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The recently developed discrete-variational method (DVM) for the energy-band problem has
been combined with the Korringa-Kohn-Bostoker (KKB) procedure to adapt the latter to treat
general one-electron crystal potentials. Orbitals obtained from a KKB calculation for the
muffin-tin average of the full Bloch Hamiltonian are used as trial variational functions for
treating the complete problem within the framework of the DVM. Non-muffin-tin corrections
originating from all regions of the unit cell are explicitly included by diagonalization of the
relevant secular matrix in this basis set. This combination of the DVM and KKR methods to
a large extent achieves the main advantages of each scheme and promises to comprise an ef-
ficient procedure for calculating the electronic structure of crystal compounds. With this
method there is no limitation to a single-type basis set; for some purposes, it may be use-
ful to supplement the KKB orbitals with other trial functions. The high accuracy that is
achieved allows definitive conclusions to be drawn concerning the effects of the non-muffin-tin cor-
rections on electronic structure. Illustrative results given for an application of the method
to paramagnetic nickel demonstrate this point. An extension of the method is described by
which the non-muffin-tin potential and charge-density corrections can be included in the multi-
ple-scattering approach to the electronic structure of molecules.

I. INTRODUCTION

From a growing literature it is apparent that in
order to obtain a clear meaning of the energy-band
model for compounds, it is necessary to retain the
non-muffin-tin terms in the crystal potential and

charge density. By removing the muffin-tin ap-
proximation to the "exact" one-electron self-con-
sistent crystal potential, accurate calculations re-
veal the adequecy of the various contributions to
the model Hamiltonian and more definitively identi-
fjj the inherent shortcomings.

During the past few years, a considerable num-
ber of non-muffin-tin applications ' have been
made with the augmented-plane-wave (APW) meth-
od. 3 Aside from the original calculations of Ham
and Segall4 however, corresponding developments
with the Korringa-Kohn-Rostoker (KKR) method
have been few in number and have appeared only
recently.

There are two regions of the unit cell for which
non-muffin-tin corrections can be made. Inside
the muffin-tin spheres, the nonspherically symmet-
ric terms can be included; in the interstitial vol-
ume, approximated with a constant potential in the
muffin-tin model, there are "nonflat" corrections
associated with the angular and radial averaging.
In most calculations which have appeared, there is
a corresponding partitioning of space in the cell
with different representations of the corrective
terms for each region. For example, Ham and
Segall utilized a perturbation approach to the
three -dimensional Mathieu -potential problem which

involved expanding the non-muffin-tin terms inside
the spheres in lattice harmonics while using Fou-
rier expansion for the outside corrections.

other schemes have appeared which approach the
problem differently in that the basic muffin-tin KKR
equations are altered. The most complete non-
muffin-tin KKR calculation appears to be that of
Williams and Morgan, 6 In their generalization of
the KKR method, the spherical scatterexs are re-
placed by polyhedral cells within which the crystal
potential is expanded in spherical harmonics. The
energy-dependent scattering matrix t which is diag-
onal for scattering from spherically symmetric
potentials, contains nonvanishing off-diagonal ele-
ments in this case, with correspondingly more
complication to the KIRIL equations. In this model
the potential is truncated to zero at the polyhedral
cell faces„however, the truncation effects are not
severe in their application to silicon. Even though
computational efficiency is sacrificed in generaliz-
ing that part of the calculation associated with the
scattering properties, a significant advantage is
gained in this approach in that non-muffin-tin cor-
rections are included directly in the KKR equations.

A generalization of the KKR equations to correct
for the nonspherical-potential components inside
the spheres has been carried out by Evans and Kel-
ler using trial functions and generalized phase
shifts which depend on the direction of the incident
wave. Recently, John, I ehmann, and Ziesche
have formulated the same problem based on phase
shifts defined in a representation in which the di-
rectionality dependence is removed. In each case,
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however, the resulting equations for nonspherical-
potential scatterers are considerably more com-
plicated than the KKH equations for the correspond-
ing set of muffin tins since the t matrix is no long-
er diagonal.

Modifications to the KKR equations to include
weak nonflat (interstitial) potential corrections as
a perturbation expansion have been proposed by
Beleznay and Lawrence'; however, a great advan-
tage is lost in that the structure constants are re-
placed by a corresponding set of factors dependent
upon the interstitial potential. Another procedure
has been proposed by Keller to improve the rep-
resentation of the potential in the region outside
the atomic spheres by introducing interstitial
spheres to minimize the volume of that region.
Williams and Morgana have found the corrections
introduced in this model using interstitial muffin
tins, and those originating from the nonspherical
potential inside the spheres, each remove about a
third of the error obtained by using the muffin-tin
model alone for silicon. They find that their poly-
hedral scattering model removes most of the re-
maining error.

Another technique closely related to the KKR
method and applicable to non-muffin-tin potentials
satisfying certain conditions on form and range of
definition has been developed by Andersen and Ka-
sowski. ' Their linear-combination-of-atomic-
orbitals-(LCAO)-like approach uses an energy-de-
pendent basis constructed from solutions for an
isolated single-site muffin-tin potential.

In this paper, we discuss a method for including
general non-muffin-tin corrections to treatments
within the usual muffin-tin KKR method without re-
formulating the conventional KKR equations and
programs. We treat the band problem with an
"exact" general crystal potential by projecting out
the muffin-tin average potential, finding the cor-
responding solutions from a KKR calculation, and
using these as primary basis-set components for
an accurate linear-variational treatment of the full
Hamiltonian. Of central importance to this ap-
proach is the discrete-variational method, which
is applicable to a wide class of problems since its
formulation involves essentially no restrictions
upon the form of either the basis set or the opera-
tors that appear in the Hamiltonian.

The essence of the discrete-variational method
(DVM) will be briefly reviewed and limitations of
LCAO basis sets discussed in Sec. II, Section III
outlines our approach of uniting the KKR scheme
with the discrete-variational method. Results of
application of the method to nickel are presented
in Sec. IV to illustrate the fundamentals of the tech-
nique, and in Sec. V we indicate how the proce--
dures of the combined KKR-DVM scheme can be
extended to treat molecular and cluster problems.

In Sec. VI the advantages of this approach are sum-
marized.

II. VARIATIONAL APPROACH

A. Discrete-Variational Method

There are numerous linear-variational methods
which can be used to treat non-muffin-tin poten-
tials, however, there are two limiting features
common to the majority of these methods. First,
restrictions upon the type of basis that can be used
impose bounds upon the convergence rate of the so-
lutions, and second, the non-muffin-tin terms must
generally be expanded in some particular represen-
tation, thereby limiting the operators one can con-
sider.

The DVM was proposed as an alternative
scheme to avoid these limitations encountered with
conventional energy-band methods for compounds.
In this scheme we seek variational solutions to the
full one-electron crystal Hamiltonian (in atomic
units)

a(r) = --,' V'+ y(r), (1)

where V(r) represents the non-muffin-tin potential
function for an electron. In terms of some arbi-
trary Bloch basis set, approximate solutions ap-
pear as

4, (k, r) = Q g, (k, r)C„(k). (2)

In the DVM, the matrix elements, which reduce to
integrals over a single unit cell, are evaluated di-
rectly by sampling with point density ~ (r) over M
points in the unit cell, i. e. ,

M

&X&~&~X,) =2 ~(r )Xv(k, r )[&(r)X&(k, r)] . (3)
m=1

Since we require only the numerical values of the
factors in Eq. (3) over a discrete set of integration
points, the restrictions on the form of the basis
functions and the operators are clearly quite mi-
nor. In several applications of the DVM with Bloch
LCAO basis sets, 13'14 evaluation of the one-elec-
tron matrix elements poses no problem; however,
the LCAO approach itself suffers from limitations
associated with convergence rates and complete-
ness of the basis. 14

B. Convergence Problems with LCAO Basis Sets

Characteristic of linear -variational treatments,
LCAO expansions generally show rapid conver-
gence of the valence-band structure, but the unoc-
cupied higher-energy bands stabilize slowly. ' The
problem is in part a consequence of the fact that
the LCAO basis is constructed entirely of Bloch
sums of localized functions, which are not very
well suited to describe the more free-electron-
like solutions. Conditions for rapid convergence
with a fixed basis set require flexibility of the trial
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III. COMBINED KKR-DISCRETE-VARIATIONAL METHOD

To illustrate the basic method, we consider a
crystal with one atom per unit cell ~ To generate
the basis, we partition our full one-electron Ham-
iltonian into a muffin-tin part H (r) and the non-
muffin-tin corrective terms 6(r):

H(r) =8 (r)+ b, (r), (4)

functions to adequately describe (preferably with a
single-type function) (a) wave-function character
for al/ regions of the crystal, i. e. , plane-wave-
like in regions where the potential is smooth and
rapidly varying near the nuclei of atoms in the unit
cell and (b) excited-state behavior in the high-en-
ergy region where the eigenvalues lie in the atomic
continuum. It is difficult to incorporate these
characteristics in a basis of manageable size de-
rived from a set of localized functions.

The use of excited atomic orbitals of higher en-
ergy to systematically extend the basis in the LCAO
approach was found to offer little increase in varia-
tional freedom in Parmenter's study of lithium.
For compounds, this approach has proved more
useful, but experience shows that the basis prob-
lem becomes increasingly severe as we examine
higher-energy regions. Although the LCAO meth-
od can be used with Bloch trial functions formed
from local orbitals other than atomiclike func-
tions, there is no indication that convergence will
be improved for these higher conduction bands. In
any case, convergence characteristics for such ba-
sis sets can only be determined by repeated and
somewhat inconclusive testing procedures. .

On the other hand, in the KKH method arbitrarily
exact solutions to the model Hamiltonian can be ob-
tained, and convergence is straightforwardly con-
trolled through the partial-wave summation. -Thus,
as far as completeness of the basis is concerned,
the muffin-tin methods offer the advantage over
fixed-basis variational approaches in that conver-
gence can be rapidly obtained in an unambiguous
way, The calculation of the excited states is car-
ried out very efficiently in the muffin-tin model,
since the centrosymmetric potential yields a radial
Schrodinger equation which can be rapidly inte-
grated for any assumed energy.

The muffin-tin solutions naturally meet all the
requirements for optimizing a fixed basis for a
rapidly convergent expansion of eigenfunctions of
the full Hamiltonian, since they directly relate
(through the muffin-tin approximate Hamiltonian)
to the full Hamiltonian. Since the DVM is formu-
lated for general basis functions, we can use the
KKR solutions directly to treat the full Hamiltonian
and thus achieve improved usage of each scheme-
one to alleviate the basis problem, the other to re-
move the restrictions of the muffin-tin model.

where H (r) = --,'V + Vo(r ). The term Vo(x) is the
muffin-tin average of the full potential V(r ), and
h(r) contains the remaining non-muffin-tin terms.

Inside the muffin tin, the radial solutions u, (r )
are efficiently obtained by integration of the radial
Schrodinger equation. The solution in the region
of constant potential can be expressed by scattering
theoryas combinations of spherical Bessel and Neu-
mann functions satisfying the proper boundary con-
ditions. Explicitly, the KKR muffin-tin solution
can be written' ' in the angular momentum repre-
sentation as

X'(&, r)=Xi'C, (k)f, (r),
l, m

where f, (r) is given by

(5)

u, (r), +—+MT
= I', (Q)x (5)

&& [j& (ur) tann~-~~(&&)],

Herej, (ur) and n, (ur) are the Bessel and Neumann
functions, respectively, g, is the energy-dependent
phase shift, and

I(-E)'",
Ct =

~~

E

E&0

E&0.
The factor N, is given by

dv, du,
N) ——eRMT M

d~ dx

where the subscript denotes that the functions are
to be evaluated at the muffin-tin radius, RMT ~

To illustrate the energy and spatial dependence of
the scattering orbital variational basis, in Fig. 1
we plot two muffin-tinBloch orbitals obtained from a
KKR calculation for rubidium. The 1 j symmetry
orbital derives from the rubidium 5s atomic state
and shows rapid oscillatory behavior inside the
atomic sphere. These oscillations yield rigorous
orthogonality to the core orbitals of the crystal.
The high-energy I"». orbital is the second conduc-
tion-band state of that symmetry and shows the
nodal structure characteristic of a 5d atomic state.
For several wave vectors in the Brillouin zone it
was directly verified that the KKR wave-function
expansion of Eq. (5) satisfies the Bloch boundary
conditions at points on the unit-cell faces. While
the partial-wave summation to a maximum value of
4 does not prove very time consuming for obtaining
mell-converged solutions, in practice a plane-wave
representation for points near the cell boundary
may be advantageous. 8

In the combined KKR-DVM approach, the appro-
ximate solutions of the full Hamiltonian are ex-
pressed as linear combinations of the KKR solu-
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tions of the muffin-tin Hamiltonian:

+,.(k, r) =+y.,'(k, r)C„.(k) . (g)

In the basis, the muffin-tin Hamiltonian H is di-
agonal; thus at a given wave vector we only need to
calculate the matrix elements of 6, using the inte-
gration procedures employed in the QVM. Corre-
sponding to Ecl. (3), we have

a., = II., +~., =S',e,, + ~,. . .0

Since this operator 4 is totally symmetric under
all space-group operations, only orbitals of the
same symmetry subspecies can couple through the
perturbation. The magnitude of the off-diagonal
matrix elements of 4 provides a direct measure
of the state coupling introduced through the non-
muffin-tin terms, If there are no functions of like
symmetry in the energy range of interest, as com-
monly occurs at high-symmetry points in the Bril-
louin zone for metals, the energy shifts are the
same as the first-order perturbation corrections.
In compounds, however, there are typically closely
spaced levels of the same symmetry at a general
wave vector, and the solutions corresponding to
the full Hamiltonian will be obtained as linear com-
binations of these KKR orbitals when the matrix 4
is diagonalized.

Since the basis functions are rigorously ortho-
gonal among themselves and to the core orbitals,
there is no core orthogonality problem and the
states of interest for the calculation of physical
properties can be considered without explicitly in-
cluding the inner-core functions. The possible
coupling of the higher-energy core functions to the
states of interest is easily handled, but generally
is not expected to be sufficiently strong to enter
the secular problem. Although 4 is often of cru-
cial significance within the muffin-tin spheres, it
becomes vanishingly small in the inner-core re-
gion and can thus institute only negligible coupling
between the valence and the deeper-core states.
Thus secular matrices can be kept to small size-
an important requirement for treating compounds
of the heavy elements.

There is no necessity in this method to form ana-
lytic representations of the potential, thus quite
general one-electron potentials can be treated.
Formation of the matrix 4 involves simply a point
sampling of h(r) = V(r) —Vo(r) over the unit cell,
and the particular representation of V(r) or Vo(r)
is of no consequence-in practice both V(r) and

Vo(r) are used in numeric form in our calculations.
The main way in which our proposed scheme dif-

fers from the techniques based on reformulations

I'~si (2)
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FIG. 1. Trial KKR wave func-
tions (unnormalized) at the symmetry
point I' in rubidium lattice constant
g =10~ 74 a.u. ) ~ The F)(1) orbital ln
the lower part of the figure is an oc-
cupied state at an energy of —0.212
a.u. ; the F2&.(2) is the second con-
duction-band level of that symmetry
and lies as 0 322 a, u The solid
vertical lines crossed by the orbitals
represent the Wigner-Seitz cell
faces, while the broken vertical line
designates the muffin-tin radius.
The Rb nucleus is at the origin of the
horizontal scale.
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or modifications of the muffin-tin KKR equations is
that conventional KKR and DVM procedures are
maintained in the combined KKR-DVM scheme.
Our goal is to maintain the most efficient computa-
tional mode of the KKR in order to utilize to the
maximum extent the efficient mathematical tech-
niques applicable to the muffin-tin model. When we
have exhausted that model completely, then we in-
clude non-muffin-tin terms by resort to the varia-
tional treatment.

In the KKR-DVM approach, corrections to the
band structure enter first from shifts which are
first order in origin and second from off-diagonal
couplings of the Bloch basis states through the non-
muffin-tin potential. The major question at pres-
ent involves how well the admixture of muffin-tin
eigenstates represents the true solution, and
whether it will be necessary to supplement the
Bloch muffin-tin solutions with other trial func-
tions.

IV. APPLICATION To PARAMAGNETIC NICKEL

The combined KKR-DVM technique has been de-
veloped primarily to treat crystalline compounds;
however, initial usage has been restricted to a
few metallic crystals for which recent KKR
energy-band results are available. Preliminary
calculations of the non-muffin-tin energy cor-
rections for lithium were found to agree well with
available I CAO 3 and non- muffin-tin APW re-
sults. For illustrative purposes in this paper, we
report some results of calculations for the para-

TABLE I. Energy eigenvalues E& of high-symmetry
levels for Ni including non-muffin-tin terms with corre-
sponding level shifts from those in the muffin-tin approxi-
mation E,; 8'- W denotes changes in energy-band sepa-
rations and widths upon including non-muffin-tin correc-
tions to the potential (energies in rydbergs).

Z (r) = V(r) —V,(F), (io)

where V(r) is the full crystal potential obtained
from directly superimposing atomic potentials and
charge densities using the free-atom charge den-
sity appropriate to a Sd '4s valence-shell con-
figuration as calculated in the Herman-Skillman~'
atomic program and Vo(r) is the corresponding
muffin-tin average. The KKR wave functions used
in this preliminary work were obtained in sym-
metrized form with an upper limit in the partial-
wave sum of 4. An integration mesh of 2400
points in the DVM stage converges the eigenvalues
to at least three significant figures for the energy
range considered in Table I.

Generally, the effect of the anisotropic correc-
tions is a narrowing of bandwidths and energy
separations. Practically all of the energy shifts
in this energy range of about 1.0 Ry are first
order, the allowed coupling of the states at the
I, point contributing energy differences an order
of magnitude smaller than the first-order shifts
alone. Calculations performed in the often used
"warped-muffin-tin" approximation, obtained by
truncating a within the muffin-tin sphere, indi-
cate that more than 80%%uo of the total energy shift
results from non-muffin-tin corrections outside
the spheres. Coupling of the core 3p states to
the valence levels is entirely negligible.

Substantial energy shifts do occur for some of
the states upon which predictions of the Fermi
surface depend quite sensitively. The d-band
width is reduced by 0. 010 Ry in good agreement
with that obtained by Jacobs. This reduction is
of the same order of magnitude as the shifts found
in Connolly's study~3 of the effects of using various
muffin-tin potentials. The magnitude of this nar-
rowing, if assumed the same for the ferromagnetic
case, is not great enough to resolve the discrep-
ancy between theoretical calculated band densities

magnetic form of fcc nickel. Our purpose here is
simply to calculate the effects of the anisotropic
potential within a limited paramagnetic band model.
More thorough investigations of nickel are re-
ported in the literature. Because of the small
effects in metals, the calculation forms a strin-
gent test of the accuracy of the KKR-DVM; the
accuracy is found sufficient that we can make
definitive statements about the effects of the non-
muffin-tin potential and charge density on the band
structure and total energies of metals.

In Table I we summarize the non-muffin-tin
energy shifts from the KKR muffin-tin eigenvalues
E,' calculated at several symmetry points in the
Brillouin zone. The corrected eigenvalues E, re-
sult from the combined KKR-DVM treatment of
the full Hamiltonian; i. e. , the operator a(r) in
this case is given by
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of states and x- ray- photoemission experimental
data, and hence provides some further informa-
tion on the shortcomings of the assumed energy-
band model.

The size of the hole pocket associated with the

X5 level appears unperturbed by the non- muffin-tin
corrections. The I.2. state, which is important in
determining the neck in the Fermi surface at I.,
shifts by+0. 010 Ry—this shift is an order of mag-
nitude greater than that obtained by simpler esti-
mation procedures. ' The order of the states
I.2. and 1., remains the same for this potential con-
figuration, however. From these results, it is
clear that for those properties which can be mean-
ingfully obtained within the one-electron energy-
band model, particularly Fermi-surface character-
istics, the non-muffin-tin effects can be sufficiently
large to affect detailed comparison with experi-
ment and should be properly accounted for.

V. MOLECULAR CLUSTER PROBLEM

The multiple-scattering (KKR) method has been
applied with considerable success in recent years
to the calculation of the electronic states of molec-
ular clusters in the muffin-tin approximation 5

using a local exchange approximation. A com-
parative study of treatments using the KKR
cluster method and the usual LCAO approach for
large molecules demonstrates an impressive ad-
vantage of the KKR scheme with regard to compu-
tation time. However, this computational efficiency
is based on the simplicity of the assumed muffin-
tin- model molecular potential. From simple geo-
metrical considerations, one would expect the
muffin-tin approximation to be inadequate in all
but exceptional cases. Recent total-energy cal-
culations for several molecules show that the
partitioning and averaging effects of the cluster
muffin-tin model are especially severe in the
treatment of molecules having lone pair states
and asymmetrical bonds. ~' As observed with
similar crystal-cohesive- energy calculations,
the non-muffin-tin terms in the charge density
appear crucial in predicting dissociation energies
and bond angles.

Obviously, a combined KKR-DVM technique
can be devised for the molecular case. A clear
equivalence exists between the KKR approach and
the LCAO scheme in a Bloch basis on one hand
and the multiple- scattering cluster technique and
the LCAO method in a symmetrized molecular-
orbital basis on the other. In complete analogy
with the procedures described for the energy-band
model, the DVM and the KKR cluster method can
be united to remove the restrictions of the muffin-
tin-model charge density and potential, and all of
the mutual advantages of the DVM and the KKR
method result as previously discussed. It should

then be possible to reach definitive conclusions
regarding the effects of these corrections in clus-
ters and to resolve questions concerning the sensi-
tivity of results to the rather arbitrarily chosen
muffin-tin radii. This scheme is presently being
set up, and we expect to publish applications to
clusters in the near future.

A more interesting prospect is that of using
KKR orbitals with the DVM as adapted for two-
electron integrals' for electronic structure and
total- energy calculations within Hartree- Fock
(HF) and configuration-interaction (CI) formula-
tions wherein the two-particle interactions enter
as corrective terms. Solution of a muffin-tin
model of the system would yield a set of orbitals
which form a quite reasonable basis set to achieve
a rapidly convergent CI series.

VI. SUMMARY

The success of previous applications of the DVM
has been based on its operator versatility which
has allowed us to accurately treat the anisotropic
potentials in covalent crystals. In this paper we
have described an approach which uses the basis-
function flexibility of the scheme to avoid the con-
vergence problems encountered in the LCAO
method. Within the KKR-DVM scheme, a variety
of model Hamiltonians can be considered without
introducing further approximations —a necessary
requirement for determining the adequacy of
various aspects of the theoretical models.

Our present efforts concern generalizing the
KKR programs to treat complex crystals. " Re-
sults therefrom will provide a meaningful basis
for comparison with the other recent non-muffin-
tin KKR methods. From existing results, however,
the combined KKR-DVM offers considerable prom-
ise for treating complex crystal compounds within
more refined models.

In summary, we have presented an energy-band
method which is generally applicable to any ordered
crystal, although specifically intended to treat
crystalline compounds. The motivating philosophy
is that the mathematical simplicity inherent in
the muffin-tin model should be exploited through
the efficient computational procedures developed
for that problem, with the treatment of the non-
muffin-tin corrections reserved for less spe-
cialized but more flexible procedures (DVM).
Wave functions are obtained in the muffin-tin ap-
proximation using the KKR method, and used as
a trial basis for the DVM to carry out a variational
treatment of the full Hamiltonian. A generalization
of the technique has been described to treat simi-
lar problems in the calculation of the electronic
structure of molecular clusters.

To summarize somq advantages of this method,
the restrictions of the muffin-tin model are com-
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pletely removed without sacrificing the computa-
tional efficiency of the KKR method —no modifica-
tion of existing KKR muffin-tin schemes is re-
quired. Non- muffin-tin corrections are calculated
directly and on the same footing for all regions of
the cell without any partitioning. Thus no per-
turbative formulation is used; energy corrections
are calculated by directly diagonalizing the rele-
vant secular matrix. A major advantage of the
KKR method is maintained in that the secular
problem for the full Hamiltonian involves matrices
of small size. The KKR expansion basis com-
prises a convenient representation for further use
and analysis of the wave functions.

The method has been illustrated by calculating
the small non-muffin-tin shifts in paramagnetic
nickel. In addition to demonstrating the high ac-
curacy of the procedure, the results show that it
is possible to attain definitive information con-

cerning the influence of non-muffin-tin corrections
for Fermi-surface calculations within conventional
muffin-tin methods. Viewed either as the KKR
corrected to include non-muffin-tin effects or as
the DVM with KKR scattering orbitals as a basis,
the two schemes have been combined to achieve
the main advantages of each.
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