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We examine the two-impurity Kondo effect by deriving the equation of motion of a set of
Green's functions using the two-impurity s-d Hamiltonian with an added exchange term of the
form W(SO ~ S&1, where So and 5& are the spin operators of the two impurities. The resulting
Green's functions are truncated and solved for self-consistency, keeping the most divergent
terms. Our results show that all the lnT terms arising in the single-impurity Kondo effect
are modified and replaced by ln(T + W' )', where 8" is an energy approximately equal to
W. This results in an effective Kondo temperature T&, where T~= Tz [1 —(W'/T&) ], and
TE is the single-impurity Kondo temperature. Thus the effective Kondo temperature decreas-
es as the impurity-impurity interaction increases, and when 8' is greater than TE the Kondo
divergence is removed by the impurity-impurity interaction. Our results show that the in-
teraction W strongly modifies the spin-compensated state. We also derive expressions for
the conduction-electron polarization as a function of 8" for high values of W' or high tem-
peratures.

I. INTRODUCTION

In considering the thermodynamic properties of
localized magnetic impurities in nonmagnetic
metals, one often concentrates on two different
aspects of the problem. In one of these, one treats
the single magnetic impurity which interacts with
the conduction electrons via an s-d interaction and
results in the Kondo' effect at low temperatures.
The other involves the interaction between different
magnetic impurities. Since each of these problems
is quite complicated by itself, one usually tries to
separate the study of the magnetic impurity sys-
tem into two different regions of temperature T
and impurity concentration c: (i) a very-low-con-
centration region in which the impurities are so
widely separated that the interactions between them
can, on the average, be neglected, and one can
essentially deal with a single-impurity system, and

(ii) a region of higher concentration in which im-
purity-impurity interactions play an important role
and Kondo-like effects are unimportant, either be-
cause the temperature in question is much above
the Kondo temperature, or because the impurity
concentration is sufficiently high that Kondo-like
effects are suppressed by the impurity-impurity
interaction.

The single-impurity effect was originally treated
by Kondo, Suhl, Abrikosov, s and Nagaoka and is
by now reasonably well understood. There are
many outstanding works in this area, ' but we shall
only list a few and refer the reader especially to
two excellent review articles on the subject, one
by Heeger and the other by Kondo. s

The works on the more highly concentrated re-
gion have so far primarily addressed themselves
to the statistical mechanics of the many-impurity

system in an effective-field approximation. Such
a treatment was originally proposed by Marshallv
and discussed by Klein and Brout, Friedel, and
Liu' for low temperatures, and more recently by
Klein" for all temperatures and all external
fields. '2 In calculating the effective molecular
field, which is a random variable, one completely
neglects the Kondo effect, and for this reason one
expects that the calculation mill have validity only
at temperatures much above the Kondo tempera-
ture. Even though this requirement is quite re-
strictive, there are materials in which the Kondo
temperature T» is sufficiently low (Cu-Mn, for ex-
ample) that the average impurity-impurity interac-
tion is much greater than T~, and the effective-
field calculation is believed to be valid in spite of
the fact that the Kondo effect is not considered.

In order to examine how this effective field sup-
presses the Kondo resistivity, Silverstein
Harrison and Klein' (HK) calculated the resistivity

. in the second Born approximation. The essential
result of the HK calculation (Silverstein has not
examined the modification of the logarithmic terms
by the internal fields) is that lnT is replaced by
ln(T +H )'~, where H is the effective internal
field. The difficulty with these calculations' ' is
that since the effective field as well as the Kondo
effect arises from the s-d Hamiltonian, discussed
by Kasuya' and Yosida, ' it is not clear that the
calculation is consistent since both effects should
be considered simultaneously. Another difficulty
with the effective-field calculation is that the per-
turbational result (or second Born approximation)
is, in general, not valid, since one must consider
all orders in the Kondo problem as was discussed
by Abrikosov and Hamann. ' Thus even though the
molecular-field calculations are in some cases in
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reasonable agreement with experiment, these cal-
culations rest on theoretical foundations whose va-
lidity is questionable.

Attempts to do a correct calculation of the many-
impurity system using Green's-function techniques
have been made by various researchers such as
Bresemann and Bailyn, ' Nagaoka, ' Kurata, and

Blackman and Elliott. ' Their results can be sum-
marized by the statement that they found no essen-
tial change from the single-impurity Kondo temper-
ature and the spin-compensated state. Bbal-
Monod has treated the resistivity arising from
two impurities with an exchange interaction between
them, but this calculation was done in the second
Born approximation and thus suffers restrictions
similar to those of the calculations of Silverstein"
and Harrison and Klein, ' in that it is only valid in
the region of validity of perturbation theory, i. e. ,
high temperatures.

Recent experiments on low -concentration dilute
alloys by Tholence and Tournier" and Welsh and
Potts indicate that even in the very-low-concen-
tration region two-impurity effects are important.
These experiments were done in a temperature re-
gime where the single-impurity Kondo effect gives
the major contribution to the magnetic properties
and suggest that a better theory than presented up
to now is necessary to describe the many-impurity
system even at very low concentrations.

Since recent experiments show a strong two-im-
purity contribution to the single-impurity Kondo
effect, one would like to solve self-consistently the
two-impurity s-d Hamiltonian in general and ob-
tain the renormalization of the lnT term by the im-
purity-impurity interaction. However, a relatively
simple argument suggests that solving such a prob-
lem by brute force requires the knowledge of at
least the five-particle Green's function. This argu-
ment goes as follows: The lnT term arises from
the equations of motion of the one- and two-particle
Green's functions, and we want the renormalization
of the Green's functions by the impurity-impurity
interaction (Ruderman-Kittel-Kasuya- Yosida)
which involves a summation over two pairs of con-
duction-electron operators and two impurity spins.
Such a term would arise to lowest order from the
decoupling of the five-particle Green's function.
Thus the complexity of the problem is such that its
solution is in practice not feasible. Therefore, in
order to find the renormalization of the lnT term
by the impurity-impurity interaction we simulate
the interaction by introducing a, term W(R) So S,
into the Hamiltonian. It should be kept in mind that
the consistency of such an approach is only justi-
fied if W(R) is an interaction which arises from
sources other than the s-d interaction. ' We derive
the equations of motion of the relevant Green's
functions and decouple into lower-order Green's

functions, thereby obtaining a closed set of self-
consistent equations. We use the decoupling
scheme of Nagaoka and therefore, along with
Nagaoka, we treat the most divergent part of the
Kondo effect correctly and make an error only in
terms which do not contribute to the most divergent
part. The essential result of our derivation is that
the lnT arising from the single-impurity Kondo ef-
fect is replaced by —21n(T2+ W' ), where W' is re-
lated to W by a simple equation and is approximate-
ly proportional to W. Thus we find that the intro-
duction of the second impurity inhibits the forma-
tion of the spin-compensated state of the Kondo sys-
tem. It also indicated that whenever the interaction
energy W' is greater than the single-impurity Kondo
temperature, the logarithmic terms can be treated
using perturbation theory. Similarly, we find that
the conduction-electron polarization is appreciably
affected by the second impurity.

With an assumed Ruderman-Kittel-Kasuya-
Yosida (RKKY) potential, ' we also compare the
modification of the lnT term arising from our
method with the modification arising from the Har-
rison-Klein calculation. ' For an RKKY interaction
the effective Kondo temperature will be concentra-
tion and temperature dependent even at low impuri-
ty concentrations. This is in qualitative agree-
ment with recent experiments by Loram et al. and
Souletie and Tournier.

A brief outline of the paper is as follows. In
Sec. II and Appendices A and B, we develop the
equations of motion of the relevant Green's func-
tions, which we solve in Sec. III. The reader who

is not interested in the mathematical formalism
may immediately proceed to Secs. IV and V, where
the equations obtained are analyzed and the physics
of the problem is discussed.

II. MATHEMATICAL DEVELOPMENT

In this section, we derive the equations of mo-
tion of the relevant Green's functions using a two-
impurity s-d Hamiltonian with an added exchange
term between the two impurities. We use the nota-
tion of Nagaoka29 whenever it is convenient.

We assume a Hamiltonian $C of the form dis-
cussed by Kasuya" and Yosida' with an added ex-
change term of the form

eke cga — ~ ve g (SO+ 81 e )cpof cg~ g

—W(A) So S, , (2. 1)

where So and S, are the impurity spins located at
sites 0 considered as the origin and 1 at a distance
R from it; ct„and e~ are the conduction-electron
creation and annihilation operators with wave vec-
tor k and spin z, q~ is the conduction-electron en-
ergy measured from the Fermi energy &~, N is the
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&A~ B), , = —&'8(t —f') &[A(f), B(f')].), (2. 2)

where ( I ), denotes the Green's function, ( ) is the
average over a grand canonical ensemble, [A, B],
-indicates an anticommutation operation, and
8(t —f') is the Heaviside unit function which equals
1 for g& g' and zero otherwise. We set h and the
Boltzmann constant k~ equal to unity throughout
this paper.

We introduce the following retarded double-time
Green's functions for the two-impurity problem:

G»»' 2 ( cia 0& ~ c»a )ra

= —,
' ((r, S„e»'el c» )

1 I=2&(P &&' 6 S„c c c»&&IC» )

U»». = —f(o (Soxs&)c», 8 I
c )„,

(2. 3)

(2.4)

(2. 5)

(2. 5)

where n can take values 0 or 1, and (Ai B)„de-
notes the Fourier transform of the Green's func-
tion of the operators A and B. For convenience,
we suppress the suffix &u in (A I B)„and the R de'-

pendence of W(R).

total number of atoms in the solid; J is the strength
of the exchange interaction between the conduction-
electron and impurity spins (assumed to be a con-
stant); o» is the matrix element of the Pauli spin
operator o between the spin states &k and p; and

W(R) is the exchange energy at a distance R =
I R I

between the two impurity spins discussed in the In-
troduction. A summation over the spin indices is
implied throughout the paper.

The retarded double-time Green' s function of the
fermion operators A and B is defined by Zubarevs
to be

The equation of motion for t"kz, F», , and U»,
are as follows:

( )G»»' [Po+ P1Rejk' R]
2~ 2N

(2. 7)

(S(S+ l)G»+ (S&& S, ) e'" '
G» —1»$

»«'»' »
"'' "+

»»'

(~ —e„)1'„', e'" '"

iS(S+1)G» +(S&& 8&) e '" '
G» —I'»"]

Q I&
1 «1- f'- k'

&
~ &i

2N kl l'k'

U
- &k' ~ ll CPU - &k' ~ ff (2 9)k»'

where

A&& QA -&IT' R

(2. iO)

(2. ii)

I"». , or U», . In obtaining Eqs.
(2. 8) and (2. 9), we have decoupled the longitudinal
Green's function —,'(So' S&c,. Ict ) to give
(s, s, )G,„.

The term involving U», in Eqs. (2. Q) and (2. 9)
introduces quantities involving the exchange inter-
action 8' between the two impurities. In order to
evaluate Uk and U», we obtain the equation of mo-
tion of U». and later decouple it into lower-order
Green's functions. We thus have

((u —e' ~ )U ~
=—(o (S &&S,))5„„.— Z«& (S &&S,) (S +S, e''" '

) o,c., ~

ct, )

-4—~ &(~.»'So) (~-»'S&)c»c'»c»»lc»-)+ &&(e.»'So) (e,» S&)e»,e»»c»»le». )e ' ' '

+—&[(S,~S, ) (...~S,)+(e., ~S,) (S,~S,)]c»»le». ). (2»)

We assume that each impurity has spin —,'; hence nary part. Also we define

&so So)=&si Si)=S(S+I)=-'

For later use, we also define the quantities

(2. iS) +k ~k'k &

«» =~«»'» e

(2. IV)

(2. ia)
n»„. = —,'(c» c„. )= —2 J (ImG»„)f((o)d&d,

(2. i4)
p +oo

m». =(&&» S„c» c». &&)
= —4 f„(Iml'». )f(&d)dv,

(2. 15)
N». = (a f&&. So&&S&c„„c».8)= —4 J (ImU»„)f((u)d&u,

(2. Ie)
where f(&u) = (e"~r +1) ~ and Im indicates the imagi-

0 1fOr Qkk» pukka & tglkks & ppgkke &
BD Qkk

Note that throughout the whole calculation we use
the relationships

e& &k-k' & R

k

&&k'-k& a. (2. i9)
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Y. p Y 1 &(f7:-fr.') R
k' ™ktf' »'

0 Q 1 f(k' k) ~ R (a. ao)

(2. 5) using the Nagaoka decoupling scheme retains
the most divergent logarithmic terms. We thus
use a decoupling similar to that of Nagaoka:

and
ygn ~ ~n n" at t'~f' 2+ttf' at' ~to'~at' (2. 22)

t(fr. -k') K
Qadi

=~ Qt, t,i
= —~Qt g,

~ 8

(2. 21)

The physical meaning of Eqs. (2. 19)-(2.21) is that
wq assume that the correlation functions defined
are position independent in the following sense:
The conduction-electron-spin-impurity-spin cor-
relation function gpss», has the same value when S
is at y =0 and the conduction e&ectrons are created
and annihilated at y = 0 as when S is at x= 8 and

the conduction electrons are created and annihi-
lated at y = B. The same assumption is made for

Si»' »''
Equations (2. 7)-(2.9) have to be solved self-

consistently. In order to do so, we decouple our
Green's functions into lower-order Green's func-
tions and correlation functions. As mentioned be-
fore, we wish to solve the two-impurity Kondo sys-
tem with the proviso that we keep the most di-
vergent terms, plus the term U», which introduces
the impurity-impurity interactions. It has been
shpwn by Dpnjachs and Nagapkaas that the decpu-
pling of the Green's function V,». , given in Eq.

(~ —
&» )r»» =a~ [m» S(S 1)]G

N [+» — ]r»p J p

&IF )»»'e

[(Sg Si) G» + U"»] e'" ' + WU»»

(2. 23)

[ „—S(S+1)]G"„——[ „.——']1

[(S, S, ) G, - V,] e- " - WV„„e- "- fk' ~ R - fk' ~ R

2N
(a. 24)

We decouple the higher-order Green's functions in

Eq. (2. 12) using the method of cumulant decoupling
(Appendix A) discussed by Kubo'» and Brout and
Carruthers. s» (Note that the Nagaoka decoupling
is consistent with the cumulant decoupling scheme. )

This decouples the higher-order Green's functions
into lower-order functions and gives a closed set
of equations, which we then solve.

The decoupling of Eqs. (2. 8) and (2. 9) is
straightforward. Using Eq. (2. 22), we get

The decoupling of Eq. (2. 12) is more complicated and is done in Appendix A; the result is

(~-e,, )V,„, = —(S, S, ) [(~,, --,')G, -(@--,'e'"'")G', ]

+—[m,, —S(S+1)][rpe'"'~ —r„'] ——[m,', +(S, S, )] [r„'-r~e'"' "]

[~,, V, +~,", u"„]+—[u„,G, +gG"„] +-,'(W[S(S+1)+(S, S, )]+E'}[r,',, -r,',, ], (2. 25)

where

(2. 26)

is the polarization energy at site 0 or site 1.
Equations (2. 23)—(2. 25) together with Eq. (2. 7)
form a closed set of equations which can be solved
self-consistently. It is easy to verify that as R- ~ all the R-dependent terms vanish, and from
Eqs. (2. 7) and (2. 23) we obtain Nagaoka's4 single-
impurity formulation, as we should, since the im-
purities are removed an infinite distance from each
other.

III. SOLUTION OF GREEN'S FUNCTIONS

z(x) = —Z1 1
N a &-&t

k iP7

s (x)=- Z
N „x—q„,

(3.1)

(3. 2)

(3.3)

l

terms of their correlation functions n». , m». ,
and gg», . In this section, we solve self-consistent-
ly for the quantities G„, G„, 1»o, and r» and then
substitute these into Eqs. (2. 7), (2. 23), and (2. 24)
to obtain Gaa, , Iaa, ef(k-k') R, and ra

Before we proceed, it is useful to define the fol-
lowing quantities: Let

In Sec. II, we derived a closed set of equations
for the Green's functions Q~z, I'», , and U», in ( )

1 g m„—S(S+1)
N~ x —

Et,
(3.4)
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W' = —', W(w[S(S+1)+(S S,)]+8'), (s. 5)
, [T',(~ —w') —T,'(~+ w')], (3.12)

where E' is given in Eq. (2. 26).
From Eq. (2. 7) we obtain

G„=
2

—'J[E—((u)ro+E" (w)r~], (3. 6)2''

-tk Ã

G» =— ——,'J[F ((u)r»+E(ar)r, '"] . (3.7)

[m, , - s(s+ i)]G, ——[~,, - -,'] r„'

——[(S,. S, ) G', +U, ] 8*"'~

+ W ~ 6'»' (~» ) (~ —e» ) ', (3. 8)

where W'~ was defined in Eq. (3. 5), and P, 8"»(&» )

represents a summation over all the terms occur-
ring on the right-hand side of Eq. (2. 25), except
for W "(~—»», ) 'r, », , which has been transposed
to the left-hand side of Eq. (3.8). Summing Eq.
(3.8) over k', we obtain

[1+JG(~+ w')] r,'=-,' JI (~+ w')G„- —,
' JF'(~+ w')

x[(S,. S,)d'+U, ], (3.9)
where

A(a&+ W') = —,
' [A(e+ W')+A(v —W')] (s. io)

and A may be any of the quantities defined in Eqs.
(3. 1)-(3.4). In obtaining Eq. (3.9), we have used
the identities

[(& —
K»~ ) —w (~ —t»~ ) ]

Substituting Eq. (2. 25) into Eq. (2. 23), we obtain

[( —~, ) —W"( —e„.) ']r,',

GO
1 1

(s. 14)

where T»'(x)=g»i 6'»'(e» )(x —»» ) '. Solving for r»~
in a similar way, we obtain

[I+JG(~+ w')] r»~ =-,'Jr(~~ w')Gg --,'JF"(~~ w )

x [(So Si) G» —U»] . (3. 13)

In order to complete a closed set of equations,
we also have to solve for U„and U~~ and for I'~~

and I'„which occur in the equation of motion of
U~ and U~. One ean thus establish a closed set of
simultaneous equations for G, , G„ I'~, I', , U, ,
U"„, I'~, and I'~, which, in principle, can be
solved exactly, but in practice has to be done by
an approximation method.

To facilitate our calculations, we make the fol-
lowing observations. To calculate physical quan-
tities such as the resistivity, the specific heat,
the conduction-electron polarization, and the mag-
netic susceptibility, etc. , within the context of
our present work, one only needs to know the one-
particle Green's function G». , and the two-particle
Green's functions I'~0~, and I'„~.e' " " ' . It can be
shown (Appendix B) that the contributions of U" and
U„e'"' to I"

~ and I"„'„.e''" " ' are at most of or-
der (Jp/Nk~R) x(the differences of two logarithmic
contributions), and therefore do not contribute to
the most divergent part of the Kondo effect. This
allows us, within our approximation, to neglect
U„and U, in Eqs. (3. 9) and (3. 13). We thus ob-
tain a closed set of simultaneous equations for G~,
G, , I', , and I", in terms of quantities defined in
Eqs. (3. 1)-(3.5) and the unperturbed one-particle
Green' s functions

=-,' [(~ —&,, + w') '+ (& —&,. —w')-'], (s. iia)

[(~ —~» )'- W "]'
- fk ~ R

GOB (s. is)

, [((u —q», —W') ' —((u —g». + W') ] .
(3. lib)

Note that we dropped in Eq. (3.9) all the other contri-
butions from U», , since those contributions carry
[(+ —q». ) —W' ]

' as a factor, and we find after
some simple but laborious algebra that all the
logarithmically most divergent terms, which are
of interest in the Kondo problem, vanish from an
expression:

2 6"„(~„,) [(~ —&,, )'- w "] '

Neglecting U, and U, in Eqs. (3.9) and (3. 13),
we obtain

[1+ GJ(&u+ W')] I'» =2 Jr(e+ W')G» —
2 JE (&u+ W')

x(SO S, ) Gf, (3. 16)

[I+JG(~+ w')]r, =-,' Jr(~+ w')G,'--,' Js (~+ w')

x(SO. Si) G» . (3. 17)

The solution of the four simultaneous equations,
Eqs. (3. 6), (3. 7), (3. 16), and (3. 17), is straight-
forward; we have
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1 e '"'g [1+JG(or+ W')][X-e'"' Y]
G

2S Eo —
Cy X —Y (S. 19)

r,'=—((u —e,)-'[X' —Y'] '([r(~+ W') —F'(~+ W')(So' Si&e "' ]X

-[r(~+ W')-F'(~+ W')(S, S, ) e'"'"]e'"'"Y], (3. 2O)

~ K
[X'- Y']-'[[r(&u+ W') —F"(~+ W') (S, S, ) e'" ']X

where

—[I"(co+ W') —F (~+ W')(So Sq) e '"'
] e'"' Y], (S. 21)

X= I+JG(~+ W')+-,' J'[F(~)r(~~ W') —F'(~)F"(~~ W')(S, S,&],

Y= —,
' J[F (v)r'(&u+ W') —F(~)F (&u+ W') (So S, )] .

Using Eqs. (3. 18)—(3. 21) in Eqs. (2. V), (2. 23), and (2. 24), we obtain

(3. 22)

(3. 23)

1 5~„. J [X —Y ]
8~& (~ —~,) (~ —o:,.)

x{[r((o+W')(1+e''"' "' ) —F ((o+W')(So S, )(e '"'g+e'" '")]X
—[r(&u+ W')(e '"'"+e'"''

) —F"(~+ W')(So S,)(l+e""' "' )]Y], (3.24)

[X2 Y2]-1

4vN (a& —e, )(~ —c„.+ W')

x ([1+JG(~+ W')][m„—S(S+1)—(S, S, ) e'+ "'"]-J(m,. ——,') [r(~+ W') —F"(co+ W')(S, S, ) e '"'a]]X

-([1+JG(&o+ W')]f[mo —S(S+1)]e '"'"—(So Sq) e'" '"j
—J(n ~ ——,

'
) [r(&u+ W ') e '" ' "—F" (&u+ W') ( So S,)])Y, (3. 25)

where

((0 eye + W ) =2 [(co eyi + W ) +(Q) —e&i —W ) ]
(3.28)

and I'„~ 8'+ " ' has exactly the same form as
I'~0&, namely,

(S. 2'7)

Equations (3.24), (3.25), and (3.2V) are exact

(except for the decoupling) and valid for all tem-
peratures. In Sec. IV, we shall analyze these re-
sults and obtain the physical quantities of interest
from them.

In obtalnlng these quantities, we confine our-
selves to the high-temperature or large- TV' limit.
Then we are justified in neglecting Y, since Y
«X, and find

X-'
G ~ =2 {6,— [r(&o+ W')(1+e'a "'")—F (&u+ W')(S S, ) (e'"'"+e '" ' )]),

ra@' =
( )( I ([1+JG(~+ W')][ma' S(S+1) (So' Ss)e " " '"]

(S. 28)

—J[n ~
——,'][r(&u+ W') —(S S )F"(m+ W' )e '"' ]], (3.29)

and I"~~, e"" " ' " for the high-temperature or
large-W' limit can be obtained from Eq. (3.29)
using Eq. (3.27).

Equations (3. 28) and (S. 29) can easily be com-
pared with Nagaoka's single-impurity Green's func-
tions.

IV. ANALYSIS OF TVfO-IMPURITY RESULTS

In this section we obtain some useful physical
information from Eqs. (3. 24), (3.25), and (3.2V).
%e first examine the proper limits of these equa-
tions for various cases.
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Case 1: 8-, W=O. In this case, all the B-
dependent terms vanish; hence Eqs. (3.24) and
(3.25) become

F(x) = (&pD/tt) (»+ iD) (4 7)

where D is the bandwidth and p is the density of
states. For x«D, we have

1 1 J 1
2p co —

/gal 4N F(x) = —i7«p/N, (4. 8)

r ((u)
(4 3)1+JG(«d)+-,'d'r «((u) F(«d)

and Eqs. (3.25) and (3. 27) combine to give

[1+zG(«d)]
47«+ (««« —

&«, ) (& —
»«, )

[2m„- 2S(2S+1)]—Z[n„, ——,'] r'(~)
1+ZG(~)+-,'d'r'(~) F(~)

(4.4)
with

r«( )
1 p 2m, —2$(2S+1)

(4. 5)

and F~g =F„~.+1"~,. evaluated for @=0. Equations
(4. 3) and (4.4) are Nagaoka's single-impurity equa-
tions for spin 1 ~

Case 3: R=0, W=O, singlet imt«u«ity conf-ig
uration. Fox' the case when two impurities of the
same magnitude coincide to form a singlet, we
have So+S, =O and (So S, )= —S(S+I). For this
case,

(4. 8)
2& N —gy~

and I'», = 1 ~~, + l"~~ evaluated for R = 0 and So+8,
=0 vanishes. This corresponds to the case where
there is no localized magnetic moment; thus G».
is the free-particle Green's function in accordance
with physical expectations.

Case 4: General with R finite and WA0. Before
we discuss the general case it is useful to introduce
the following new quantities:

r(~) 4. 1)1+JG((o)+-,'z'r((u) F(co)

r 1
47«& («d —e, ) ((u —~,.)

[1+dG(~)] [m,. - S(S+1)]- d[n„, --,'] r(~)
1+KG(ar)+-,'z'r((u) F(cu)

(4. 2)
Equations (4. 1) and (4. 2) are exactly the same as
Nagaoka's single-impurity results. Note that
Eqs. (3. 28) and (3.29) also reduce to a form simi-
lar to Eqs. (4. 1) and (4. 2).

Case 2: R= 0, W=0, ttiPlet im'Puri-ty configura
/ion. For the case when two impurities each with
spin —,

' coincide with each other to form a triplet,
we have So+S, =2S and (So S, ) =S, where ISOI
= IS, (

= ISI =S; Eq. (3.24) becomes

1
» 2»

G(») = ——ln, — [f(») - -,'], (4. 9)

F««( )
&P 1 ««am+(+s»&)'~2««

k~R
(4. 10)

where m* is the effective mass of the conduction
electron. For x«q~, we have

F««(») M» s«k»««
N k~R

(4. 11)

Equations (4. 7)-(4.9) have been evaluated by
Nagaoka and Hamann. '7 Equation (4. 10) ha. s been
discussed by Koster, Gavan and Doman, Kim, 37

]Qual-Monod, 22 and Kurata. '0

The expressions for this general case are given
in Eqs. (3.2)-(3. 27) of Sec. III. By observing
these equations, we make the following important
remark. Because of the impurity-impurity inter-
action of strength W introduced into the Hamilto-
nian, Eq. (2. 1), all the functions defined in Eqs.
(3. 1)-(3.4) which arise from the interacting Part
of the Green's functions have their co dependence
replaced by ~+ W'. This is the central result of
our paper and has important physical implications
with regard to the Kondo problem. This can be
seen most clearly from the expressions for G»,
and I'0,. given in Eqs. (3. 28) and (3.29).

Thus inthe presence of the interaction 8'

G(«d)-G(v+ W'),

r(~)- r(~~ w'),
F"(~)- F"(~+ w') .

(4. 12)

De- &/ I
J'

I n
K (4. 13)

In the presence of the interaction W, lnI T/DI is
replaced by in[(T~+ W' )/lP]'t . Thus when W'
& TK, W' strongly inhibits the formation of the
spin-compensated state. %hen W' & TK, the for-
mation of the spin-compensated state will be par-
tially inhibited depending upon the ratio of W'/T».
Therefore the single-impurity Kondo effect will
only be observed when the average interaction en-

Equation (4. 12) is valid for all temperatures.
From Eq. (4. 12) we see that all the logarithmi-

cally divergent terms (and also some nondivergent
ones) arising from the Kondo effect, which without
the impurity-impurity interaction W will go like
lnl T/Dl, are now replaced by in[(Ts+ W'2)/D ]' 2.

We recall that without the interaction W the spin-
compensated state, i. e. , Kondo bound state, is
formed at about the Kondo temperature:



THEORY OF THE 'FWO-IMPURITY KONDO E F FECT. . . 359

ergy betweenthe impurities is much less than Tx.
According to this result, if we assume W to be a

long-range interaction of the form of the RKKY in-
teraction, the Kondo effect will disappear at higher
impurity concentrations. This is in qualitative
agreement with the logarithmic part of the resis-
tivity calculations of Harrison and Klein, which
were done in an effective-field approximation using
the second Born approximation.

An experimental confirmation of the theoretical
predictions that the spin-compensated state is being
inhibited by the interaction W is strikingly demon-
strated by the experiments of Dreyfus et al. ,

' who
measured the magnetic susceptibility of Cu-Fe,
Cu-Mn, and Au-Fe. These results show that for
Cu-Mn, which has presumably a very low Kondo
temperature (about 0. 05 'K or less), the magnetic
susceptibility at low concentrations is approxi-
mately independent of the impurity concentration, in
agreement with the theoretical predictions of ef-
fective-field theories "without considering the
Kondo effect. For Au-Fe, where according to
Kitchens, T~ is of the order of 1-2 'K, the sus-
ceptibility is again independent of the impurity
concentration down to about c-0.1%. When one re-
duces the concentration even further, the average
impurity-impurity interaction becomes less than
the Kondo temperature, and spin-compensation ef-
fects reduce the magnetic susceptibility. This re-
duction is inhibited for concentration greater than
0. 1% for Au-Fe. Thus one may qualitatively esti-
mate that for Au-Fe, the parameter & defined by
Eq. (3.4) of Ref. 11 is of the order To» at c-0. 1/o,
where g is the temperature-dependent width of the
probability distribution of the internal fields. This
would give a Kondo temperature of the order g,
which is of the order of 2 'K if one uses the rela-
tion given for ~ derived from the susceptibility
maximum T,„of Table I, of Ref. 11, i. e. , ~
=2. 5T,„. The continuous rise of the susceptibility
for Cu-Fe in the data of Dreyfus et a/. is prob-
ably caused by a ferromagnetic coupling between
the iron impurities at higher concentrations.

It is also expected that the impurity-impurity in-
teraction will inhibit the spin-compensated con-
duction-electron-spin polarization as measured by
a nuclear-magnetic- resonance experiment. This
should, at least in some cases, show up in NMR
experiments in dilute alloys.

V. CALCULATION OF PHYSICAL QUANTITIES:
HIGH-TEMPERATURE OR LARGE-W' LIMIT

In this section, we calculate some physical quan-
tities for the two-impurity system for the cases
where either the effective impurity-impurity inter-
action. W' is much greater than the single-impurity
Kondo temperature T~ or the temperature of the
solid is much greater than T~. For both of the

above cases, the logarithmic variation of the phys-
ical quantities is small. The relationship

Jp T +W'
(5. 1)

holds for any T whenever S"'» T~ and for any
W' whenever T» T~.

A Conduction-Electron-Spin Polarization

The behavior of the conduction-electron-spin
polarization around site 0 can be investigated by
calculating the quantity

f (r) g mo e((k-k') 8
kk'

x[S(S+1)+&S, S,&
e"""-"'"] (5.4)

J J
g (r)=- —P, (r)S(S+I)-—P,(~r-R~)&So S ),

where

( ),g f(~„)-f(e,. —N")
nI' &~ '4' + W

(5. 5)

f(&k)-f(&k +Ii") ((k k'& k

q —g ~
—W

Since W' «e~, we may approximate Eqs. (5. 4) and
(5. 5) by

0 f ek f ek' (S(S+1)+ &S . S ) ((k~ - &7)' lf]
N

(5. 7)
Thus

P(r) = ——P(r) S(S+1) ——P(~ r —R
~

) (S, S,),
(5. S)

where

( ) g f(» )-f(» ~ ) ((k k &. „-
(5.9)

is the oscillatory part of the RKKY potentia. l.
Equations (5. 5) and (5. 8) thus show how the con-

= —4 Z f [Iml', , e''" " '']f((o)d(o,
(5. 2)

where y is the distance measured from site 0. We
examine Eq. (5. 2) in the limits given by Eq. (5. 1).
In this limit nz„., as well as terms of order J2, are
neglected from Eq. (3. 29); hence

p J 1
47/+ ((o ek) ((o ck + Ii )

)([S(S+I)+&S, S,&e""' "'"].. (5. 3)

Using Eq. (5. 3) in Eq. (2. 15) gives

a & f(r ) f(a. )(") f(e, )-f(c"—+))")I-
2N W +q~ —q& &„—q~. —W
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duction-electron-spin polarization is modified by
the BKKY interactions in the high-temperature or
large- W limit.

I Zl p (T )'+ W"

Solving for 1'~E gives

=0 . (5. 17)

w"= ,'z„{z-„,[s(s+ I)+ &s, s, )]+z'j,
where

0 f (i(-f(') R

2N qq.

= —,
' {z„s(s+1)+z„'„(s,

(5. »)

(5. 13)

B. RKKY Energy between Impurities

The indirect exchange interaction between two
impurity spins ean be obtained by isolating the
(So S, ) part of the energy given by

«'&=-2N ~{&a-a Soel. ea8)

+&a.8 S~ea can&e'" ""]
Using Eg. (5. 7) and the appropriate approximations
of Eg. (3. 24) in Eg. (5. 10) and isolating the
(So. S,) part, we obtain

)&Ng ~ 8$ &
= (~ /N )I'(t~) & So ' Sl &

= zs»& So ' Sl ) ~

(5. iS)
This expression has been obtained previously by
Bresemann and Bailyn and Blackman and Elliott, '
and is the RKKY energy between the two impuri-
ties. Equation (5. 11) shows that, starting with the
s-d Hamiltoni. an, we obtain an (So S, ) term in
energy representing the RKKY interaction. Had
we introduced such a term in the original Hamil-
tonian, we would get this term once more from the
conduction-electron polarization. This basically
exhibits the mathematical inconsistency of our
method when we let W(R) be the RKKY interaction.
However, it is physically plausible to examine the
case where W = Zs». Then from Eg. (3.5) we obtain

T =T' [i -(W'/T')']"'. (5. 18)

We give Eg. (5. 18) the following physical inter-
pretation. For I

W'
) & TE, TE becomes imaginary.

This shows that for large effective impurity-im-
purity interaction t

W'
I & TE, there is no real ef-

fective Kondo temperature; i.e. , the Kondo spin
compensation is mostly suppressed by the impuri-
ty-impurity interaction. For I

5"
I & 7.'E, the ef-

fective Kondo temperature decreases as W' increases;
hence the impurity-impurity interaction tends to in-
hibit the formation of the spin-compensated d state.

Now we can compare our result with previous
random-molecular -field calculation on the many-
impurity system. In an effective-field calculation like
the one made by Harrison and Klein, ' it was found that

lnT- —,
' ln(T'+ If' ),

where H is the effective internal field, whereas in
our ca,lcula. tion we find that

Inr- —,
' ln(T'+ W")

There are thus some important difference between
the two. The major difference is that the effective
internal field H depends on (S„) and vanishes at
high temperatures, whereas 5"3depends on
(S„S„,), and also has a temperature-independent
part at high temperatures when 8" is independent
of temperature. Thus in our case there is a possi-
ble modification of the effective Kondo temperature
even at very high temperatures.

Under the conditions given in Eqs. (5. 16) and
(5. 18), the effective Kondo temperature becomes

T, = T„'[i —(Z„„/T')']"' (5. 19)
(5. 14)

w' =
I z..l

[s(s+1)l"' (5. 16)

C. Variation of Effective Kondo Temperature

For a single-impurity system, the Kondo tern-
perature T»0 is given in Eq. (4. 13), where T»0 is ob-
tained by setting 1+ (I Jl p/N)lnT/D=O. In our
case 1nl T/D[ becomes replaced by —,

' In[(T + W' )/
LP I. This suggests that in the presence of an inter-
action 8', we define an effective Kondo tempera-
ture T~~ by the relation

Substituting Eg (5. 13) i.nto (5. 12) gives

w"=z,' s(s+i)+-,'(s, s, )z„{z,„+-,'z,',] .
(5. 15)

This expression of 8" wil) be useful in discussing
qualitatively the variation of the effective Kondo
temperature in the presence of the RKKY interac-
tion. Note that when the impurities are widely sepa-
rated and (So S&& «S(s+ 1), we may approximate W' by

when the impurity spins interact via the RKKY in-
te, action. We may generalize Eg. (5. 19) to a sys-
tem of finite concentration of impurity spins by
assuming EBE to be a concentration-dependent ran-
dom variable. Thus one expects that at higher
concentrations the logarithmic variation of Kondo-
like effect will be suppressed. Such a detailed ex-
amination will be given elsewhere.

Note added in proof. Throughout this paper it is
assumed that the impurity concentration is suffi-
ciently low and the impurity-impurity interaction is
sufficiently weak that the single-impurity treatment
is still a good starting approximation to the prob-
lem. Thus, the thermal averages of S

&
are re-

placed by S(s+ 1). This assumes that on the aver-
age, only a weak coupling exists between the im-
purities. This physical approximation distinguishes
our approach from that of K. Matho and M. T.
Heal-Monod [Phys. Rev. B 5, 1899 (1972)]who put
the treatmentof the two impurities on equal footing.
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APPENDIX A: EQUATION OF MOTION OF Ui,k

In this appendix, we decouple the Green's functions entering in the equation of motion of U», . From Eq.
(2. 12) we have

(cu —e„, )U„, = "' z(o (gxs, )& — Z (o, (S,xs, )(s,+S, e"" ' '") ossc, sl c',I)

~ &(o»xso)' (o sxsz)os~os sos slcs &+4 ~ &(o s "ss) (&~sxsz)os~os scs sic» &e'" ""
4~ . V' of Pg of 4~ of

+s If &[(ssxs, ) (o,sxs, )+(o sxss) ~ (ssxsz)]cs sl csn& (Al)

We denote the first, second, third, fourth, fifth,
and sixth terms on the right-hand side of Eq. (Al)
by U&, U„U3, U4, U&, and U&, respectively.

Then

U, =
& o.. (S,x S,) &

= 0 .
After summing over the index p we obtain

(A2)

U, = — Z ( (S, S,) c,, „l
c',.) {1—e""'- "'

) + Z ( [(S, S,) (o., S,) —(S, S,) (o„, S,)] c, , l c,.)

—,—-~([(S, S,)(o.s S,)-(S,. S,)(o.s S,)1;,lc,.&""'-' '. (AS)
yl

In obtaining Eq. (AS), we have used the follow-
ing identities:

Z(o~s S„)(oss Se) —6»s„se+za«s„xs»
(A4a)

(Ax B) (CxD) = (A C) (B D) —(B. C) (A D),
(A4b)

We may decouple the first, second, and third terms
on the right-hand side of Eq. (AS) as follows. Let
U2

=—U2+Ua+U» then

Us= —
2 &Ss S, ) G„+—&Ss' Sz& e'" '

Gs,
(A5)

U,'= Z Z &(S',S~~,S', -S', S',o'„,S',)c,,, l
c',.)

&sf

2 Z &(sssso, 8z —stszo s ss)cs. sl c„),
(As)

where i, j= x, y, e. The second part of Eqs. (A6) was
obtained by noting that for z= j, U~=O. When i4j
we obtain

Z (s's' os ~cl c)= —(s ' s )(o, ' sc., lc )
jA j:

(A7a)

Z&s', s', '., s'. ..l
',.&=-', &s, s, )& ., s. ..l

',.&
iI' 2

(AVb)

Equations (AVa) and (A7b) are the only two surviv-
ing terms of U~; the others vanish because for
z4 j; &Sts~o) =0~ (o' s S~ocs'sl cs ) =0, and (S, ) =0.
Combining Eqs. (AVa. ) and (A7b) gives

U,' = —[(s, s, ) I,' —(s, s, ) r,'] . (AS)

Similarly, we have

U', =- -[&S, S,&r~-&S, S,)r~]e""a
(A9)

Using Eqs. (A5), (A8), and (A9) in Eq. (AS) gives

U, = —
2 &Ss S, ) [Gs —Gse'" '

]

+—S(S+1)[I,'- r„e'" ' ~]

+ — (S, S, ) [I","e'"' —I",'], (A10)

where (Ss ~ Ss) = (S, S, ) =S(8+1). Using Eq.
(A4b) in the expressions for U, and Us and decou-
pling gives

U, =-,' w[s(s+1)r,'„, —(s, . S,&I,',, ],
U, =-', w[(s, s, )r,',, —s(s+1)r,',.] .

(All)

(A12)

Combining Eqs. (All) and (A12) gives

U +U = —', W[S(S+1)+&S . S,)][rs,, rz, ] .
(A1S )

Next we decouple the four-particle Green's func-
tions U3 and U4. We use the method of cumulant
expansions, which will be described in detail in
what follows. (For a discussion of the cumulant
expansion, the reader may refer to Kubo33 and
Brout and Carruthers. s

) The cumulant expansion
of a correlation function which involves six quan-
tum-mechanical operators &xs &, is given by
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(x ), = (x ) —6(x) (x') —15 (x ) (x ) —10 (x ) (x )

+30 (x)'(x') +120 (x) (x') (x')

+30(x ) —270 (x) (x ) —120(x) (x )

+360(x) (x ) —120(x), (A14)

where (x"), and (x") denote the cumulant and ther-
mal averages of the n-operator correlation func-
tion, respectively. Let

&x ) = —&(oys~so)' (c'ao~s1)cp„cp.pc» Bl c,~) .
(A15)

We assume that the cumulant average of the six-

operator Green's function U3 vanishes; thus

(x ) = 15 (x ) (x )+10 (x ) (x ) —2x15 (x )
(A16)

Equation (A16) is obtained by letting the right-hand
side of Eq. (A14) be zero. Note that all the terms
which contain (x) have been omitted, since (x) =0,
where (x) is any one of the operators x, =S„x,
=S&, x3=c~ „x4=c~,, xq=c~.&, and xs=c, . The
numbers 15 and 10 in Eq. (A16) represent the pos-
sible ways to factor the decoupled terms, while 2
is a coefficient arising from the expansion. Using
Eq. (A16), the nonvanishing terms in our expansion
are

) (X1X2XS 4X5XB) [(X1xs & & X3X4X5 B&+ (X3X5 & (X1XBX4 5 &+ ( 4XB& &X1X2XBX5 &]

+ [(x,xsx4 ) (xsx,xs) + (xsxsx4 ) (x,x,xo) + (x,x3x5 ) (xsx4xs) + (xsxsxs) ( x1x4xs)] —2 ( x»2 ) (xsxs ) ( 4 5)
(A17)

As seen from Eq. (A17) only 3 of the 15 (x ) (x4)
terms, and 4 of the 10 (x ) (x ) terms, and 1 of the
15 (x )3 terms survive. Equation (A17) is subject
to a certain constraint; for example,

(X1xs) (SoS1)61( (So S1) (A17a)

&x,x, &= &c,'„c„,&5„, =2@„, , (A1Vb)

(A17c)

(x1x,x4) = (Spcp', cp. , ) =-,' mpp, , (A17d)

(x,x,x, ) =(S,c„, c'„, ) =-', r,', , , (A17e)

I to„o o„p cp„cp sc».s I c»~) = —6g» G„p. ,

(s s1c ~
l c„)= 2(s ~ s ) G~

(A26)

Summing Eqs. (A18)-(A25) using Eqs. (A26) and
(A27) gives

J J J
Us = (So ' S1& n»' G»+4 u»' G» 2

n»' U»

To express Eq. (Al) in terms of n, G, m, I',
and u, U, we further decouple Eq. (A18) and the
first terms of (A19) and (A20) to give

etc. Using the conditions in (A1Va)-(A1Ve), etc. ,
we have

(X1X2 ) ( X3X4XBXB )
Similarly

0 i J i o J ~ ~ o
m~, ~~+ -

m~~

(A28)

(sp s1) ((T&5 0'15'&cpr sc»»is l c»& ) p (A18)

(xsxs)(x1xsx4xs) =2n „, (so 81cp l c» ) 2n». U&. ,
(A19)

(x4xo) (x1xsxsxs ) = 2(Sp ' S1cp1c»i1, ) G»pp +u»pt 1 (A20)

—2(x1xs) (xsxs) (x4xo) = —8(Sp S, ) np», G»p, ,
(A21)

(x,x3x4) (x,xsx, ) =-', [mpp. I'»'». —mpp, I'»», ]= 0, (A22)

z J-z z J z
U4 = ——(So S1)n». G„+4 u». G„—

2
n». U»

N

+ ~OR )j' ~ R+ oR l 1R gg' R
3X "' ' '

- 3X

Let

&xsxsx4) & x»sxs &
=

3 mpp ~ I'»~1 0

(x1X3X5) (xsx4xs) = —
3 mp» I'»p ~

0

4 1 0(x,x,x, ) (x,x4x, ) = —3-mp», 1'»p. .

(A23)

(A24)

(A25)

Z~ — Y. & Y. o &(I&-y')' R (A30)

Substituting Eqs. (A2), (A10), (A13), (A28), and
(A29) into Eq. (Al) gives Eq. (2. 25).

APPENDIX B: EVALUATION OF U» AND Uf

In this appendix we evaluate the Green's function U» by summing Eq. (2. 25) over k . This appendix
clearly shows that all correlation functions, which without the interaction S'would be dependent upon &,
become now dependent on e + W'. Summing Eq. (2. 25) over k' gives

U„=J(S S, ) [G(P1)G„—G"(P1)G„]+—,
' J[1 (P1)I'„"—I'(4o)I' ]——gg(P1)U +g" (tu)U ]
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where

&2

--,' J[i(~)r„'-r (~)rp]+-,' J[v(~)O, + U'(~)cf]+ Z[r„',, —r„',.)(~- e,, )-', (Bl)

C"(x)=~ 'Z[d,'--'e'"'](x-e )
' (B2a)

g(x) = O(x)+-,'Z(x), g'(x) = O'(x)+-', &'(x),

r (x)=X-'2[m, -S(S+1)]e'" "(x-e,)-',

(B2b)

(B2c)

v(x) = x 'Zu»(x —&») ', v" (x) = x ' Zu'(x —e») ', (B2d)

fk ~ R
f'(x)=N '2[m„+(S ~ S, )](x—&,), r (x)=N '2[m„'+(S, S,)]

'

It is useful to point out here that for nonzero W' in Eq. (Bl), only the terms g(+) and g"(co) diverge
logarithmically in the limit as T -0. We will, however, find that when the values of r»», given in Eq. (3.8)
are substituted into Eq. (Bl), all the terms which go like g(~) or g (&g) cancel out. Thus we will be left
only with terms which depend on ~+ 5".

We evaluate the quantity g„(~—e». ) 'I",,. in Eq. (Bl). Using Eq. (3.3), we obtain

Zr„», (~ &», )- =—Z [(~ &», ) W' ]- f—', [m„, S(S+1)]G»-[n», ——', ]r» —,'(So Sq) e
' G"„-'e' ""U»].

Substituting Eq. (3. 11b) and the relationship

+~ ~ &»'(e; ) (~ —e» )
' [(~- e» )' - W "] ' . (B3)

ke i

2 S 1
(~ —e» ) '[(~-e» ) —W ] -2W, » [(~ —e» —W') '+(~-e» +W') ' —2(~ —e». ) ']

into the right-hand side of Eq. (B3) and summing over k gives

Z r,'„,(~ —~„,)-'=, (-,' [r(~ —w') —r(~+ w')] o„--,'[o(~ —w') —o(~+ w')] r,'

--,'[z'(~- w')-z'(~+ w')][(s, s, ) o", + vf]]

+,2 f(so Sg) [G((u+ W') —G((u)]G» —(So' Sg) [G"((ua W') —G ((u)] G»

+-,'[r"(~~ w')-r (~)]r, --,'[r(~+ w')-r(~)]r„'--', [g(~~ w')-g(~)] v,
--,' [g"((u+ W') -g"((u)]os»+-,'[u((u ~ W')+u((u)] O, +-," [u ((u+ W') -u" ((u)] Of

--,'[r(~+ w')-r (~)]r„'+-', [r'(~+ w') -r"(&)]r, ]
--,' Zr,',, [((u —e„, +W') '+((u- &„—W') ' —2((u —s ~ ) '] . (B5)

Note that all the terms which have a coefficient J/W' in Eq. (85) vanish as &u-0 from the expression given
in Eq. (3.12). Substituting Eq. (85) into Eq. (Bl) gives

U„=J(S S ) [G(v+ W')G —G"(v+ W')G"]+ —', J[I' (u+ W')I'„—r(a&+ W')1' ]
——,

' J[r(a&+ W')I'» —1 (&u+ W')I'» ] —
» J[g(co+ W')U»+g (&u+ W')U»]

/2
+-,' J[u(~+ w')c, +u'(~+ w')o", ] — Z r',„,(~ —&,. ~ w')-'.kk'

The modified equation of motion of U~ can be evaluated in a similar fashion. %e have

U» = J(S»' S, ) [G"(co+ W')G» —G(~+ W')G"„]+—,
' J[r(co+ W')r» —I' (~+ W')1»]

- -,' J[f"(&~ w')r „'-r(~+ w')r, ]- -,' J[g'(~+ w') v, +g(~ ~ w') v,"]

(as)

——,
' J [u"(u+ W')G»+u(a&+ W')G„]- 8'
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Beg(0+ W') = HeG(0+ W')

p ~T +W'
2N I D

(B8)

Reg" (0+ W') = ReG(0+ W')

It can further be shown that the last expressions
on the right-hand side of Eqs. (B6) and (B7) are of
higher orders and have no logarithmic divergency,
and hence can be neglected.

Next, we examine the contributions of U"„and
U e''"'" to I"„„.and I' O''" " '". The leading
logarithmically divergent terms in Eqs. (B6) and

(BV) are

p sining T +W'
=

2N k.R
'" D'

(B9)
where Re denotes the real part, and Eq. (B9) has
been discussed by Gavan and Doman36 for 1 «jp~p
«2e~/~T. Using Eqs. (BB) and (B9) and noting
that e''" ' "= sin(kzR)/kzR when averaged over all
angles of k 8 near the Fermi surface, we find
tha.t the contributions of U„a.nd U~e'"' to I',~.
and I",~. e'+ " '" have the form IJpsin(A~R)/NA~R]
x (the difference of two logarithmic contributions).
This justifies the approximation made by Black-
man and Elliott, ' who neglected the contributions
of the transverse Green's functions U, and U~.
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