

The origin of the x axis is, for the present, an
arbitrary point near the metal surface. The ex-
ternal potential generated by p'"' is, by Poisson's
equation,

y'"'(r) = 0'""(x;p)e"-'-,
where

y'"'(x; p) = (2v/p) e ' " "',

(2.4)

(2. 5)

and p—= lp I. For x in the region of the metal elec-
trons, x& —x is positive, so that (2. 5) becomes

y'*'(x; p) = (2w/p) e '"~ e'" . (2. 5)

(2. 7)

The latter is a more suitable choice, since physi-
cally the electrons are under the influence of the
total potential. Hence we define the response
function K(r, r ') by the equation '

p(r)= 1 E(r, r') &1&(r')d r'. (2. 8)

Because of the translational and rotational invari-
ance in the y-z plane, we may write

&l&(r) = y(x; p) e"

p(r)=p(x; p)e'

K(r, r ') = K(x, x';
~

v ' —v
~

) .

(2 9)

(2. 10)

(2. 11)

CHARGE
DENSITY

UNIFORM BACKGROUNDJ CHARGE

—(Unperturbed electronic charge)

I ~x
X)

I"IG. 1. Schematic representation of charge density in
uniform-background model of a metal surface. External
charges discussed in text are placed at x~, which is lo-
cated well outside of the metal's electron distribution.

8. Response Function

We are interested in the electron charge density
induced by &I&'*'(r) near the metal surface, which
will screen this potential from the interior of the
metal. This screening charge p(r) may be regarded
as linearly related either to the external perturb-
ing potential &)&'"'(r) or to the total perturbing po-
tenial
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Substituting into (2. 8) gives the equation

p(x; p) = f K(x, x'; p) |ti(x'; p) dx',

where

K(x, x'; p) = f K(x, x'; v) e"-'-d' v

= 2v f K(x, x'; v) Jo(pv) vdv
0

(2. 12)

(2. 13)

and v= lvI .
From (2. 13) we deduce the following properties

of the kernel K(x, x'; p):
(a) Since by the nature ot a metal the screening

charge due to a point-perturbing potential located
at r' near the surface must be localized near r ', "
the kernel K(r, r ) is short ranged in I r —r'I, and
hence K(x, x'; p) is short ranged in Ix —x'I.

(b} K(x, x'; p) has a power-series expansion in
eve~ powers of p, obtained by expanding the Bes-
sel function Jo.

K(x, x'; p) = K,(x, x')+p'K, (x, x') + ~ ~ . (2 14)

C. Self-Consistent Equations

To proceed further with (2. 12), we write

y(x; p) = y'"'(x; p)+ by(x; p) . (2. 15)

The first term on the right-hand side is given by
Eq. (2. 6). The second term, due to the induced
electron charge density, can be directly calculated
from p(r) [Eq. (2. 10)]by Poisson's equation, re-
sulting in

III. METAL SURFACE IN UNIFORM FIELD

In Eq. (2. 21) we now make the expansion

P(x; p)=pa(x)+ppi(x)+p'pa(x}+ " (3.1)

f po(x")dx"= f p(x"; 0)dx"= —1 . (3.3)

This expresses the fact that an external uniform
sheet of charge, at any distance x~ from the sur-
face, induces an equal and opposite total surface
charge.

To order p, we obtain, on recalling that K has
no terms linear in p,

pp(x) = 21T f I&Q(x x )[x —f po(x )
~

x —x
~

dx

+ f p, (x")dx"]dx' . (3.4)

Equations (3.4) and (3. 3) determine the screen. -
ing charge density po(x) [=p(x; 0)] induced by a
uniform external charge sheet, or, equivalently,
by a uniform electric field. This is so in spite of
the appearance in (3.4) of the unknown function
p&(x). To determine po(x), the integral

and equate equal powers of p [using expansion
(2. 14) for K]. This gives to order po,

0= 2v f K (x, x')dx'[1+ f p (x")dx"] . (3. 2)

Since J Ko(x, x') dx' represents the change in charge
. density at x due to a uniform change of potential
and hence does not vanish, ' we must have

g(x; p)=(2w/p) [e~"'e~"+f p(x'; p) e "" dx']
x=- f p, (x")dx" (3. 6)

(2. 16)

for x in the region ot the metal. Equations (2. 12)
and (2. 16) constitute the self-consistency problem
for p(x; p) and y(x; p).

It is convenient to extract the dependence on xq

explicitly by introducing the functions g(x; p) and

p(x; p) through the following definitions:

y(x; p)=y(x; p)e ~"',

p(x; p)=p(x; p)e'"'.
(2. 17)

(2. 18)

p(x; P)= J K(x, x'; P)$(x'; P)dx', (2. 18)

y(x; p) = (2v/p) [e "+f p(x'; p)e ' " "' dx' ],
(2. 20)

in which x& no longer appears. Between these
equations one can eliminate P, obtaining the follow-
ing integral equation for p:

pp(x; p)=2m f K(x, x'; p) [e~"'

+ f p(x"; p)e-'~"'-"' 'dx"]dx . (2. 21)

Then the self-consistent equations (2. 12) and (2.16)
become

is first treated as a parameter, and a tentative
function po '(x) is found from Eq. (3.4). The value
of A is then varied until po '(x) satisfies the nor-
malization condition (3.3).

We have previously calculated the screening
charge density p(x; 0) (in Ref. 2) by solving di-
rectly the self-consistent equations of Kohn and
Sham for a metal in a weak external electric
field, and subtracting from the resulting charge
density the unperturbed charge density. There is
therefore no need to recalculate p(x; 0) using the
present self-consistent equations. Our earlier
results are reproduced in Fig. 2. The Friedel
oscillations of the screening charge, particularly
for low bulk electron density (large r, }, are note-
worthy. The figure also indicates the centers of
massy

x = f xp(x; 0)dx/f p(x; 0)dx, (3.6)

of the screening charge densities. Values of xo
relative to x„ the edge of the positive background,
are listed in Table I. We recall here that, if the
small lattice distortion is neglected (see Ref. 1,
Appendix E), ' the last plane of ions is behind the
edge of the uniform background, which models the
lattice, by one-half of an interplanar spacing.
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TABLE I. Positions go of the aenter of mass of the
induced Surface charge den.i' p~&; 0) relative to the
edge ~~ of the Uniform poSitive-chat'ge backgroUnd.
chax'acterizes the bUlk denSitles (See caption of Fig 2)
In determining go, the Friedel osoillations in p(g; 0)
(Flg 2) were extrapolated to g = eq QSing their knwvn

asyrnptotie form (Ref. 1). Note that the numerical uncer-
tainties in go are small compared vrith a screening length
O. a.u. =0.529 A).

previous section [Eq. (3.6)].
%'e first must est3blish the px'eliminary xesult

(4. 5). For this purpose we return to the integral
equation (3.4), with po and pq defined by expansion
(3. I), and let x- —~. Deep in the metal, the
screening charge po{x)=p(x; 0) vanishes:

lim po(x)=0;
gas w 00

further, because of the short range of K{x,x'; p)
in Ix —x'i and the localization of po(x") near the
sul facey we Inay make the replaceInenty 1Q Eq.
(3.4),

Thus the results in Table I pex'mit locating go for
a InetRl relRtive to its lattice planes.

In the pxesence of R unform, normal external
electric field of magnitude 8 pointing out of the
metal, there is an induced charge density p(x) =
—(@/4v)p(x; 0). Hence if we take the potential
in the interior of the metal as unchanged by 8 (for
example, by grounding), Poisson's equation gives,
for the cox'x'esponding change of the electrostatic
potential,

&y(x)= Ps{x)-40(x)—

4v f-dx' f dx"p(x")

=g f"dx'f" dx"p(x"; 0). (3.7)

The last double integral can be transformed by RQ

1Qtegx'ation by pRx'ts 1nto

5y(x)=h f (x-x')p(x'; 0)dx'. (3.8)

Well onthe inside of p(x; 0), 5P is, by construc-
tion, zero; while well on the outside of p(x; 0),
we findby Egs. (3.3) and (3.6),

eq(x}=8f „(x-x'}p{x';0)dx'

This Inay be compared with the x'esult of classical
electx'ostatics applied to a metal occupying the
half-apace x& x, . Here 5g'"' vanishes for x& x, ,
While fox' g & g~ p

ny'"'(x) = —S(x-x,) . (3.10)

Thus we see that, so far as a perpendicular ex-
ternal f1eM 18 concernedy Ne P0$8f xo $8 Eo 58 f'8

garded as determining the effective location of the
stetat stcrfacs.

IQ this section, we shall show that for the pux'-

pose of coxnput1ng the 1IRge potent1al of a polQt
cbal ge outside R Dletal sux'fRce, the effective lo-
cation of the surface is again given by the xo of the

Substitution of (4. I}and {4.2) into (3.4) gives [us-
ing (3.3)]

0= f Z,(x, x')dx'[- f po{x")x"dx"

+ J pg(x") dx" ] . (4. 3)

Since, as rexnarked earlier, the fix st factor does
not vanish, we have the identity

J p,{x")x"dx"= f p, (x")dx" .
The left-hand integx'Rl is just the Qrst moment of
po(x). Hence, if see choose as the origin of our x
axis the center of mass of po(x), both terms in
(4.4) vanish:

f po(x")x"dx"= fpg(x'") dx"= 0. (4. 5)

We can now calculRte the additional electrostatic
energy due to the interaction of an external, point
charge q at (x~, 0, 0) with its induced surface
charge. (It is easily seen, in the linear-response
context, that the total additional enex'gy due to the
presence of the point charge diffex's from this by
Rt Most RQ addit1ve constant& dependiQg OQ the
choice of the zero of energy. ) We may write

p'"'(r) = [q/(»)']&(x —x )f e"-'- d'p. (4. 6)

The corresponding external potential Rnd scx"een-
1ng chRx'ge Rre, fox' x& x»,

g'*'(r)=( q/2)vf (e ~*'/p}e~"e"'-d'p-
p(r) = [q/{2v) ]f e ~"'p(x; p) s"-'-d p .

The interaction ener~ is

&=k f 0'"'(r)p(r)d'r

=( /4q)fvd'p(e ~"&/p) f dxe'*p(x; p) .
(4. 9)

Now, in view of (3.3) and (4. 5),

f dxe "p(x; p)

=f d {I+p + lp' '+. ")[p.{ )+pp ( }

+ p'pm, (x)+ ]
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FIG. 2. Profiles of in-
duced surface charge density
p(x; 0). x and p are mea-
sured in atomic units ( le I

=m=h=1); the atomic unit
of length is 0. 529 A. Note
that p(x; 0) satisfies the nor-
malization condition Eq.
(3.3). ~, characterizes the
bnik densities (ps~,' =- p-, ',
with p~ the bulk electronic
charge density, in atomic
units). The edge of the uni-
form positive-charge back-
ground, x&, is taken at the
origin. xo, the center of
mass of p(x; 0), is shown in
the text to be the effective
location of the metal surface.
(These density distributions
are the same as those given
in Ref. 2, except for some
very small differences aris-
ing from use in the present
computation of somewhat
weaker fields. )
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= f dxp, (x)+p[f dxxp()(x)+ f dxp1(x)]+.

1+pP + (4. 10)

(4. 11)

or, if me revert to an arbitrary origin of the x
axis ~

where y is some constant of the order of an atomic
dimension squared. An essential feature of (4. 10)
is the absence of a term linear in p.

When (4. 10) is substituted into (4. 9), one obtains

V= (q'/4x) f 2vpdp(e-~"1/p) (-1+&p'+ ~ ~ )

I

)

I

I

I

I

I

I

I

I

I

IgJ
I

I

d

SUBSTRATE
I

I

I
I

I I

I I

I I

I

I I

I l

i

)
—d2

Xb

~ CENTER QF
ALKALI tOX

S

EFFECTl VE
METAL SURFACE

X

U= — +0 Q'

3 ~

4(x, - x,) (xi - xg) ) ' (4. 12)

fxp(x; 0)dx
fp(x; 0)dx xo ~

This is the classical image potential referred to
the plane passing through xo, which thus is again
to be regarded as the effective locatj.on of the metal
surface.

We remark that xo is identical to the x coordinate
xo of the center of mass of the image charge:

fxp(r)d'r f d'pfxp(x; p)dxfe" '-d'z-
fp(r) d'r fd'pfp(x; P)dxfe4 '"d'v--

FIG. 3. Spatial configuration associated with alkali
atom adsorbed on a single-crystal metal substrate. Open
circles represent positions of centers of substrate ions.
Dashed line at x& gives edge of uniform positive back-
ground used to model the substrate ionic lattice; solid
line at xo gives location of effective metal surface. Var-
ious distances marked are discussed in the text.

with our previous discussion [cf. Eq. (4. 13)], the
center of gravity of the additional charge will be at
xo. The combination of this charge and the ion
has a dipole moment p., pointing along the outward
normal to the surface, with magnitude

Finally, me note that in view of tQe x'esults of
this section and Sec. III, the potential energy of a
small point charge q at x1 mell outside the surface,
in the presence of a meak uniform electric field of
magnitude 8 pointing out of the metal, is given by

const — — —qS (x —x,')
Q'

4(x, —x())

with xo= xo.18

(4. 14)

V. APPLICATIONS

A. Alkali Adsorption

In this subsection me use the results obtained
above to discuss the substrate-adsorbate separation
for an alkali atom chemisorbed on a metal sur-
face. " Let us denote the distance between the
center of the alkali ion and the plane through the
centers of the last layer of substrate ions by s,
and that betmeen the center of the alkali ion and
the effective metal surface at xo by a (see Fig. 3).

We begin by imagining that the alkali atom is far
from the metal surface. We then transfer its va-
lence electron to the substrate. The additional
charge acquired by the substrate mill, of course,
be concentrated near its surface. Because the ion
is faraway, thesereening charge ean be calculated
by linear-response theory, and so, in accordance

Here Z is the adsorbate ionic charge, equal to I
in the present case.

We mill determine the location of xo for the sub-
strate crystal, as discussed previously, by replac-
ing its ionic lattice by a uniform positive back-
ground terminated at a plane. If this plane is lo-
cated at x= x&, then, as noted earlier, the last
layer of substrate ions (i. e. , the plane through the
ion centers) is at x= x, ——,'d, with d the interplanar
spacing. Hence, mith Z = 1,

8 = )u + (x() —x(, ) + gd

(see Fig. .3).
We nom allom the ion to move in toward its equi-

librium s value. If its final position is too close
to the surface, nonbnear effects mill become sig-
nificant, ' as mill the atomic "roughness" of the
surface. We mill, however, assume that this re-
sponse remains linear, and mill therefore confine
our attention to the alkali ions of largest radius,
K and Cs (thel'8 1s 11't'tie 1'elevaIlt expel'1111811tal
data on Rb), which are presumably farthest out
from the surface. We mill also consider only ad-
sorption on the most closely packed crystal face
of the substrate, since this face presents to the
adsorbate an electron density most like that of the
plane-terminated unifox m-background model, with
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E = (4it)-t (5. 8)

where we neglect the energy of substrate-adsor-

its absence of variation parallel to the surface. 32

Now the ionization potentials I of Cs and K are
-4 eV, while the work functions C of the most
closely packed faces of the transition-metal sub-
strates generally used in alkali-adsorption experi-
ments are - 5 eV. Hence if the valence level of
the alkali neither shifted nor broadened when the
ion was brought in toward the surface, this level
would remain empty. It does broaden, how-
ever, and since part of this broadened level
will be below the substrate Fermi energy, it be-
comes partly filled. The level also shifts upward
in energy, ' ' ' which of course decreases its
tendency to fill. The degree to which the level re-
mains unfilled (in the alkalis) is sometimes de-
scribed very crudely by using a Z,«& 1 in Eq.
(5. 1). The analyses now in the literature obtain
Z,«values not far from unity (Z,«- 0. 8)z4's"o for
K and Cs adsorption on the high-work-function
substrates of interest. We will neglect these ef-
fects here, take Z,« = 1 (which would probably
not be a good approximation for Na or Li adsorp-
tion), and use Eq. (5. 2) to obtain equilibrium s
values for K and Cs from experimental data on p, .

Table II gives such data for adsorption on the
most closely packed faces of W, Ta, and Re.
Since these substrates all have very high electron
densities, the (xo —x, ) value corresponding to r, = 2
in Table I was used to compute s. It should be
recognized that it is a very crude approximation
to describe a transition metal by using a uniform-
background model. The corresponding s values,
which are in the range 6.4-7. 6 a. u. (1 a. u. =0.529
A) are given in the table.

There are practically no experimental measure-
ments of s at the present time. Andersson and
Kasemo ' have estimated from results on the spec-
ular reflection of low-energy electrons by a
Ni(100) surface covered with layers of K and of
Cs, that s = 6. 7 and 7. 2 a. u. , respectively. The
alkali coverage in this experiment was about —,'-—,

'
of a full layer, however, rather than the very low
coverage to which our discussion would be ap-
plicable; and in addition the interpretation of the
experiment is quite difficult.

Unfortunately there do not now exist measure-
ments of both. p. and s for the closest-packed face
of the same metal and a heavy adsorbed alkali
atom. Such measurements would be of great in-
terest.

We turn now briefly to the heat of desorption.
We denote by E, the h&at of ionic desorption in the
low-coverage limit, which is related to the heat of
atomic desorption, Eo, by E, —ED=I —4. If linear-
response theory is adequate, we should have

TABLE II. Calculated distance s between center of
adsorbed alkali ion and last substrate lattice plane. p
is zero-coverage dipole moment (see Ref. 20); d is
substrate interplanar spacing (1-a.u. length = 0.529 A;
1-a.u. energy=27. 2 eV).

Adsorbate/Substrate

Cs/Ta (110)
Cs/W (110)
Cs/Be (0001)
K/Ta (110)
K/W (110)

p,

(a.u. )

3.0~

3 9"
3.2c

2. 6
3.1@

(a.u. )

4
4.2
4.2

4.2

S
(a.u. )

6. 8
7.6
6.9
6.4
6. 8

D. L. Fehrs and R. E. Stickney, Surface Sci. 24
309 (1971).

"T. J. Lee, B. H. Blott, and B. J. Hopkins, J. Phys.
F ~1 309 (1971). Data obtained using the field-emission
method of Swanson and Strayer I.J. Chem. Phys. 4~8

2421 (1968)], Sidorski, Pelly, and Gomer [J. Chem.
Phys. 50 2382 (1969)], and Gavrilyuk, Naumovets, and
Fedorus (Zh. Eksperitn. i Teor. Fiz. 51, 1992 (1966)
[Sov. Phys. JETP 24, 699 (1967)j) have not been used
because of problems related to determination of cover-
age values that appear at present not fully to be resolved.

'D. L. Fehrs and M. S. Macrakis, Bull. Am. Phys.
Soc. 15, 391 (1970); and private communication.

L. D. Schmidt and R. Gomer, J. Chem. Phys. 45,
1605 (1966).

bate repulsion because of the short range of the
repulsive interaction (cf. Born-Mayer theory of
alkali halides). Table III compares values for E,
and (4g) ' obtained from measured Eo and p. val-
ues; the agreement is reasonable. Note that this
agreement also provides a crude experimental
verification of our proof that the image-potential
reference plane is at the same location as the cen-
ter of mass of the induced charge.

B. Effective Spacing of Condenser Plates

Here we discuss the relevance of our results to
the determination of the effective plate spacing of
a parallel-plate condenser. ' We take the parallel
faces to be normal to the x axis, with plate g lo-
cated further along the positive g direction than
plate b. The plates are assumed initially to be
in equilibrium with one another. (This means that
if the work functions of the two faces differ, there
will be a contact difference of potential between
them, and an associated surface charge; the chem-
ical potentials will be equal. )

We connect the positive terminal of a battery of
potential V to plate a a,nd the negative terminal to
plate b, raising the mean interior electrostatic po-
tential of plate a by an amount V with respect to
that of plate b, and inducing an additional surface
charge o per unit area on face a (and —o per unit
area on face b). The capacitance per unit area is
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p I 4
Adsorbate/Substrate (a.u. ) (a.u. ) (a.u. ) (a.u. )

Cs/W (110) 0. 143 0.189 0.057-0. 075 0.064
K/W (110) 0. 159 0.189 0.077 0.081

L. W. Swanson and R. W. Strayer, NASA Final Report No. NGR 38-010-001, 1970 (unpublished) (2. 8 eV); V. M.
Gavrilyuk, Yu. S. Uedula, A. G. Naumovets, and A. G. Fedorus, Fiz. Tverd. Tela 9, 1126 (1967) [Sov. Phys. Solid
State 9, 881 (1967)] (3.2 eV); Z. Sidorski, I. Pelly, and B. Gomer, J. Chem. Phys. 50„2382 (1969) (3.3 eV).

See Table II.
T. J. Lee, B. H. Blott, and B. J. Hopkins, J. Phys. F ~1 309 {1971)(5.14 eV, measured by contact-potential-dif-

ference technique).
dL. D. Schmidt and R. Gomer, J. Chem. Phys. 45, 1605 {1966) (2. 9 eV).

&o
(a.u. )

E+
(a.u. )

0.103-0.121
0.107

3.9'
3 1"

C=o/V. Fermi level crosses the curve of total effective
potential seen by a Fermi-level electron. ) Since
x"' —x"'=x'"' —x"', we have0 t t 0

If we denote the change in charge density on plate
i by p"'(x), then

lb= l)+2(xb —xo) ~ (5. 9)

1 p&)(x)dx=-1 p")(x)dx=o, (5. 5)
with x0 and x, referring to a metal oriented as in
Fig. 1 (i. e. , x, —xo=x,"' —xo"'). Thus at r, =2, for
which x, —xo-.—0. 8 a. u. (see Table 1 and Ref. 1),
l, —

Lt =1.6 a. u. „ i. e. , the capacitive separation
exceeds the tunneling separation by nearly 1A.
The findings of Mead (l, —l, =2. 75 A for a
Ta-Ta30o-Au junction) are suggestive of such a re-
sult, but a number of later studies ' indicate the
importance of factors like unevenness of the plate
surfaces in interpreting the experiment (tunneling
of course emphasizes the regions of smallest plate
separation).

and, using Poisson's equation to calculate the dif-
ference in mean interior electrostatic potential
between the plates,

V=4x 1 x[p")(x)+p")(x)jdx. (5. 6)

Equations (5. 4)—(5. 6) and (3.6) imply Eq. (1.2);
i. e. , the effective plate spacing /, for capacitive
effects is

l, =-(4))C) '=xo" -x,"' . (5. 7)

For simplicity of presentation, we now take the
two plates to be of the same material and the two
inside parallel faces to have the same crystallo-
graphic orientation (with corresponding interplanar
spacing d). Then if f is the distance between the
closest two lattice planes on opposite sides of the
condenser gap from one another (see Fig. 4),

C. Field Emission

Here we discuss briefly the relevance of a field-
emission experiment to verifying the equality of
xo and xo in Eq. (4. 14). The electrons leaving the

(5. 8) I 0
I I

!
PLATE 0

I

I

I I

I !

I

I
I

I —d2

x('~xb

l, = l —2(xo —x„)—d, I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I

I

!

PLATE b
with xo —x, given in Table 1. (xo and x, refer to a
metal oriented as in Fig. 1; i. e. , x0 —x,

(&) (&)=xo -xb . )
There have been no measurements of l for

small-gap condensers, and thus there is no data
with which to compare Eq. (5. 8) in a direct way.
There have, however, been experimental studies
of the tunneling properties of such condensers,
and the measurements have been interpreted in
terms of a, plate separation lt. Examination of the
theories used in these interpretations indicates
that l, is to be identified with the distance between
the closest classical turning points for the two
plates. '

(A turning point, whose location is de-
noted x, , is a point on the x axis at which the

I

!
I

I

I

I

I

EFFECTtVE
METAL SURFACES!

I

I

!
!

d
!

b2
„(b) „(b)

b 0

FIG. 4. Spatial configuration associated with two
identical metal single crystals forming a parallel-plate
condenser (see caption of Fig.

TABLE III. Comparison of E, with (4p) . p is measured zero-coverage dipole moment (see Ref. 20). E, is ionic
desorption energy computed from atomic desorption energy: E,=So+I-@. (I is ionization potential, @ is substrate work

0
function. ) a.u. =—atomic units (1-a.u. length=0. 529 A; 1-a.u. energy=27. 2 eV). Recent Eo data were not available
for all of the substrate/adsorbate combinations in Table II.
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emitter surface in this experiment are of course
dynamical objects, while our theory of the image
potential is designed for classical static charges.
It has been shown by Rudnick, however, that slow
electrons well outside a metal surface experience
the same potential as such a static charge, and so
we may write the potential energy (relative to the
Fermi level) of a field-emitted electron in this re-
gion as '

1
— —$(x —xo)4(x —xo)

(5. 10)

(the emitter surface is oriented as in Fig. 1).
Here 4 is the emitter work function, 8 is the mag-
nitude of the field (which points into the metal),
and we assume for the moment (contrary to our
earlier discussion) that xotxo. Note that this po-
tential energy has a maximum value

e = C —8'i' —S (xo - x()) . (5. 11)

Measurements of total energy distribution curves
at a variety of 8 values have been reported for
field emission from a heated tip. ' " The theo-
retical analysis of the experiment, as noted by
Gadzuk and Plummer, shows that the curves will
exhibit a change in slope at energy & ~, where the
emission mechanism changes from tunneling to
thermionic emission, thus permitting determina-

tlon of &m~.
The most straightforward way of using such re-

sults to test the equality of xo and xo would be to
extract a curve of & ~ vs 8 and determine the co-
efficient of the linear component [Eg. (5. 11)]. The
reported data unfortunately are not complete enough
to permit a meaningful analysis of this sort.

VI. CONCLUDING REMARKS

%e would like to add two comments here. In
Sec. II we stated that we would justify treating the
positive ions as undisplaced by the external field.
From the electronic screening charge distributions
shown in Fig. 2, we can now in fact verify that at
the position of the ions, the external field has been
largely screened out. For example, for the most
closely packed [(110)]face of Na, this screening is
over 95% effective. "

Second, we would like to refer to the forthcoming
paper of Appelbaum and Hamann. ' They remark
that the position of the center of mass of the image
charge is qualitatively similar to the reference
plane for the image potential. In the present paper

have seen that these two quantities are formally
identical, and thus the small discrepancy found by
these authors must be due to approximations in
their variational calculation.

*Supported in part by the Office of Naval Research and the
National Science Foundation.
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Recent data on self-diffusion and the isotope effect in sodium indicate clearly the existence of at
least two operating defect mechanisms. This paper investigates the possibility of vacancy, divacancy, and

interstitial mechanisms by calculating the diffusion energetics for the vacancy-type defects and estimating

the same for interstitials based on other calculations. The aim is to search for a combined mechanism

which can be used to interpret the available data on defect studies. The validity of choosing

pseudopotentials for defect calculations is tested by using three potentials with different exchange and

correlation corrections in the dielectric function of the conduction electrons. There is about a 15%
variation in the results for vacancy and divacancy. Our energetic results indicate that a combined

vacancy and divacancy mechanism can be used to account for most of the data obtained in diffusion,

isotope effect, and dilatometric measurements. The available theoretical and experimental results do not

seem to favor, but cannot completely rule out, the interstitial mechanism. It is suggested that the

question is not likely to be resolved by further energetic calculations due to the lack of reliable

interatomic potentials at close ranges; instead, experiments designed for detecting interstitials and

dynamical calculations of hIt. are needed.

I. INTRODUCTION

Currently there is considerable interest in study-
ing diffusion and defect energetics in sodium. The
primary objective of these investigations is to gain
a basic understanding of the diffusion mechanisms
operative in bcc metals by studying a typical sim-
ple metal, such as sodium. The experimental
studies cover a variety of techniques, such as dif-

fusion measurements, ' isotope effects, ' dila-
tometric measurement, 3 NMR, cold-work anneal-
ing, ' defect-resistivity measurement, and defect-
specific-heat measurement. ~ Some of these ex-
periments have been carried out over extensive
ranges of pressure and temperature. In Table I,
the results of most of these experiments are sum-
marized. The following characteristics, which are
important to the study of diffusion mechanisms in


