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The contribution of the long-range electron-Coulomb correlation to the surface energy of
an empty spherical cavity in a metal is calculated from the zero-point energy of surface plas-
mons characteristic of the spherical void boundary. At large void radii one recovers the re-
sult previously derived for a planar metal-vacuum interface. Next it is shown that, owing to
the overlapping of surface-plasmon zero-point oscillations around two neighboring voids, an
effective attraction exists between them which is analogous to the van der Waals (dispersion}
forces between small metal spheres in vacuum. However, because of the monopole nature of
the fundamental surface-plasmon mode of a void, the effective void-void interaction is much
stronger and of much longer range than the attraction of spherical particles for which the
lowest-order plasmon mode is of dipole type only. It is therefore proposed that plasmons
may be one of the important physical processes responsible for void nucleation and growth
and also for the observed occurrence of three-dimensional void arrays in some heavily ir-
radiated transition metals. In a void lattice, the plasmon modes of an isolated void split
and broaden into bands. The resulting plasmon cohesive energy per void is estimated to
be of the order of —1 eV for the observed bcc void array in molybdenum and -2.5 eV for
the fcc nickel array.

I. INTRODUCTION

Voids, or roughly spherical empty' cavities, have
been observed to form in metals subjected to large
radiation doses at elevated temperatures. ' The
voids, which result from aggregation of mobile
atomic vacancies generated during irradiation,
generally appear randomly dispersed in homoge-
neously irradiated regions. However, under
special experimental conditions, voids can grow
at regularly distributed sites, forming a three-di-
mensional array of extremely high spatial coher-
ence. For instance, a bcc array was obtained in
molybdenum' with a lattice parameter of 220 A and
an average void radius of 20 A, the perfect order
extending over many thousands of voids.

The processes of nucleation, growth, and even-
tual crystallization" of voids have received a great
deal of attention in recent years, owing to their in-
trinsic scientific interest and especially to the tech-
nological importance of the attendant volume expan-
sion or "swelling" phenomenon. In practice, the
swelling fraction, i.e. , the void volume divided by
the total volume, may be as high as 10/z after large
irradiation doses. Clearly, the amount of internal
surface area introduced into such samples can be
relatively very large, as compared, for instance,
to the area of the external boundaries. Under such
conditions, it is likely that the same physical pro-
cesses which determine the fundamental nature of
surface metallic cohesionare also crucially involved
in the void occurrence.

Recently it has been shown ' that plasmons,
i. e. , quantum density fluctuations of the electron-
ion plasma in a metal, play an important if not a

leading role in determining the surface energy of
a planar metal-vacuum interface. Briefly, the
creation of new surfaces, e. g. , by splitting the
metal into two parts along a plane, necessitates,
among other things the creation of surface plasmons
characteristic of the interfaces to replace an equal
number of formerly bulk plasmons. The corre-
sponding zero-point energy shift per unit area of
newly created surface has been shown4 to account
quantitatively for the measured surface energies
of most metallic elements. Such agreement ap-
pears to indicate that surface metallic cohesion is
almost entirely of plasmon origin.

The first purpose of this paper (Sec. II) will
therefore be to calculate that part of the surface
energy of an empty isolated void in a, metal, which
is due to the existence of surface plasmons charac-
teristic of the spherical boundary of the void, and
to establish the connection with the plasmon energy
of a planar interface.

Next we recall that plasmons imply the coopera-
tive motion of valence electrons over large dis-
tances in the metal. Thus, the disturbance to the
plasmori degrees of freedom caused by the presence
of a void is likely to be felt at considerable dis-
tances from the void site. A consequence of the
plasmon long- range coherence in the planar-sur-
face geometry is that the surface cohesive energy
includes not only the energy required to produce
a microscopic gap into the bulk metal, but also
the energy required to separate the two semi-
infinite solids to macroscopic distances. In other
words, some work has to be done against the
long-range van der Waals adhesion forces which,
for metals, have been shown to arise from the
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overlap of the surface plasmons of the two inter-
faces. Although small, this latter interaction en-
ergy is important for certain cohesion problems
involving very small particles, such as the stability
of colloidal suspensions.

Once it is recognized that attractive van der Vials
forces act in vacuum between small metallic par-
ticles, the idea naturally arises that similar forces
should exist between empty cavities in bulk metals
by virtue of a sort of reciprocity principle. In a
language more appropriate to the void problem, the
relevant question, from the plasmon point of view,
is whether it is energetically advantageous to create
a void next to an already existing one, rather than
at some isolated site in the bulk metal. If such is
the case, an effective attraction will exist between
voids, which could contribute significantly to the
occurrence of void growth and eventual ordering.

our second purpose will be to show (Sec. III)
that, even in a completely isotropic continuum mod-
el of a metal, voids indeed interact via the overlap
of the fields of their associated surface plasmons.
This purely quantum-mechanical effect may be par-
ticularly important for understanding voids, in
view of the circumstance that within the frame-
work of classical elasticity theory there should
be no interaction between voids in an isotropic
elastic continuum.

In treating the problem of two interacting spheres
in vacuum simultaneously with the case of a pair of
voids, one discovers a fundamental difference be-
tween the dispersion forces of the two physical sys-
tems. Voids possess a surface-plasmon mode, un-

der which the free-electron gas executes radial
oscillations around the cavity. This electron mo-
tion induces a uniform superficial charge density
on the cavity surface such that each void acts as
a fluctuating monopole whose field extends over the
full range of a bare point charge at the center.
The overlapping of the monopole fields of two
neighboring voids gives rise to a quantum-mechan-
ical interaction which decreases only as the inverse
square of the distance. In contrast, the van der
%'aals interaction of two spheres is well known to
decrease as the inverse sixth pozeer of the distance,
because spheres "see" each other only through
their fluctuating dipole (or higher-order pole) fields.
A surface-monopole mode cannot exist ina solid
sphere without postulating an unphysical singular
source or sink of electrons at the center.

The third purpose of this work (Sec. IV) consists
of an attempt to calculate the band structure of the
monopole-plasmon mode in a regular array of iden-
tical voids and, from it, to obtain an estimate of
the plasmon cohesive energy of the array. Diffi-
culties arise from the divergence of lattice sums
over the long-range pair interactions, so that re-
tardation potentials and other long-range-cutoff ef-

6(co) = 1 —(dp/QP

where v~ = (4&ne /m)~~ is the bulk plasma frequency
of the valence electrons. In the present section,
the distances involved (void radii) are so small
compared to the characteristic wavelength
A = 2nc/v& that there will be no need to take radia-
tion effects into account by using the fully retarded
Maxwell's equations. The nonretarded surface
plasmons are defined as those eigenmodes of oscil-
lations of the electric field which are both rota-
tional- and divergence-free ' and which satisfy
the usual boundary conditions at the metal-vacuum
interface. The modes of an ionic crystal sphere
in the optical-phonon frequency range have been
discussed in detail by Englman and Ruppin. The
plasmon modes of a metallic sphere can be deduced
from their results by using a formal correspon-
dence between optical phonons and plasmons.
For a spherical-void geometry, the method is ex-
actly the same as for a solid sphere in vacuum: one
simply replaces e(+) by e (+) in the continuity
equation. The solutions have been studied, e. g. ,
by Natta.

The electric field is written

E(r) = grad (y,.(8, y) [ar '+ ar '""]),- (2)

where Y, is a spherical harmonic, and where r'
and r '"~' are linearly independent solutions of the
radial Laplace equation. The arbitrary constants
A and B are to be determined by conditions of regu-
larity at the origin and at infinity, and by the con-
tinuity conditions at the surface of the sphere r=A.
Thus, inside and outside the sphere, the fields have
the respective forms

E I = gradA. Y,

gra~Y~ r (4)

For a void, the boundary conditions are

fects have to be considered to obtain a finite cohe-
sive energy. The result clearly indicates that
plasmons should indeed play an important role in
the void clustering effect, at least in providing a
large contribution to the attractive part of the total
cohesion.

II. ISOLATED VOID

A. Dispersion Relation

It may be useful to first briefly recall how one
can obtain from Maxwell's equations the eigenmodes
of surface polarization of a finite-size crystal.
The metallic medium is represented by a lossless
isotropic dielectric continuum with a frequency-de-
pendent dielectric function
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/AR ' '= —e(&o) (l+1)BR (6)

From the compatibility condition and using Eg. (1),
one obtains the dispersion relation

COg
= Q)p

electrons. It should be remarked here that the iso-
tropic continuum approximation implicit in the use
of a local dielectric function e(&o) breaks down be-
fore l reaches l„. When considering density fluc-
tuations on an atomic scale, bulk dispersion effects,
i. e. , nonlocality in the dielectric function &(~, k),
should be considered. However, such dispersion

Similarly, for asolid sphereinvacuum, one finds
[it suffices to replace e by e ' in Eg. (6)j

)1/2

l+1 J
(6)

These spectra are shown in Fig. 1 along with the
flow patterns of the first few modes.

The l = 0 mode around a void, which will conve-
niently be called "breathing" mode, corresponds to a
radially symmetrical oscillation of the electron gas.
From Eqs. (3) and (4), the field inside the cavity
is zero, whereas outside it is equal to the field of
a point charge at the center fluctuating at the plasma
frequency or~. This field provides the restoring
force on the electrons to sustain the radial current
oscillations. Although its frequency equals the bulk
plasma frequency ~~, the breathing mode neverthe-
less represents a surface oscillation in the sense
that the fields and currents decay away from the
surface, and the density fluctuations occur only at
the surface (in the nonretarded limit).

In a full metallic sphere, the l = 0 mode would
correspond to a static (&v = 0) accumulation of super-
ficial charges which can only be provided from an
external source. Indeed, because of the relation
&(1/x) = -4v5(r), no radially symmetrical current
can take place without the help of an unphysical
singular source of sink of electrons at the sphere
center.

In general, the lth modes generate oscillating
multipolar fields of order l, the range of which de-
creases with increasing E.

B. Surface Energy

The 5th mode has the usual 21+1 rotational de-
generacy. If /„»1represents an upper bound for
$, the total number of modes is approximately

Z (2l+1)= P„.
i=0

The value of l„is provided by the obvious require-
ment that the number of zeros (or oscillations) of
the angular function F,o(8, P) = P, (cos8) should not
exceed the number of electrons along a great cir-
cle of the sphere. Otherwise one would have sur-
face-density fluctuations over a scale smaller than
the interelectronic separation. Thus

l~ ls 2wR/X~= kQ——

where X, is the average distance between valence

l=o
VOID

l =1

P Q2 .—)p ———————I++1
l=2
l=1

SPHERE

0
(a)

l=o

::,':".l = 0

m, =0

(b) (c)
FIG. 1. (a) Spectrum of possible surface-plasmon

quanta of a spherical metallic particle (lower half) and
of a spherical void in a metal (upper half). The levels l
are 2l+1 degenerate. For large l, both sets converge to
the common limit co&/~. The void spectrum is "peeled
off" the bulk branch co&, whereas the sphere spectrum is
"lifted out" of the zero-frequency shear branch co =0. (b)
Mode patterns of electron currents around a void corre-
sponding to the breathing (l =0) and dipole (l =1) modes.
The electron density remains uniform everywhere except
on the surfaces, where charges accumulate as shown.
(c) Same as in (b), for a full sphere. The zero-frequency
l = 0 surface mode cannot exist without an external singu-
lar source or a sink of electrons at the sphere center.
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o = 2 —I (Mi + (0&
—(d~) (2l+ 1)

l =0 2
(io)

If the sphere radius g is much larger than the
atomic lattice parameter, i. e. , if l~ »1, one can
repLace all m, 's in (10) by their common asymptotic
value w~/$2. Then Eq. (10) reduces to

(7 — Ka&p (v 2 —1)lg (11)

will only affect the finer details of the surface co-
hesion energy, such as its dependence on the crys-
tallographic orientation of the interface.

When a cavity is created in the bulk material by
removing a metallic sphere, both sets of void and
sphere modes (7) and (S) are created at the expense
of an equal number of formerly bulk modes. This is
a consequence of the so-called "Bergrenzung" sum
rule, "which demands that the total number of
collective degrees of freedom should remain unaf-
fected by the introduction of new boundaries. It is
already apparent in Fig. 1 that the set of cavity
modes (7) drops, so to speak, from the bulk branch
at ~~, whereas the set of sphere modes (8) is lifted
out of a zero-frequency branch (~ = Q. This can be
shown rigorously for the present spherical geom-
etry in the same manner as it has been established
for the slab geometry somewhere else. ' This re-
distribution of degrees of freedom results in a shift
of zero-point plasmon energy

o(t) =4vr'sex(r, t), (14)

where ne is the bulk electron density. Substitution
of (14) into (13) yields the desired result

~ ~x+ cop x= 0 ~

The Hamiltonian of the breathing mode is therefore

screening of a, localized charge inhomogeneity.
In view of the rather large value of the basic plas-
mon quantum 5~~, even small modifications in the
plasmon density of states (e. g. , by the appear-
ance of localized plasmon modes around the de-
fect~~) are likely to result in a non-negligible dy-
namical contribution to the formation energy of the
vacancy or va, cancy cluster.

C. Void Hamiltonian

It will prove useful to rederive the frequency of
the breathing mode directly from Newton's law.
An electron at distance z from the cavity center is
acted upon by the field of a superficial charge o(t)
which, at time t, has been accumulated on the
sphere by a, radial fluctuation. If x(r, t) is the
collective electron radial displacement, its equa-
tion of motion is

mx(r, t) = —o(t)e/r' . (is)
The surface charge o(t) must satisfy a flux conser-
vation or continuity equation"

Since two spherical surfaces are produced (the
void and the extracted sphere), the surface energy
per unit area is

&,„=&/SvIt'= (I/ISv) (42 —i) ew, u,' (12)

ho= f drn ,'m( 'x+(u,' x)-
', 4vnm f~ dr r-'(x'+(op x')

By using the relationship (14), one finds

(is)

which coincides with the result previously obtained
for the planar metal-vacuum interface. ' It has
been shown' that this extremely simple formula ac-
counts surprisingly well for the surface cohesion
of most metals. The quantitative prediction of the
surface energies of more than 50 metallic elements
on the basis of this simple theory strongly suggests
that surface metallic cohesion is almost entirely
of plasmon origin.

One might extrapolate the result (10) to the limit
of small void radii, bearing in mind, however,
that this formula is strictly valid only for a con-
tinuum dielectric. For instance, if one takes / =1
to simulate the case of a single atomic vacancy,
one finds the absurd result that the plasmon forma-
tion energy of a vacancy-interstitial pair should be

W„=~ 8(gas(v' —', + 0—,
' —1) = 10 eV

This overestimation clearly arises from the ne-
gl.ect of dispersion effects at very short wavelength.
The problem of plasmon behavior around an ag-
gregation of a small number of vacancies would
be better formulated as a problem of dynamical

ao = (I/2 Red~2) (o'+ ~,'o ') (is)

In a similar fashion, one can establish the free
Hamiltonian of the dipolar modes. If p designates
the dipolar moment of the surface-density fluctua-
tion, one has

l1~=(l/2R ~ )(p +3 ~&p ) (19)

In general, the free Hamiltonian on the 7th mode is
+lmr s a 2

@r =
2It2&+i a ~ (W(~+r

gism)

m=-t
(2o)

We now consider the main problem of this paper,
which is to determine the plasmon cohesive energy
of two voids. This quantity is defined as the dif-
ference between the energies required to create

where the q, are the multipolar moments of order
l.

III. SMALL VOID CLUSTERS

A. Pair of Voids
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F. —3D'D'
+pg ' p + ~ ~ ~

FIG. 2. Two identical voids at finite distance D of
each other. A surface-charge-density fluctuation develop-
ing on void 1 will be felt on void 2 through the Coulomb
interactions between the local surface charge densities
p~(r&) and p2(r2).

(D)
1 '

d od 0 pg(ri) pa(ra) (21)

where the superscript o means that the vector is
restricted to the surface of the void. The integrals
are over the two sphere surfaces, and p~ and p3
represent local superficial charge densities induced

by a general electron-surface-density fluctuation
around the voids. Assuming that B» R one can
expand the integrand in powers of R/D, using

1 1 D
+ —,. (r, -r, )13- rg D

E —3D'D'
( )

where E is the 3~3 unit matrix.
Introducing the multipole moments of the sur-

facee-charge

distribution

f dry pi (rr) =4&os

f dr f r g pg (rf ) =, 4 tp g

etc. , one finds
0

Dion
V(D) = + (o,p2 —osp, )B B

(23)

two neighboring voids and two isolated voids. When

two voids are within a finite distance D of each
other (Fig. 2), the fluctuating fields associated
with each plasmon mode ~, overlap and interact,
so that all mode frequencies will be shifted. The
cohesive energy defined above will be given by the
total shift in zero-point energy of all modes. We

have here a situation quite similar to the forma-
tion of a diatomic molecule. A convenient approach
to study the plasmon energy levels of the void sys-
tem is the Hamiltonian formalism started in Sec.
II C. Our first task is to write down the void-void
interaction Hamiltonian in terms of the multipolar
moment operators q, of each separated void. The
interaction potential is clearly (see Fig. 2)

The first term is the monopole-monopol. e coupling
of the two breathing modes of the voids. The sec-
ond term couples the breathing mode of each void
with the dipole mode of the other, while the third
term gives the dipole-dipole interaction, etc.

Since the void concentrations are such that

p= R/D«—1 (25)

we shall limit the Hamiltonian to the dipole-dipole
terms. Note that V(D) couples the breathing modes
only to the component of the dipole modes along the
molecular void axis, i.e. , the nz=0 dipolar plas-
mon. In general, only multipolar plasmons of
same m couple together, since m remains a good
"quantum" number as a result of rotational invari-
ance around the void axis. Introducing the com-
pact notation

~l P2
Q.

— 0'tp Oar (26)

P 0

Q 40P

—P 0
2 2~ p 2p3

~ 2p

(28)

and where H is the interaction Hamiltonian of theI=+1 dipole plasmons which do not couple to the
breathing modes. The secular equation of the dy-
namical matrix Q~ is easily found to be

(A~ —1)(X ——', ) = + [p(—,' —X ) —p (1 —X )] , (29)

and the four roots are

&'-=~'/~,'= 2-(~s+ p(1 —p')

+g N-+ p(1 —P')]'-4[-', + (3 P —P')]}"') (30)

It turns out that the breathing modes X = 1 are mod-
ified to order p, whereas the dipole modes X —

3

are affected only to order p3. There is no fre-
quency shift of order p .

If one neglects the p~ terms in (29), the solutions

(30) reduce to

(twice) (31)

(32)= (1+p)"'
as is obvious from the matrix Q3 itself. Since in

where p~ and pz are the m =0 dipola, r moments, the
Hamiltonian of the coupled voids has the form

e= (I/2m, ') (4'+ 4 .g'. 4)+ H (m)

where
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FIG. 3. Current patterns and surface charge densities
associated vrith the symmetrical (above) and antisym-
metrical velour) breathing modes of surface-plasmon os-
cillations around two neighboring voids.

In contrast, the dispersion energy of a pair of me-
tallic spheres will depend on the inverse sixth
power of their distance, since the frequencies are
only shifted to order p~. One should keep in mind
however, that the above treatment does not include
the retardation of the fluctuating electromagnetic
fields. Retardation effects will become appreciable
when D becomes comparable to the wavelength X~

=2mc/»~ (=-500 A in transition metals). A fluctua-
tion occurring on the surface nf void 1 at time t is
not felt on the surface of void 2 before the time
f+ D/c. If D - X~, the field of the fluctuation will
be substantiaQy out of phase with the equivalent
fluctuation of void 2, and partial cancellation will
result. Although we have not attempted to study
the radiation effects in detail, we shall simply take
them into account by replacing (35) by the law

w(D & x, ) = ', s», p'z-,-/2D (ss)

on the grounds that such a reduction factor X~/2D
occurs between pairs of atoms" or solid metallic
spheres (which amount to "atoms" of polarizability
RB) as well as between triplet of atoms.

B. Three- and Four-Voids Clusters

= —,
'

m»p[(I +p)"'+ (1 —p)"' —2] (s4)

=- s@(dip2 (s5)

Numerically, for p-0. 1, this amounts to TV

=-0.03 eV, when using S~~ —-25 eV, a typical val-
ue of the plasmon quantum in transition metals.

More important is the enormous range of the
pair interaction energy, since it decreases only
as the inverse square of the void separation D.

practice the value of p is of order p= 10, we shall
limit ourselves to the consideration of interacting
breathing modes only. The reason we have written
the Hamiltonian (25) up to p' terms is to point out
that, in the case of two neighboring metallic
spheres in vacuum, only the third term (and higher-
order terms) of this expansion exists, so that the
lowest-order frequency shifts are of order p in
this case.

The harder frecluency», = »~(1+p)
~' in (32) cor-

responds to the two voids "breathing" in phase,
while the softer mode» =»~ (1 —p)'~ involves an
antisymmetric breathing. Clearly, the latter mode
is the bonding (collective) orbital, whereas the
former is the antibonding orbital (see Fig. 3).
There is, however, no net binding of order p, be-
cause the average monopole on each void is zero.
Only the average square of the quantum fluctuations
does not vanish as a result of the uncertainty prin-
ciple. The cohesive energy of the pair is

g(D) = ,'n[Trn(D—) Trn( )-]

A further important property of the dispersion
energy of the monopole type is its nonadditivity
with respect to the number of voids. If one con-
siders an equilateral triplet of voids, the matrix
to be diagonalized is

1 p p

fi =»p

and the eigenvalues are

A. = fl+2p
[I —p (twice) .

The cohesive energy of the triplet is therefore

(38)

W(D) = —,'hei [(1+2p)'~'+2(1 —p) ~ —3], (39)

ol
w(D) = s», [-,' p'+ o(p')], (40)

where the first term is simply the interaction en-
ergy (35) of the three pairs of the triplet, and O(ps)
are nonadditive contributions which may become
quite large at short distances.

The case of a regular tetrahedron of identical
voids is also exactly soluble and involves the dy-
namical matrix

t", ;;;),
p p & p

P P P P
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whose eigenvalues are

p 1+3p
1 —p (thrice)~

~

The cohesive energy is approximately given by the
sum of the six pair interactions of the cluster:

W(D) = —h~~ [+Sp +O(p~)] (40 )

By comparing (32), (38), and (40'), one sees that
the hardening of the totally symmetric mode in-
creases rapidly with the size of the void cluster,
while the softening of the antisymmetric modes re-
mains constant for these particular clusters.

Finally, we close this section by remarking that
Eq. (27) does not provide the exact Hamiltonian
of the void system, but only what is believed to be
a good approximation when p is sufficiently small.
The reason can be seen from our derivation of the
"free"-void Hamiltonian (16) and (17). In fact,
with a void cluster there is no "free" void anymore,
because the electron collective displacements
x(r, f) and velocities x(r, t) concern all voids si-
multaneously. In other words, when calculating
the integral (16) for a, void, a small exclusion vol-
ume should be introduced for all neighboring cav-
ities in order to avoid counting nonexisting currents
inside the cavities.

Physically, one expects that such corrections
should be fairly small for a pair of distant voids,
because in this case, one excludes a very small
portion of the integration space. In three-dimen-
sional arrays, however, this could have a more
substantial "quenching" effect in the sense that all
voids have to "breathe" the same electron gas.
More about this point will be said in Sec. IV.

IV. VOID ARRAY

2 a a&a=
2 3RS&(P, +~iP))

A. Solid-Sphere Array

In this section we consider only the overlapping
between the lowest-order pol.e modes of the array.
To have a familiar system with which to compare
the cohesion of a void lattice, let us first briefly
indicate what one would find for a lattice of solid
metallic spheres. Although the latter problem does
not seem to have been explicitly studied in the lit-
erature, we can immediately obtain the solution by
recalling that (i) a small metallic sphere of radius R
behaves, inanexternalfield, as an "atom" of static
polarizability R~, '~ (ii) the Lowest dipole mode of a
sphere has frequency v, =(()~v' —'„and (iii) the case
of an fcc or hcp lattice of polarizabl. e harmonic-
point oscillators has been extensively studied. ~0'3'

The Hamiltonian of the sphere lattice (5q) is written

limA(k) = (())
k~0

(1 —3z)' ~'

(( )1/2f

(43)
which applies to all three cubic structures. The
parameter z is given by

z = 4m' (44)

where N is the sphere number density. The plas-
mon energy of the lattice per unit volume is

& @[I/(2&)'] J (fk[TrA(k, N) —TrA(k 0)]

—2 N@(()y [(1+ pg)~ ) ~ q 2 (I —gz)~ ~~ —3] (45)

To lowest order in z, the cohesive energy per
sphere is thus

Ws 2@ 112~
8 (46)

Using the lattice parameter appropriate to the ob-
served molybdenum array, namely, D=220& and
R= 20k. , one obtains, for a bcc lattice z=4q(2/Ds)
x&3 —0.025, and hence

W=4x10 ' eV, (47)

a negligible value compared, e. g. , to room tem-
perature kT, However, if one takes R/D —0. 5
corresponding to touching (but insulated) spheres
in a bcc array, one has z —2. 5 and the cohesion
is increased to W, = —5 eV. It is interesting to
note that in this latter example the frequency
((),(I —&z)' of the long-wavelength transverse mode
is almost softened to zero.

B. Void Array

Let us now study the following model Hamiltonian
of a void lattice:

(46)

where only the breathing modes have been. included.

Igl» E 3R(y 5jg» (41)+
2 Pj g3 Pg

D

and the plasmon "band structure" is found to be
given by the eigenvalues of the matrix

()(k)=w (E )(~Z ' ' e"' ") (42)1 +3

where k is a wave vector inside the first Brillouin
zone B of the array structure. This formula,
which immediately follows from elementary band-
structure theory or from lattice dynamics, has
been discussed elsewhere~1 in detail. Here we
shall use only the long-wavelength approximation
of it, ~ namely,

(1 + —,'z)' ~'
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Formal calculation of the plasmon band structure
is again straightforward, and one finds

&P7 5&&.
(u (k) = a)~ 1+R Q (49)

First, assume that the term proportional to 8 is
small compared to 1, so that one can expand the
square root in powers of p=R/D. The cohesive
energy per unit volume is then

W= —,A[1/(2v) ] f dk[(u(k) —+~] (50)

/
C

~ 4 ~

l

1i

~f

= —~'~Kup NR Q R;; (51)

where we have repeatedly used the identity

[1/(2~)'] f, dk e" "~ =N 5;, . (52)

+4vN ,'X~ln(Rs/X~) . —(54)

In a bcc array of lattice constant D, there are 8
sites at distance —,'(/3)D from the reference site, 6
sites at D, 12 sites at (v'2)D, and 24 sites at
—,'(v'11)D. This gives a discrete lattice sum that
has 50 terms and that amounts to g's &„—-30D
Beyond R~=D[(3/8~) 50] ~a, we integrate.

With g = 500 A, p= R/D =0.1, and R, = 1 p, , the
end result is

W, = —tsh(u~ p [40+25 ln (RgX~)] = —2 ey . (55)

Note that the expression (54) is still divergent
for large P, and is also shape dependent. Another
long-range cutoff is needed which will naturally

There are no linear terms in p in (51) because in
the lattice sums gj, the self-energy terms j=i are
excluded. The result (51) is just the summation
over the pair interaction energies as given by Eq.
(35). One faces the difficulty that the energy per
void

W„:—W/N= —(~@up R Z (53)
j

diverges when summed over an infinite void lattice.
One should now introduce long- range-cutoff effects,
such as the retardation potential and/or damping
of the plasmon fluctuations. To do this, let us
divide the environment of a given void by three
nested spheres (Fig. 4): (i) an immediate neigh-
borhood of radius Rd, where the lattice summa-
tion (53) will have to be effected over discrete
lattice sites, but outside of which the summation
can be approximated by continuous integration;
(ii) a, retardation sphere of radius R„=X~ outside
of which the P,, law will be replaced by the P„.
behavior of the pair potential (36); and (iii) the
sample radius R, inside of which the voids have
developed. One obta. ins

W = —+)k Mq R + '

R~ + 4nN(Aq —R~)'
RJ &Rd

FIG. 4. Illustration of the method of calculating the
lattice sums involved in the plasmon band structure of a
void lattice. Inside the inner spherical region of radius
R& around the reference void, the lattice sums are per-
formed over the discrete void sites. Outside Rd, the
summations are replaced by integrations. Outside the
retardation sphere R„=g, the pair potentials are re-
placed by retarded interactions. R~ is the dimension of
the region occupied by the void array.

arise from the damping of surface plasmons or,
equivalently, from the damping of electron cur-
rents by electron-hole pair excitations. Thus
the result (55) is to be taken only as a qualitative
indication of the truly large value of the plasmon
cohesive energy per void, as compared to room
temperature or even to high irradiation tempera-
ture kT. Another reason for not trusting (55) as
an absolute result is that the initial assumption
leading to it is not valid: The dispersion relation
(49) cannot be expanded in powers of p, especially
for small values of k. For k«D ', the 50 close
neighbors considered above already harden the
long-wavelength breathing frequency to ~(k =0)
=(~'5)~~. Even with long- range- cutoff factors,
the bandwidth may still be larger than i~, in which
case no expansion in powers of p would converge.
Only for k values close to the Brillouin-zone limits
will the lattice sum in (49) converge relatively
fast. For instance, for k= (2v/D) (1, 1, 1), i. e. ,
at point. P of the fcc Brillouin zone, the exact fre-
quency (neglecting reta. rdation) is given by

~(&,) = d, [1 —(R/Ro) os]"' (56)

where

na=Z (+ l)Rs/R~ = 1.7627 (57)
j

is the Madelung "energy"' of a bcc diatomic ionic
lattice of nearest-neighbor distance Re= ,'(Q)D. -
That is, for the molybdenum array,

(u(k~) = (o~ (1 —0. 2) =0.9~d~ (58)

The full band structure in the [ill] direction is
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FIG. 5. Schematic band structure of the breathing
plasmon of a bcc void lattice along the A axis.

schematized in Fig. 6 (see Sec. IV C) and the mode
patterns at k=0 and k~ are shown in Figs. 6 and 7,
respectively.

The mode at k consists of the two imbricated
simple cubic arrays of voids breathing in opposi-
tion of phases, whereas in the k =0 modes all voids
breath in phase. Clearly the former mode is
strongly bonding, because for each half-period of
plasma oscillations, the fluctuating charge distri-
bution is equivalent to the arrangement of point
charges in a bcc diatomic ionic crystal such as
CsC1. Most modes having their % close to the
Brillouin-zone faces Ra will similarly be bonding
"collective" orbitals for the voids, whereas the
modes near the center k= 0 will be antibonding.
Although the hardening of k =0 modes is much lar-
ger than the softening of the k~ modes, a net bind-
ing energy nevertheless results because the phase-
space factor in the k integral favors the bonding
modes. Does this remain valid for increasing
swelling fraction, or does a value of p exist above
which the repulsion dominates over the attraction?
If we look for an extremum of the function W(p)/N
giving the cohesive energy per void, we have to
find a swelling ratio p4 0 such that

FIG, 6. Mode pattern of the long-wavelength breathing
mode in a bcc void lattice. The plane of the figure is
the [110]plane.

such as (61), it does not seem worthwhile to at-
tempt verifying it by a detailed calculation of the
full band structure in the present model. The
first reason is that the actual band structure ap-
pears to be quite sensitive to the convergence func-
tion F(pj) which, at the present stage, is not known
with sufficient accuracy. The second reason has
already been mentioned at the end of Sec. III B, and
stems from the fact that the initial model Hamil-
tonian (41) breaks down at higher void density or
swelling fraction. In this model system, the free-
void Hamiltonians have been written as though each
void had the whole of the electron gas available
around it for sustaining its own breathing. In fact,
when the voids come close together, the common
electron gas is to be shared between all voids, ac-

x A. x —1 Ax =0e (p)
Bp N

where we have used the reduced notations

k= (2v/D) x, 5z =Dpi', m(k) =M~X(k)

~ eSrfx g~
X(x) = 1+p Z F(p~)

(69)

(60)

(61)

and where F(pz) is some appropriate convergence
factor due to retardation and other effects. In
other words, is there a nonzero swelling fraction
or void density for which the average surface-plas-
mon breathing frequency is equal to the average of
its inverse? Although this may very well be pos-
sible already with a function having a structure

FIG. 7. Mode pattern for the principal symmetry point
P of the Brillouin zone.
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C. Model Band Structure

In order to obtain a fair estimate of the actual
plasmon cohesive energy of the void array, we
shall now construct a model plasmon band struc-
ture, taking into account as much of the informa-
tion gained in Secs. IVA and IV B as possible.

First, we have an exact sung yule, independent
of the nature of the void-void interaction:

f dx[X'(x) —l]=0, (62)

which results from (52) and expresses the fact that
the time average (or ground-state average) of the
interaction is zero. Second, we have obtained in

Eq. (56) a reliable estimate of one of the most
bonding modes, at point P of the Brillouin-zone
limit. We shall assume a completely isotropic
band structure X(x), independent of the direction
of the wave vector. Then, a third condition is the
vanishing of the derivative of A.(x) at the Brillouin-
zone edge, which here is the sphere x=1.

Thus, the energy per void is

W. = —, %u f x dx[X(x) —1] (68)

where A(x) satisfies

f, x'dx[~'(x) —1]=O, (64)

'(I) =-X, = [I —(R/~) a,]"',
s'(x)

z x=1

If we exp~nd &(x) inthe form(see Fig. 5)

X'(x) =I+~ —ax +bx

(65)

(66)

(67)

the three conditions (64)-(66) determine the pa, -
rameters 6, a, and b to be

~=~8(I-':), a=85=p(I-",),
and the energy per void is then

(68)

(69)W„=—
p h-~ —, (—', ~ —$gha+~~gg a)

up to terms of order (R/Ro) . Using the value of
%~3=0. 8 indicated in Eq. (58), one finally obtains

W = —0.8 eV (vo)

It. is particularly satisfying that this result is of the

cording to a single continuity equation. Intuitively,
one can easily see that the k =0 modes will be very
sensitive to this constrain, whereas the k~ modes
should remain essentially unaffected for the sim-
ple reason that in this case, the electrons used up

by the breathing of a void are provided by nearest-
neighbor voids so that only fairly local electron
currents need be involved. Such a differential
quenching effect on the antibonding modes could
help stabilize the void array to an optimum lattice
parameter D.

same order of magnitude as the value of —0. 5 eV
recently calculated by Tewary and Bullough on
the basis of anisotropic elasticity theory.

The same model can be applied to the fcc void
array observed in Nickel with the following param-
eters: D=660A and R=100A. From Eq. (56),
using the fcc Madelung constant ~~ =1.75, one
finds Xi=0. 63 at point I. of the bcc Brillouin zone.
The resulting plasmon cohesion (69) is found to be
m„.= - 2. 5 eV.

V. CONCLUSIONS

We have presented an elementary theory of plas-
mon effects on the surface cohesion of isolated
voids, cluster of voids, and void arrays in metals.
The description is macroscopic insofar as no other
assumption that the applicability of a continuum
(local) dielectric function (1) has been made. How-

ever, the theory is microscopic in the sense that
it concerns the electronic collective degrees of
freedom of the system, and it is quantum mechan-
ical because the notion of plasmon zero-point en-
ergy has no classical analog. The fact that the
host matrix is metallic is taken explicitly into ac-
count from the beginning through the use of a me-
tallic-type dielectric function, and the particular .

metal is specified only by choosing the appropriate
plasma frequency &~.

The main result of the study indicates that plas-
mon cohesion of voids is very strong and of ex-
tremely long range. The high perfection of the
void arrays appears to involve both these character-
istics of the effective void interaction. A strong
void interaction is also likely to enhance the initial
tendency to void nucleation and growth.

Although the basic and only physical property of
the model, na, mely, &(&z), is completely isotropic,
the plasmon interaction between the voids is never-
theless capable of inducing "crystallization" of
voids into a specific structure, namely, the one
whose plasmon band structure will minimize the
zero-point energy: Relative stability between dif-
ferent lattice structures can already be discussed
in this continuum theory.

What appears to require the anisotropy of the
host lattice is the observed fact' that the void array
has the same structure as the atomic lattice.
Void faceting, anisotropie strain fields, ' aniso-
tropic surface energies of plasmon or other origin,
etc. , may all contribute to such configuration.

Finally, one would like to suggest that confirma-
tion or contradiction of the present ideas concern-
ing the voids interaction mechanism could be ex-
perimentally possible by performing an energy
analysis of a fast-electron beam transmitted
through the specimen, or by using the technique of
energy filtering' ' the electron-microscope image
of the voids. On increasing the swelling fraction,
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the energy loss at 6~~ due to excitation of the void
breathing mode should gradually broaden as a re-
sult of the smearing out of the breathing-mode den-
sity of states. Such broadening could be observable
for aluminum, where the unperturbed plasmon en-
ergy is fairly sharp. Unfortunately, the plasmon
structure of bulk transition metals where the void
arrays have been produced is already so ill defined
that it might be difficult to detect even the few-eV

broadening of the spectrum, which would corre-
spond to the bandwidth of the breathing mode.
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Optical Properties of Single-Crystal Be from 0.12 to 4.5 eV
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Measurements of the optical absorptivity of single crystals of Be have been carried out in the energy

range 0.12—4.5 eV with polarized light. The infrared absorptivity is considerably lower than previously

reported. Evidence is presented for the onset of interband transitions for both polarizations beginning

near 0.4 eV. A shoulder is noted in the absorptivity for Elc at about 1.3 eV. The absorptivity data

are Kramers —Kronig analyzed and the optical constants are determined. An interpretation based on the

band structure of Tripp, Everett, Gordon, and Stark is presented.

INTRODUCTION

The optical properties of beryllium have been
the subject of a number of experimental studies. '"

Early workers studied Be films but either per-
formed the evaporation in poor vacua or exposed
the samples to contaminating atmospheres before
or during the measurements. Tungsten contamina-




