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The dispersion of surface-plasma oscillations is calculated analytically, using the Bloch
hydrodynamic model for an electron gas and solving Marvell's equations in the absence of re-
tardation effects. This study is based on an approximation for a constitutive relation which
provides a useful alternative to previous model descriptions of the surface. It is found that
at long wavelengths the surface-plasmon dispersion relation includes a term which is linear
in the momentum parallel to the surface and which is half as large as in the case of a study
for specular reflection. In contrast to hydrodynamic treatments for specular reflection, the
present one leads to an appreciable Landau damping of the surface-plasma oscillations. The
magnitude of this Landau damping is roughly consistent with the results of a recent numerical
study of plasmons for a more realistic model of the surface. Also discussed in some detail
are the charge-density fluctuations associated with the surface plasmon, and a useful rela-
tion is established between the amplitudes of bulk- and surface-charge oscillations. In an ap-
pendix it is shown that when the imaginary part of the hydrodynamic dielectric function is
neglected, one is led to surface modes which are quite different from the usual surface plas-
mon. Finally the results for surface plasmons are compared with those which are obtained
for surface phonons in a metal film and the relationship between two different recent analyses
of the surface-phonon problem is discussed in some detail.

I. INTRODUCTION

The dependence of the surface-plasmon frequen-
cy on the momentum parallel to the surface of a
semi-infinite electron gas is potentially interest-
ing, because of its sensitivity to the details of the
electronic properties of the surface. Although ex-
perimental data on the dispersion of surface plas-
mons are scarce, many theoretical studies of this
effect have appeared in recent years. ~ ~

The models which have been used in detailed
analyses do not differ significantly as far as the
description of the surface is concerned. Both in
classical or semiclassical and in fully quantum-
mechanical treatments, the surface is usually
idealized as a perfectly reflecting well-defined
boundary, from which the electrons are scattered
specularly. In the classical and quasiclassical
theories, the unperturbed electron density is as-
sumed to be constant in the occupied space right
up to the surface, at which it falls off abruptly to
zero. The additional assumption-namely, that in
the presence of an induced density fluctuation, all
the particles which strike the surface are reflected
specularly —then enters as a boundary condition for
the perturbed electron distribution function. In
first-principle quantum-mechanical treatments, the

condition of specular reflection is automatically
incorporated by describing the surface by means
of an infinite potential step which terminates the
unperturbed potential of the bulk. In this model
the equilibrium electron density may vary bec'ause
of quantum-mechanical interference between in-
coming and reflected particle waves. Both the
quasiclassical and quantum-mechanical treatments
may be referred to as "sharp-surface models" in
the sense that, in both cases, the perturbed elec-
tron density is forced to vanish outside a suitably
placed effective surface.

Recently, however, Bennett'3 and Beck and
Celli~4 have presented two different numerical cal-
culations of the surface-plasmon dispersion rela-
tion which go beyond the simple sharp-surface
model. Bennett~s treats a surface where the elec-
tron density falls off to zero from its bulk value
over a finite width in the surface region, using the
hydrodynamic model for the electron gas. The
quantum-mechanical calculation of Beck and Celli 4

starts out from an appropriate finite-step surface
potential, to which the electrons are allowed to ad-
just self-consistently in an approximate way. The
results of these recent studies differ strongly from
those of the earlier calculations 4 and are in
much closer agreement with the available data, as
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obtained from fast electron transmission experi-
ments~~'~6 and from an analysis of inelastic-low- en-
ergy-electron-diffraction (Il EED) measurements. '7

It is well-known that, like bulk ylasmons, the
surface plasmon is not a true eigenmode oscillation
of an electron gas, even in the absence of any dis-
sipative effects (e.g. , collision damping). A bulk
plasmon of appropriate wavelength may decay by
exciting electron-hole pairs in the single-particle
continuum. This leads to an imaginary part in the
frequency of the plasmon, which is known as I.an-
dau damping. Unlike for bulk plasmons, the Lan-
dau damping of surface plasmons is not severely
restricted by momentum conservation, because
the density fluctuation associated with such a mode
incorporates all Fourier components in the direc-
tion perpendicular to the surface. Therefore Lan-
dau damping of a surface plasmon is usually ex-
pected to exist for all wavelengths. The various
theories of surface plasmons do not agree concern-
ing the magnitude of the Landau damping, but we
note that the self-consistent calculation of Beck
and Celli~4 leads to a much larger damying than is
found in most of the previous sharp-surface treat-
ments.

In this paper surface plasmons are studied, us-
ing the Bloch hydrodynamic model for the electron
gas and assuming a sharp surface in the sense
discussed above. This model was first applied to
surface plasmons by Ritchie and has subsequently
been used and discussed by several authors.
%e recall that these studies assume a uniform
equilibrium electron density in the metal and
specular reflection (or equivalent boundary condi-
tions) on an infinite potential barrier at the sur-
face. These assumptions are rather unrealistic,
since the actual equilibrium density does not have
the form of an abrupt step, and the potential bar-
rier at the surface is not infinite (being of the or-
der of the Fermi energy plus the work function).
Our starting point is a simple approximation for
the constitutive relation which enters in the study
of Maxw ell's equations. This constitutive relation
is formally similar to one derived in a treatment
of the anomalous skin effect~~ for diffuse reflection
at the surface. However, from the evidence given
in Sec. II, it is unlikely to describe diffuse reflec-
tion in the present case, although no detailed proof
for this does exist. Our approximation consists
in replacing the dielectric kernel in the general
constitutive relation by its asymptotic expression
in the bulk region, in a similar spirit as the equi-
librium density profile is replaced by the bulk
electron density in previous hydrodynamic stud-
ies. ~ An approximation on the equilibrium
density profile is avoided in the present case. The
results of the present and of the earlier hydrody-
namic studies will complement each other in the

sense that they are typical for models where an
inhomogeneous quantity of interest is replaced by
its analog in a bulk system. In the following I
shall refer to the previous hydrodynamic treatment
as the case of specular reflection (as is customary)
and to the new treatment as a dielectric approxi-
mation (DA).

Although in some respects the results based on
the sharp-surface hydrodynamic model are super-
seded by self-consistent calculations using finite-
step surface potentials, I feel that it is appropriate
to give a complete discussion for the case of the
DA before passing on to finite barrier models. In-
deed, this study leads to much more insight than
the calculation for specular reflection, ' into the
basic qualitative features that can be expected of
surface plasmons in metals. This is particularly
evident from the fact that in the hydrodynamic
treatment for the DA, unlike for specular reflec-
tion, one finds a Landau damping as is generally
expected for surface plasmons. In the hydrody-
namic model the Landau damping corresponds to
the decay of a surface plasmon into excitations
which are transverse soundlike modes, rather than
electron-hole pairs. Note that in the work of Ben-
nett~3 the possibility of Landau damping has not
been considered, although it may be small in this
case. Finally, we expect the analytical results to
be useful for the comparison with numerical studies
of the surface-plasmon dispersion relation of the
type mentioned above.

The paper is divided up as follows: In Sec. 0,
I discuss the hydrodynamic model and use Max-
well's equations to formulate the dielectric re-
sponse problem for the determination of the sur-
face-plasmon dispersion relation. For clarity's
sake and in order to illustrate the striking differ-
ences between the results for the DA and for specu-
lar reflection, I shall discuss both cases in paral-
lel. In Sec. III, I present the detailed calculation
of the surface-plasmon frequency and of the Landau
damping, and also discuss the charge-density
fluctuations associated with the surface-plasmon
mode. These results are strongly dependent not
only on the real. part, but also on the imaginary
part of the hydrodynamic dielectric function. In
Appendix A the rather different surface-plasmon
modes which are obtained when the dielectric func-
tion is approximated by its real part are studied,
whereby, in particular, the possibility of Landau
damping is neglected. In Sec. IV, I compare my
results with earlier calculations and with experi-
ment, as well as with the results for surface pho-
nons in a metal film. A more detailed analysis of
the similarities and differences between the results
for surface ylasmons and surface phonons and be-
tween two different recent studies of the surface-
phonon problem is given in Appendix B.
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II. MODEL AND DIELECTRIC RESPONSE FORMULATION

As discussed in Sec. I, I use the hydrodynamic
model for the dielectric response of a homogeneous
electron gas (i.e. , with no surface effects pres-
ent), which is moving in a uniform background of
positive ionic charge. The bulk dielectric function
at frequency «and wave vector P is then given by

where «~ is the free-electron plasma frequency
and the constant P is defined by

P =
5 v~F (vz = Fermi velocity);

a value which is obtained by requiring the bulk
plasmon dispersion relation, «(k, &o) = 0, to agree
with the random-phase-approximation (RPA} result
for an infinite electron gas. The imaginary term
in the denominator of Eq. (1) represents an effec-
tive collision damping. In the framework of a
sharp-surface model, the response of a bounded
system to an external perturbation is specified
completely by a constitutive relation, which is
eventually expressed in terms of the bulk dielec-
tric function.

In the present analysis of surface plasmons I
consider a metal half-space confined to the region
z & 0 and bounded by vacuum for z & 0. The use of
a half-space rather than a film geometry is suffi-
cient as long as one is not interested in the cou-
pling between pla. smons loca.lized at different sur-
faces in space, which ~s important for very thin
films. The study of surface plasmons then pro-
ceeds in two steps. One first solves Maxwell's
equations to determine the induced fields inside
and outside the metal surface. Next, one matches
the appropriate field components on the surface at
z =0, which leads to an implicit dispersion rela-
tion for surface-plasmon modes. I shall use the
electrostatic approximation and put c= ~, which
restricts the validity of my results, typically, to
wave vectors k&&u„/c=0.005k~. In the absence
of any external charge distribution, Maxwell's
equations then reduce to V && E(r, t) =0 and
V ~ D(r, t) = 0 (Poisson's equation), where E(r, t)
and D(r, t} denote the electric and displacement
fields at r, t, respectively. Because of transla-
tional invariance parallel to the surface, it is con-
venient to Fourier analyze the various fields F(r, t)
with respect to v=. (x, y) and t. Two-dimensional
wave vectors parallel to the surface are denoted
by k„and we use the notation F(z, k„,~) —= [F„(z),
E,(z)] for the Fourier components parallel and

perpendicular to the surfaces as well a,s E„(z)
= F„(z)~ k„/k„„Thereal components of the fields
at wave vector '„and frequency «are defined by

The more familiar expression which relates the
current density j (z, k„,(d) at the point z to the elec-
tric field at points z'z' is obtained from Eq. (4) by
using the well-known definition of D(z, kp p (d) In
the case of a homogeneous infinite system, the in-
tegration in Eq. (4) would extend from —~ to ~
and the kernel «(z, z', k„,~) would be just the
Fourier transform in z space of the bulk dielectric
constant, which is only a function of z —z'. %hen
surfaces are present, this kernel is inhomogeneous
and its precise form as a function of both z and z'
is not known. However, it reduces asymptotically
to the bulk dielectric constant for z and z' far
away from the surface.

The constitutive relation (4) takes a simple form
if the true equilibrium density profile is replaced
by the bulk electron density up to a sharp surface
and if electrons are assumed to be reflected specu-
larly at the surface. By means of a simple phe-
nomenological argument, 3 one finds in this case

D„(z)= J dz'[«(z —z', k„,~)

+ «(z+ z', k, , (d )]E„(z'), (5a)

D, (z) = J dz' [«(z —z', k„,(d)

—«(z+ z', k„,(d)] E,(z'), z & 0 (5b)

where «(z, k„,(d) = «(l zl, k„,(d) is the Fourier
transform with respect to 4, of the bulk dielectric
function. It is seen that the kernels in Eqs. (5) do
not reduce to the correct form, «(z —z', k„,~~) for
z and z' far away from the surface.

This difficulty is avoided in the new DA intro-
duced in Sec. I, where one replaces «(z, z', k„,~)
everywhere by its asymptotic expression in the
bulk region:

D(z, k„,(d) = J dz' «(z —z', k„,(d)E(z', k„,(d),

z&0 . (6)
Note, incidentally, that the effective surfaces in
Eqs. (5a), (5b), and (6) lie generally at different
positions than the true surface in Eq. (4), which
divides the vacuum region from the region where
the electron density in the nonuniform system is
different from zero.

Although. it has been stated that Eq. (6) is asso-
ciated with diffuse reflection of electrons at the
surface, 22 it appears that this assertion is largely
unfounded. The existence of such a connection
was inferred from the formal analogy between Eq.
(6) and a constitutive relation for diffuse reflec-

F(r, t; k„,M ) = F(z, k„,(g)e'" ' " ""+c.c.

The constitutive relation is of the general form

D(z, k„,(d) = f "dz'«(z, z', k„,(g)E(z', k„,~),
0

z&0 . (4)
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tion derived in a treatment of the anomalous skin
effect. 2~ However, note that in the anomalous skin
effect~~ one is dealing with noninteracting electrons
and a kernel which does not depend on Q)) p whereas
in the present problem bot the electron interactions
and the dependence of e(z, k„,~) on k„play a cen-
tral role. Furthermore, while in the discussion of
the anomalous skin effect, the equilibrium electron
density is assumed to be constant everywhere, this
assumption is not implicit in the use of approxirna-
tion (6). For these reasons, the existence of any
precise connection between Eq. (6) and the assump-
tion of diffuse surface scattering is rather improb-
able. Incidentally, note that the mentioned consti-
tutive relation of Ref. 21 cannot describe diffuse
reflection exactly, since, as is well known, it is
based on a formulation of a diffuse condition which
does not conserve particles.

As discussed in Sec. I, the constitutive rela-
tions (5a), (5b), and (6) should be regarded as be-
longing to a class of approximations where an in-
homogeneous quantity [of whi. ch the equilibrium
electron density ~(z, k„)and the dielectric kernel
e(z, z', k„,~) are typical examples] is replaced
by its analog in the bulk region. The assumption
of specular reflection which leads to Eqs. (5) cor-
responds then to the additional approximation of
placing an infinite potential barrier at the surface.
This is a general characterization of the difference
between the two methods, whereas, for example,
a distinction in terms of surface-scattering mech-
anisms would hinge on the uniform static density
approximation. " As seen from Eqs. (5) and (6)
the two methods are equivalent in the case where
the dielectric constant is local, (.(k, &u)

—= e((d). In
such a, case, one is therefore describing a system
where both the equilibrium electron density and the
dielectric kernel are replaced by bulk values.

Due to the phenomenological nature of the pres-
ent treatment, the density fluctuation associated
with the surface plasmon is expected to include
both surface- and bulk-charge contributions. In
addition to being well-known in elementary elec-
trostatics, 4 surface charges are quite familiar in
the context of surface collective modes. The sur-
face plasmon which is found when the electron gas
is described by a local dielectric constant ' and
the phonons in metal films discussed in Appendix
B are two kinds of elementary excitations where
surface charge is involved in the induced density
fluctuation. On the other hand, the surface plas-
mon obtained in a nonlocal treatment for specular

I

n' = n(1 + fM/2~n'), n = (~' P'k-, ', )"' .
For real «~, Eq. (7) has the property

~(l el, k„,—~) = ~~(l el, k„,&),

(6)

which guarantees that the displacement field which
corresponds to the real electric field components
of the form (3) is real. Also note that Eq. (I) is
rather sensitive to the analytic structure of Eq. (1)
at large k, where, of course, hydrodynamics
ceases to be a good approximation. Therefore the
calculations using this form for &(I z I, k„,(g)
should, in principle, be regarded as model calcu-
lations based on a long-wavelength approximation
for the dielectric function. The same general re-
mark also applies, of course, to the use of Eq.
(1) in the Bitehie-Marusak expression for the sur-
face-plasrnon dispersion relation for specular re-
flection. ' Nevertheless, it is known that in this
ease the use of Eq. (1) leads to results which are
identical to the earlier results of Ritchie, based
on purely hydrodynamic arguments. In addition,
these results are surprisingly close, for small 4,
to those which are obtained with much more rigor-
ous dielectric functions. s'4 Thus for our purpose
the approximation involved in using Eq. (1) does
not seem to be too restrictive.

In order to display in detail the differences be-
tween the results for the DA and for specular reflec-
tion, I shall discuss both cases, using the same
general method. Recall that the specula. r case is
usually discussed by a different procedure, based
on Fourier transformation with respect to all
spatial coordinates. By combining Maxwell's
equations, using Eqs. (5a.), (5b), (6), and (V), one
is led to the following coupled equations for E„(s)
and Z, (z) in the occupied half-space (~ & 0):

reflection does not involve any surface-charge
fluctuation, which indicates that this case is an
exception in the framework of phenomenological
treatments. Indeed, the condition of specular re-
flection prevents any accumulation of charge on
the surface.

%'e now proceed to write the electrodynamic wave
equation for the component Z„(g)of the electric
field in the region occupied by the system. For
the case rq & P k„,the Fourier transform of Eq.
(1) is given by

e(l ~I, k)(, (d) = ~(~)+ f(&p/2Pn') sgnv &"" ' "
(I)

where, to linear order in 7 ~,

d &
",
' —k,', Z„(~)=f',"'„",k„~ d~'[G(~, .')+G(~, -")]E„(s')

- (G /(«) ' S«'(G(«, «')se (« —'«') —G(«, —«')] Z, («')I (spec«1«c case)
U 0

(1O)
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2 r+ 00

0

+(n'/p)
0

dz' G(z, z')sg (z —z')Z, (z')I (DA case),

( )
1 dE„(z)E, z

where

r = (1/P) (~,' n")"—' . (14)

The solution of Eq. (13), which is bounded for
g~ oo iS

E„(z)=a'e""+b'e "* (15)

where a' and b' are integration constants whose
values are fixed by the external charge distribu-
tion by which the system is perturbed. Since E„(z)
includes only exponentially decaying terms, one
may simplify Eqs. (10) and (11) by means of par-
tial integrations, using Eq. (12). This yields the
electrodynamic wave equations

Eg(z) z (d 2(g)p z n
d z — k))+H E))(z)-2 n. k() + z

where

G(z zz) e( (()' /()) lg- g' I

These equations, which look rather complicated,
may be readily converted into a much simpler dif-
ferential equation. Indeed, by differentiating Eqs.
(10) and (11) twice and eliminating the integral
terms, we obtain for both cases

d E 2
—(k„+y) " +k„rE„(z}=0, (13)

of the form (15) must only depend on one arbitrary
constant. A relation between a' and 5' is obtained
by substituting Eq. (15) into Eqs. (16) and (1V),
respectively. This leads, in each case, to the
condition that a certain expression which depends
on z only through a proportionality factor e""
must be zero for all z, which requires the coeffi-
cient of this factor to vanish. In this way one ob-
tains

(specular case),
kii Q)p

(16)

I1+i, (DA case) . (19)r+ i(n'/p
II

III. SURFACE-PLASMON DISPERSION RELATION AND
DENSITY FLUCTUATION

D, (z) =i z",z/~
a'e "'i* (specular case)

il

and

The boundary conditions from which the disper-
sion relation for surface modes is obtained are
that E„(z,k„,(d) and D, (z, k„,~) must be continuous
across the surface x=0. These conditions are a
direct consequence of Maxwell's equations as writ-
ten in the form of dD, (z)/dz+ ik„D„(z)= 0 (poisson's
equation) and of Eq. (12). The explicit expressions
of D,(z) are obtained from Eqs. (5b), (6), (V),
(12), and (15). The results are

x dz'[G(z, z')+ G(z, —z')j E„(z')(specular case)

(16)
2 2 I2

5 (0' /g)z + &+0 2Eg(0 ) +2 nz ki)+ pa

2

D, (z) = i, "
zz/~

a'e ""'
II +

2 1 /
(d~ k„a yb

2pk„n' k„+i(n'/p) y+ i(n'/p) )

&&e""''z", z&0 (DA case) . (21)
&& dz' G(z, z')E„(z'), z &0 (DA case), (1V)

0

from which Eq. (13) may also be obtained. Here
E„(0')denotes the value of E„(z)just inside the oc-
cupied region. Note that because the fields van-
ish exponentially at large distances, all integrals
in Eqs. (10) and (11) are well-defined at the finite
k, of interest, even for 7- ~. Therefore the de-
rivation of Eqs. (16) and (1V) from Eqs. (10) and

(11) does not depend significantly on the presence
of a nonvanishing effective collision damping.

Since the linear integrodifferential equations for
Eii (z) are of second order, the complete solutions

The exponentially decreasing fields in the vacuum
region z & 0 are given by

E„(z)=a"e "'

D, (z) = —ia "e i"

(22a)

and are proportional to the arbitrary constant a".
First, consider the specular case. The match-

ing of Eqs. (15) and (20) to Eqs. (22) at z=0 yields
a pair of linear homogeneous equations between a',
b', and a", which must be solved together with
(18). Thus the determinant n of the coefficients
in these equations must vanish. This is, of
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course, the condition for the existence of self-in-
duced oscillations in the system, which deter-
mines the surf a,ce-plasmon dispersion relation.
From ~ = 0 one obtains the equation

2((& /(u&, )xi —1 —k„/y= 0,
where

rj = 1+i./&u~

(23)

cop Pk&l

t&», )' (24)

and to the exact expression for the surface-plas-
mon frequency:

4p = (I/2&)) [co»+ &9k&&(2M@+ P lPn) + 8 k&&j (25)

This yields the well-known hydrodynamic disper-
sion relation, '~' including collision damping~:

1 — +
z 31' ' vpk„

v 2 (v 2)&u&, & 10&

+—" 2" +0,"
~

(specular case), (26)
20 (jgp Mp ) J

in which the dispersion correction is linear at long
wavelengths. In Eq. (26), I have neglected the lin-
ea.r effect of the collision damping on the dispersion
terms.

In the DA case the calculation is somewhat more
complicated. The condition &= 0 which deter-
mines the solution of Eq. (19) and of the equations
obtained by matching the fields in Eqs. (15) and

(21) to Eqs. (22) at z = 0 yields the implicit disper-
sion relation

x 1+ -& =0. (27

After some rearrangement of terms, using Eq.
(8), this equation may be rewritten in the more
useful general form

in the linear approximation for the collision damp-
ing effect. Combining the above relation for y/k„
with definitions (8) and (14) leads to the explicit
result

1 2e
y= —

q q-+1 —1 k'„
II

1

+I ~ ~&

(
2 P2k2)l/2 I+ && i~ 2 && 0

4)p 2(d g J 247 g
(28)

We first observe that in the limit P-0, Eq. (28)
has the solution &o =&o&, /v 2, which corresponds to
the usual surface-plasmon mode. The real part
of Eq. (28) for 7 - ~ may be readily compared with
the corresponding Eq. (23) for specular reflection.
In particular, it follows from a trivial iteration of
Eq. (28) that the linear term in the dispersion of
the surface-plasmon frequency is just half as large
in the DA case as in the specular case. Because
of the presence of the imaginary part, Eq. (28) has
only solutions for complex frequencies at finite k, .
The imaginary part of the surface plasmon fre-
quency for 7- ~ corresponds to Landau damping.
In the present case the Landau damping results
from the decay of surface-plasmon excitations into
transverse soundlike waves, which occur as poles
in the dielectric function (1). Of course, in a more
realistic treatment, based on the Lindhard dielec-
tric function, the Landau damping would be due to
the decay of the plasmons into electron-hole pair
excitations created in the single-particle spec.—

trum.
In order to find the explicit solution of Eq. (28),

we first make the approximation of neglecting the
effect of the collision damping on the dispersion
terms in the surface-plasmon frequency, in addi-
tion of treating it only to lowest order. This al-
lows us to replace g everywhere by the result of
the lowest-order iteration, namely go= 1+i(v 2)/

Next we write th'e solution in the form z
= u&&

—i+2 and introduce the qua. ntities u = ur, /v&, and
v = u&2/&u&. For the purpose of iterating Eq. (28)
with respect to the terms in k, and determining
the solution through quadratic order in Pk„/&z&,
we write u= I/v 2 + st+ u2 and t&=t&, + v2& where ut
and uz, v2 are of first snd second order in Pk„/&,&~,

respectively, whereas vi is of first order in ~ '
and in Pk„/&,&~. Finally we expand all quantities in
Eq. (28), including y and 0'& through order P k~~&/

«~2 and equate to zero the real and imaginary parts
of Eq. (28) at each order. After somewhat lengthy
but straightforward calculations, we arrive at the
following expression for the surface-plasmon fre-
quency:

&(&0) (a, ) &&0 w& HR&ay& (&0) ( . p) (w& )l (DA case), (29)

where definition (2) has been used. Note that the
quadratic term in the Landau damping is identical-

ly zero in this case. The most striking differences
between Eqs. (26) and (29) lie in the magnitude of
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the linear term in the surface-plasmon dispersion
and in the occurrence of an appreciable Landau
damping in the DA case, which is completely ab-
sent in the specular case. Detailed comparison
with other calculations and with experiment is giv-
en in Sec. IV.

From the details of the above calculation it fol-
lows that our results depend as much on the pres-
ence of the imaginary part as on that of the real
part of the function e(lz l, ktt (0). The reason for
this is simply that the imaginary part of Eq. (1),
which is nonzero only at the transverse sound-wave
poles td = tlk (r- ~), leads to nonvanishing contri-
butions at all frequencies in z space. One may,
however, inquire about the nature of the results in
the case where only the real part of Eq. (1) for
v'- ~ (Cauchy principal part) is used in the calcu-
lation. A Priori, this cannot be ruled out as a
possible limiting case, from the point of view of
the hydrodynamic equation from which Eq. (1) is
derived. However, such a calculation leads to
very different results from those obtained above,
which further illustrates the role of the imaginary
part of Eq. (1) for the derivation of a surface-plas-
mon mode of the usual type. These results, whose
study follows rather closely the one presented
above, are discussed in Appendix A.

The remaining part of this section is devoted to
the analysis of the nature of the cha.rge-density
fluctuations which are associated with the surface-
plasmon modes discussed above. The comparison
of the results for the DA and for specular reflection
from this point of view leads to additional infor-
mation regarding the physical differences between
these two cases. In the framework of a sharp-sur-
face model the total density fluctuation may in-
clude, in general, not only a bulk-charge fluctua-
tion 5pe(z, k„,&o), but also a surface-charge fluc-
tuation 5pz(z, k„,&o), which is located on the sur-
face of the bounded system. One has by definition

t)p tr:, )r„,rr)= — ' ~ tt.„)'„tr.))et*),dP, (z)

where 4zP(z) = D(z) —E(z) is the induced polariza-
tion and 8(z) is the unit step function [8(z)= 1 for
z &0 and 8(z) = 0 for z &0]. In the electrostatic ap-
proximation, Maxwell's equations then lead to

Ops=0 . (34)

The absence of a surface charge in the density
fluctuation is, of course, expected from the as-
sumption of specular reflection. Since in this case
all the particles striking the surface are scattered
back into the metal in speeular directions, there is
no net accumulation of charge on the surface.

In the DA case 5ps(z, k„,~ ),) is also of the gen-
eral form of Eq. (32), but the parameter y is now
obtained by substituting Eq. (29) in the definition
(14). Inthe considered approximation, y turns
out to be independent of the collision damping and
is given explicitly by

~P 1 . Peril
y = — 1 — —(-,' —i) + ~ ~ ~

(v2)8 V2

By comparing Eqs. (35) and (24) we see that in the
present case the real pa.rt of the linear term in
the square bracket is half as large as in Eq. (24)
and, in addition, an imaginary part appears as a
result of the Landau damping. Thus we find that
for the DA, the bulk density fluctuation, which de-
cays rapidly as one moves away from the surface,
is modulated by an additional oscillatory contribu-
tion of wavelength 4v/k . By inserting Eq. (35) into
Eq. (32) we obtain the explicit expression

2

47 ape(z, ktt r (0,) = —ik ptt
(Op

Il

This expression for the surface-charge density is
a direct consequence of Poisson's equation.

In the specular case we obtain, by inserting Eq.
(15) in Eq. (30),

4)) 5pz(z, k„,(g, ) = ik„(1—y'/k'„)b'e "*8(z), (32)

where y is given by Eq. (24) and rz, denotes the
surface-plasmon frequency [Eq. (25)]. Because of
the large magnitude of the wave vector u&~/(v 2)8,
it follows that the bulk density fluctuation is strong-
ly peaked near the surface and that its amplitude
is proportional to &o~/P k„atlong wavelengths. On
the other hand, the matching of E„(z)leads to the
relation

a"=a'+ b',
so that from Eq. (31), using Eqs. (12), (15), (18),
and (22a), we find

On the other hand, the induced surface-charge den-
sity on the plane surface at z = 0 is given by the dis-
continuity of E,(z) at z= 0 (Ref. 24):

4z5ps(z, ktt td) = [E,(0') —E,(0 )]6(z), (31)

where E,(0') and E,(0 ) are the fields evaluated just
inside and just outside the system, respectively.

d —))r)p (r. , t,„,rr)=0, r. 0 (37)

which is the basic equation of the hydrodynamic
model. On the other hand, the amplitude of the

&& 1 —W2 (2 —i) ' " + ~ ~ ~ b'e "'8(z) . (36)
(t)p

Incidentall. y, note that the bulk density fluctuation
[Eq. (32)] satisfies the relation
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surface-charge fluctuation at the surface z = 0 may
be written in the form

41jbp$ (e kll +)

f1 = 1+ (-, —i) —'+0. P&i P &ll

2 2I fop (Op
(39)

obtained from Eqs. (29) and (8), into Eq. (38), the
surface-charge density associated with the surface
plasmon of frequency ~, is found to be

4~6p, (z, k„,~,)

II 4 j cop

Note that, by analogy with Eq. (3), the true charge-
density fluctuation associated with a plasmon of
frequency +,(k„)is given by

6p {r,t) = Ibpa(z, k„,v, )+ bpe {8 kII co )]

X C &kill' - ~S& &

As anticipated, we thus find that in the DA case,
the charge-density fluctuation associated with the
surface plasmon includes a surface-charge con-
tribution which does not appear in the specular
case. The expression for the bulk density fluctua-
tion Eq (36) evalua. ted at a point 0 just inside the
occupied half-space, may be combined with Eq.
(40) to give

p-i ~)„6PS(&,»I, ~.)

3&2 pu, + ~ ~ ~ 6pe(0', k„,g, )6(e), (41)
Rp

which shows that the ratio of the bulk- and sur-
face-charge-density fluctuations at z = 0 scales as
the characteristic wave vector Ia~/(v 2)p for k„=0.
Because of the largeness of ~~/(&2)P, one thus
expects (1/e)bp& to be small compared to
[(1/e)6 p&(0', k„,&o,)]'~' (e = electron charge).

I believe that in the framework of the sharp-
surface models, the present treatment in the DA
is more genera1. ly valid than the treatment for
specular reflection, because it allows the density
fluctuation associated with the surface plasmon to
have both bulk- and surface-charge contributions.
This conclusion is further substantiated by the
fact that for the DA (unlike for specular reflection),

=i 1+—1 —2 —
2 q +2i 2

—1-—2 ~

b'6(z),. ~'P&li r''I
~- ~ll P +P ~i) f

(38)

where we have used Eqs. (31), (12), (15), and
(22a) and eliminated a' and a" by means of Eqs.
(19) and (33), which remains, of course, valid in
the DA case. Finally, by substituting Eq. (35) and
the expression '

one gets a Landau damping, a feature which is gen-
erally expected of surface plasmons for all values
of the momentum. In a certain sense one may con-
sider the DA model to be intermediate between the
specular model, in which the density fluctuation
consists entirely of bulk charge, and the local di-
electric function model in which, on the contrary,
the fluctuation involves only surface charge. Of
course the local model is not accessible, in gen-
eral, as a special limit of the present treatment
because Eq. (7) is the Fourier transform of Eq.
(1) only for P &0.

IV, DISCUSSION AND CONCLUDING REMARKS

For the purpose of comparing the dispersion
relation (29) with other calculations and with avail-
able experimental results, the surface-plasmon
frequency ro, (k„)is written as a function of momen-
tum parallel to the surface in the general form

' &.(kII) =
~2

2 2
~ VFkll ~ V F~ll~ 1 —~ro+ (~~ —~~» — + (&& —i&» +

CL)p QPp

(42)
The numerical values of a&, a», b&, and b», which
are obtained in the various theories, are compared
in Table I for free-electron densities correspond-
ing to Al and Mg, for which experimental results
are available. For brevity I have excluded from
the comparison the results obtained by using the
full RPA dielectric constant of the free-electron
gas (Lindhard function) in a numerical solution of
the general dispersion relation of Ritchie and
Marusak for specular reflection. ' These results
have been determined for particular values of free-
electron ga,s densities and the values of a& and a»
are rather similar to Wagner's results ba.sed on the
Boltzmann equation.

The only results in Table I which relate to ex-
periment are those of Bagchi et al. ,

' which have
been extracted from an analysis of the ILEED data
for Al. The numerical values for the quantum-
mechanical RPA theory of Heger and %'agner are
obtained from Ref. 10 using the relations

(0. 166m, )'
2kF 4 EF

(eF is the Fermi energy and kyar is the Thomas-
Fermi wave vector) and the values for h~~ and &F

quoted in Ref. 14. The remaining values, which
are presented for the cases of Al and Mg (except
the last values for a, ), are obtained from those
listed by Beck and Celli by making the change of
variable

L)P VF~ll

~F 26 F Q)p
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in their form for the dispersion relation and using
their values for %a~ and &&. The last values of a&

listed for Al and Mg are based on the formula

which follows from an expression for the Landau
damping derived by Feibelman, using the RPA
along with a surface model with a step in the den-
sity prof ile.

It follows from Table I that the present value of
the linear coefficient a& in the dispersion is appre-
ciably smaller (and the Landau-damping coefficient
a2 much larger) than the corresponding values ob-
tained in previous quasiclassical calculations
for specular reflection. In fact our value for a&

is similar to the values obtained in infinite-barrier
quantum-mechanical calculations, ' '" but the re-
sult for a~ is an order of magnitude larger than
those given in these latter calculations. For the
reasons given before, I believe that the results for
the DA case are more realistic than those for spec-
ular reflection, at least for the simple model which
has been analyzed.

Compared to the quasiclassical results for spec-
ular reflection, ' the present value for a&, like
those obtained in infinite barrier quantum-mechan-
ical calculations, appears to be in closer agreement
with the small negative value obtained from experi-

ment by Bagchi et al." (in the ra.nge 10 & k„&1

A '), as well as with the result of Beck and Celli's
finite-barrier treatment. Furthermore, we re-
call that Kunz's experimental data' on fast-elec-
tron energy loss in thin Mg films show that
Re~~, (k„)first decreases and then increases for in-
creasing values of k, , lying in the range 0.02 &k,

&0.4 A '. Similar data obtained by Kloos' for the
case of Al show, however, no evidence for any
variation of Re~a, (k,~) with kg at short wavelengths.
On the other hand, the present value for the coeffi-
cient a& in the Landau damping is larger than all
previous theoretical values, but note that it is
much more consistent with the results of Beck and
Celli and of Feibelman than the earlier quasiclass-
ical results. It is also appreciably larger than
the value obtained by Bagchi et al. for Al, although
the method which they use to fit the experimental
results does not give a precise estimate of a&.
Finally, note that an analysis of semiconductor
tunneling data by Ngai et al. ' leads to values of a2
which agree with the relatively large values pre-
dicted by Eq. (43). The same analysis seems to
indicate that the tunneling data can be described
using the value a& = 0 while being inconsistent with
the large values obtained in the qusiclassical cal-
culations for specular reflection.

In this paper I have ignored retardation effects.
These effects are important at long wavelengths

TABLE I. Numerical values of the coefficients of the linear and quadratic terms in the dispersion of the surface-
plasmon frequency and of the Landau damping at long wavelengths. Here n =kFT/2kF, where kpT and kp are the Thomas—
Fermi and Fermi wave vector, respectively.

Source

This work
Ritchie
Wagner"
Kanazawa'

Bagchi et aE.
Preferred
Acceptable

Beck and Celli
(Finite barrier)
Infinite barrier
RPA calculations
Heger and Wagner
Beck~
Feibelman"

Beck and Celli'
(Finite barrier)
Infinite barrier
RPA calculations

0 644 Heger and Wagner
Beck'
Feibelman"

0.2738
0.5477
0.5578

0

—0.073
0.055

—0.074

0.191
0.367

—0.174

0.111
0.338

0.6375
0.15

1.116
0.67

0.94

0.369

0.428

Vp

[(~2)cd' r)
I(v 2)~~7) '

0.15
0.16

0.5477
0

0.0307
0

0.079
0.079

0.218

0.0297
0.0079
0.129

0.181

0.0297
0.0067
0.142

0.405

0.016
o o ~

0.525

0.0149

Reference 2.
"Reference 4.

'Reference 1.
"Reference 17.

'Reference 14.
Reference 10.

gReference 11.
"Reference 6.
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where the free radiation field is strongly coupled to
the surface-plasmon oscillations in the crossing
x egion of the photon dispersion line with the unper-
turbed surface-plasmon dispersion curve. The
effect of retardation on the surface-plasmon fre-
quency has been extensively studied using a local
approximation for the dielectric function. The
modification of these effects when dispersion is
included in the dielectric function has also been
analyzed in various approximations for the case of
speeular reflection. In this case the implicit equa-
tion which determines the eigenmodes of the cou-,
pled photon-plasmon system must be solved numer-
ically. The study of retardation effects in the ease
of the DA would be much more complicated than for
specular reflection.

To conclude this section, I briefly compare the
above results for surface plasmons with those
which are obtained for surface phonons in metals,
from the point of view of the density fluctuations
associated with these modes. The interested read-
er is referred to Appendix 8 for the explicit calcu-
lation of the density fluctuation in the phonon case
and fol a detailed comparison RIll discussion of two
recent studies of the phonon problem ' in differ-
ent contexts. The surface phonons in a metal film
may be studied by starting from the dielectric func-
tion

e(k, |d) = e(i.) ) + kr T/k, e ((g) = 1 —cog/co, (44)

whose zero's describe the bulk phonon modes in

a model„' where the ions are treated as a high-
frequency plasma and the free electrons are as-
sumed to screen out instantaneously any charge
fluctuation associated with the slowly moving ions.
Here ~& denotes the ion plasma fx'equency and

1+krT/k is the static Thomas-Fermi dielectric
constant of the free-electron gas. The use of the
Fourier transform of Eq. (44) in the approximate
constitutive relations (5a), (5b), and (6) enables
one, in principle, to study surface phonons by fol-
lowing a method sixnilar to the one applied in Secs.
I and II. However, because of the nature of the
phonon model, (5a) and (5b) cannot be traced back
to assumptions about the surfa, ce scattering in the
present case, in contrast to the situation for sur-
face plasmons. This is discussed in Appendix 8,
where it is shown furthermore that the surface pho-
nons have quite different properties, depending on
whether Eqs. (5) or Eq. (6) is used. These differ-
ences manifest themselves in ways other than in
the plasmon case. In particular, we find that for
both constitutive relations the induced density
fluctuation includes surface-charge contributions
and that, unlike in the plasmon case, the surface
charge plays an essential role for the existence
of surface-phonon modes. Also, the bulk density
fluctuation for a surface phonon may extend much

further into the bulk than for surface plasmons,
where it remains essentially localized within the
distance (&2)P/v~ from the surface. By means of
a detailed argument it is shown that the use of the
constitutive relations (5a) and (5b) is unjustified
for a realistic description of surface phonons in a
xnetal, but that, nevertheless, the results obtained
%'ith this expression correspond to an interesting
limiting ease.
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APPENDIX A: SURFACE-PLASMON MODES BASED
ON REAL DIELECTRIC FUNCTION

Here, I shall briefly study the dispersion rela-
tion for surface plasmons inthe case where colli-
sion damping is neglected and where one approxi-
mates the dielectric function (1) by its real part
for 7- ~. This latter function is nothing but the
Cauchy principal part of Eq. (1), whose Fourier
transform for u &P k„is the real expx'ession

e(~z (, k„,rg)=5(s) — ~ sin —~s
~

. (Al)

Q 0E„(-a' cos —(a+a)+E(,(-a cos —(z —a

2 Q2
k„+ 2 ds' sin —

~» —z' ~E„(z'). (A2)
os g

This equation may be converted into a differential
equation which is identical to Eq. (13). Since we
are considering the case of a film, we must use
the general solution of thi. s equation, which reads

As will become clear later on, Maxwell's equations
can be solved in this case only for a film geometry.
Thus, consider a film of thickness 2a which is con-
fined between z = - a and z = a and which extends to
infinity in the xy plane. For the DA the constitutive
relation is of the same form as Eq. (6), except that
the integration is now from —a to a. I shall not
discuss the case of specular reflection, because the
form of the constitutive relation for a film in the
specu1. ar ease renders the use of the method of
Secs. II and III somewhat complicated. However,
note that this case could be readily discussed by
using the results of %'agner, who derived a gen-
eral dispersion relation of the same type as the
Ritchie-Marusak expression' for a film geometry.
The use of Eq. (6) and (Al) in Maxwell's equations
leads to the following integrodifferential equation
for the fields inside the film:

2 2 2'dE„(z) 2 ~g ( )
(g~

2 ll +
g

tl 2p2
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E„(e)= a'e '))'+ b'e "'+c 'e '"+d'e"' . (AS)

Rnd

, Aa pA„Aa
u =—cos —1 — tRn—

2 p 0 p

2 ~i@ . 2 Aa pA„Ag
san -- - 1+-- cot

These equations could be easily solved graphically
for special values of the parameters. It follows
that, although in the present thick-film" limit
there is no overlay between the electric fields as-
sociated with surface plasmons localized at differ-
ent surfaces, their frequencies do actually depend
on thickness. This rather peculiar feature is R

The substitution of (AS) in (A2) reduces this equa-
tion to a linear combination of sin(Q/P)e and cos(A/
P)e, which must vanish for all ~ and k„. This con-
dition cRQ be satisfied only if the coefficients of
both functions are identicaQy zero, which leads to

5'=d'=0,

in the limit k„a»1,ya»1, which corresponds to
the neglect of coupling effects between two plas-
mons localized near z= -a and @=a, respectively.
Note that because of the fact that the integral in
(A2) includes terms proportional to sin(fl/P)e as
well as to cos(Q/P)e, one is always led to two con-
ditions to be verified by the arbitrary constants in
the solution of Eq. (1S). This solution must there-
fore include both the exponentially decreasing and
increasing terms as displayed in (AS). As a result
the calculation using the kernel (Al) leads to a so-
lution only for the case of a film geometry, since,
in particular, the remaining two constants cannot
be determined by the two matching conditions et
one surface alone. The expression of D, (e) given
by Eq. (6) reduces to

D(z)= —Z (( -Q) (z'z""-z'z "")

0 0-i q
—e "' k„sin—(e -a)+—cos —(e -a) c'

2m 0 "
p p p

0 0 0
+ k„sin—(a+a) ——cos —(e+a) a', (A5)

p p p

again for k)(a » 1 and 'ra » 1. The matching of Dg($)
and E„(e)inside the film to exponentially decreas-
ing fields outside [of the form (22) for e & —a]
yields a system of four linear homogeneous equa-
tions between the four integration constants in the
fields inside and outside the film. After some
algebra the solutions of the corresponding secular
determinant may be written as a pair of trans-
cendental equations for the surface-plasmon fre-
quencies as a function of the momentum parallel to
the surface:

consequence of the use of the dielectric function
(Al). The above equations lead to a linear disper-
sion to lowest order in k„.Furthermore for k„=0,
instead of a single surface plasmon of frequency
= u&~/v 2, one finds a family of modes, whose fre-
quencies given by

Rx' = cos Qx (A8)

APPENDIX 8: SURFACE PHONONS IN A METAL FILM

The purpose of this appendix is twofold. First
I mant to establish a parallelism between the pres-
ent work on surface plasmons and the recent di-
electric studies of surface phonons in metal
films. ' My analysis is centered on the compari-
son of the charge-density fluctuations associated
with both kinds of modes; which is, of course, of
some intrinsic interest. On the other hand, the
approaches used by Griffin and Harris (GH) and by
Heinrichs (H) in the phonon case are quite differ-
ent and lead to very different results, so that a de-
tailed analysis of the origin of these differences is
needed. Such a study can be developed very con-
veniently in the framework of the dielectric method
used in Secs. H and ID, and constitutes our second

(A9)

are distributed between zo = 0 and (d = tu&/W2. Since
e is rather large for realistic values of the param-
eters, the number of solutions of (AB) and (A9) will
generally be large.

To conclude, recall that Landau damping of sur-
face plasmons ean only occur when the imaginary
part of the dielectric function (1) is included. The
present results show, however, that the neglect of
this imaginary part has a much more drastic effect
in that it profoundly modifies the nature of the sur-
face-plasmon modes which are obtained in this
ease. Note that the results of this appendix may
be more useful as an illustration of this point than
from the point of view of practical applications.
This is because they depend, in an essential way,
on the neglect of the imaginary part of q(k, ~), an
approximation which, from a general physical point
of view, mould seem to be reasonable only if it
would not have any major consequences for the
sux'f Rce-plasmon dispersloQ relRtion. Howevex'
we observe that for appropriate parameter values,
Bennett's model 3 also yredicts the existence of
several surface-plasmon modes at long wave-
lengths, whose frequencies lie, however, in the
high-frequency range (q~/v 2 & ~ & (d~. In common
with the calculation of this appendix, Bennett's
theory does not allow for an imaginary part (which
for 7- ~ describes the excitation of soundlike bulk
modes) in the hydrodynamic electron gas equation,
from which Eq. (1) is derived.
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(82)

in the absence of any external charge distribution.
By matching the bounded solution

E (z)=be ', z&0 (83)

and the corresponding expression for D, (z), given
by (5a), (5b), (12), and (83), to fields in the vacu-
um of the form (22), we obtain the following dis-
persion relation for surface phonons in the metal
half -space:

(o./u„)e(~)+1=O . (84)

This equation is identical to Eq. (3.20a) of Ref.
29 and gives rise to a surface-mode branch which
extends in the whole frequency range between = 0
and Ig =~„. The arbitrary constant which is pres-
ent in (83) is fixed by the external probe by which
the collective oscillations in the system are ex-
cited. Finally, by using Eqs. (30), (31), (12),
(22), and the result a" = b [matching of E„(z)]the
bulk- and surface-charge-density fluctuations as-
sociated with the surface phonons are found to be

4vbp, (z, b„,~) = —i[u'„/e((d)u„]be -e(z), -

(a5)

objective here.
In the work of GH the surface phonons are studied

by means of the collisionless Boltzmann equation,
using a sharp-surface model. The dispersion re-
lation for phonons in a half-space obtained by GH

is formally identical to the well-known result of
Bitchie and Marusaks and is expressed in terms of
a bulk response function. On the other hand, the
theory described by H is based on the solution of
Maxwell's equations (for c- ~) for a film geometry,
using the approximation (6) for the constitutive re-
lation and the model bulk dielectric function (44).
For simplicity the following discussion is special-
ized to the case of a semi-infinite system occupy-
ing the region z&0 and bounded by vacuum. In
the theory of H, such a half-space system is ap-
propriate only for the discussion of true surface
modes3 for which the quantity z defined by

o.'= b,', + b'„/e((g)
is positive. In this paper I have changed the nota-
tion in an obvious way from that of Bef. 30.

We find that the results of GH may be derived in
the present dielectric formulation by using a con-
stitutive relation of the form of Eqs. (5). This is
not surprising in view of their formal equivalence
to the Bitchie-Marusak formula. In order to show
this we substitutue Eqs. (5) in Maxwell's equations,
using the Fourier transformso of Eq. (44), which
leads to the simple differential equatiori [compare
to Eq. (15) of Ref. 30]

4vbp, (z, b„,) = i(1+~/b„)b6(z), (86)

where & is determined by the explicit solution of
(84). By introducing the Fourier components of
the potential V(z) = (i/b„)E„(z),we then obtain

4vbp, (z, u„,~) = b'.,[V(z)/- z(~)16(z) . (87)

Qn the other hand, for & & 0, the theory of H

leads to an implicit dispersion relation for surface
phonons (for the discussion of the solution, see
Ref. 30) which is given by

(88)

Furthermore, one finds

E„(z)=b(e ™M+e ") z&0

a" =2b' [matching of (22a) and (89)],

(89)

(Blo)

4)Tbpe(z, b„,(d) = —i[AFT/e((z)b„] b'e "'e(z),
(811)

4vbp, (z, b„,~) = i(3+ o/b„)b'6(z), (812)

of which Eqs. (811) and (812) are obtained from
Eqs. (30) a.nd (31), using Eqs. (12), (22), (89), and
(810). Although 6pe given by Eq. (811) is of the
same form as Eq. (85) its relation to the potential
differs from Eq. (BV) since by using Eq. (89) we
obtain

2

4,zp, (z, z„, )= 'F )z( ) ——'( z" )z( ) .''—e 'L(z)

(813)
The parameter & in these expressions is given by
the solutions of (88) that satisfy (Bl), from which
it follows that, in this case, the surface modes
only exist at high frequencies. 3 At lower frequen-
cies one finds a different kind of modes, which can
no longer be identified as true surface modes.

In both treatments the parameter ~, which de-
termines the range of the bulk density fluctuations
(85) and (Bl1), takes all real values between 0 and
~ when the frequency and wave vector vary along
the surface-phonon dispersion curve. It follows,
therefore, that the bulk density fluctuation asso-
ciated with a surface phonon may extend quite far
into the bulk of the system. This shows a differ-
ence with the results for surface plasmons where
the bulk charge fluctuation is found to be localized
within a distance of the order of (v 2)P/(d~ from the
surface.

Turning to the surface charges, note that Eqs.
(86) and (812) include contributions due to both the
electrons and the ions. The fact that the ions lead
to a surface-charge fluctuation is, of course, ex-
pected, since they are treated in a local approxi-
mation. From this it follows that the surface
charge plays an essential role for the existence of
surface phonons, since if the ions were present
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alone, the density fluctuation would, in fact, only
consist of surface charge. As a result, the sur-
face phonons would not exist if one would require
surface charges to be absent, by demanding con-
tinuity of Z, (z) instead of D, (z) on the surface. On
the other hand, recall that surface ylasmons exist
even when surface charges are absent, as in the
specular case.

Another point which is worth emphasizing is
that in the static approximation, where the elec-
trons adjust instantaneously to any charge imbal-
ance caused by the ions, the surface-scattering
mechanism does not enter in the description of sur-
face-phonon modes. Indeed, in the static case one
has no control on the actual motion of the electrons
as a function of time. This is nothing but a conse-
quence of the fact that in the Thomas-Fermi ap-
proximation there is no equation of motion for the
electron density fluctuation in the usual sense. It
is thus clear that surface-scattering boundary con-
ditions do not arise in the discussion of the prob-
lem, at least within the Thomas-Fermi approxi-
mation. It follows that, in particular, the constitu-
tive relations (5a) and (5b) are not related to spec-
ular reflection in the case where &(g, 0„,w) is given
by the Fourier transform of Eil. (44). This be-
comes even more obvious after recalling that the
condition of syecular reflection, unlike the DA dis-
cussed in Sec. II, would be incompatible with the
existence of a surface-charge fluctuation of the
type found above [Eq. (86)].

Without detailed calculations it is, of course,
impossible to make any statements as to whether
the electronic surface charge might be removed by
using a dynamic dielectric function for the elec-
trons, instead of the Thomas-Fermi expression.
If this would be the case for an appropriate dielec-
tric function, the calculation based on Eqs. (5)
would correspond to specular reflection. Judging
from the results obtained in Sec. III for the case
of surface plasmons, we expect that such calcula-
tions would yield more realistic results in the case
of the DA than in the case of specular reflection.
At present, however, we are primarily concerned
with situations where the Thomas-Fermi approxi-
mation is nearly exact and where considerations
about the reflection of the electrons at the surface
are largely irrelevant, as discussed above. It
follows that since in the present case one cannot
associate Eqs. (5) with specular reflection, one is
forced to look for other possible justifications for
using this expression. The situation is different
in the case of Eil. (6) which, unlike Eqs. (5}, ap-
pears as a natural first approximation of the true
constitutive relation, since it corresponds to re-
placing the kernel «(z, z', k„,~) by its bulk expres-
sion.

Going back to the above expressions, we observe

that (BV) is identical to the linearized Thomas-
Fermi equation for a homogeneous system where
the potential is screened by the dielectric func-
tion of the ions, whereas (813) includes an addi-
tional term. This shows a basic difference be-
tween the constitutive relations (5a) and (5b) and

(6) as applied to the present problem. Note, how-
ever, that since (89) differs from (83) only by a
solution of Poisson's equation in the vacuum re-
gion, the bulk density fluctuation given by Eqs. (30)
and (89) satisfies the following differential form of
the Thomas-Fermi equation in r space:

V 4v5p&(r, ~)+ OFT
' ——0, s & 02 - 2 V(r, &u) (814)

which is the analog of Eq. (3V) in the plasmon
case. It follows from Eil. (87) that in the GH
theory, the inhomogeneity which is caused by the
introduction of the surface does not spread into the
bulk, since this equation describes a system where
the static electron density profile is replaced by the
bulk density. However, such an inhomogeneity
appears in this case in the form of the surface
charge (86), which clearly corresponds to a modi-
fication of the Thomas-Fermi model through the
introduction of an effective sharp surface. "Whereas
(BV) corresponds to a well-defined approximation
(see Sec. II), the introduction of the surface charge
[Eq. (86)] is somewhat arbitrary, since the mean-
ing of Eqs. (5) is unclear in the present case. On
the contrary, Eels. (813) and (812) show that in
the theory of H the inhomogeneity (or "diffuse-
ness") which is introduced by the surface spreads
into the bulk as well as on the surface, since the
right-hand side of Eq. (813) includes a term which
would not appear in the Thomas-Fermi equation
for a homogeneous system. This is not unreason-
able, since, a priori, it seems quite unlikely that
within a sharp-surface model, one can adequately
simulate the electronic properties of a true per-
turbed surface in terms of a surface inhomogeneity
alone. Therefore the results based on the con-
stitutive relation (6} are expected to be much more
general than those based on Eqs. (5) since they
correspond to less restrictive assumptions about
the modifications which are required in the Thom-
as-Fermi model in order to simulate electronic
inhomogeneities in the framework of a sharp-sur-
face model. It should be emphasized that these
modifications are not introduced arbitrarily, but
that in the case of Eq. (6) they follow from the ap-
proximation of replacing the true kernel in the con-
stitutive relation for the bounded system by its
bulk expression. This is indeed the most natural
first approximation if one believes that the inhomo-
geneity near the surface is of secondary impor-
tance in the final results compared to the presence
of the surface itself.
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In conclusion, I feel that there is no true justi-
fication for using the constitutive relations (5a)
and (5b) in connection with the phonon model [Eq.
(44)]. The main objection against it is that it cor-
responds to oversimplified and somewhat arbitrary
assumptions about the way the introduction of a
sharp surface affects the relationship between the
induced density fluctuation and the induced poten-
tial. In light of the above considerations, the
calculation based on Eqs. (5) has, nevertheless,
the virtue of indicating under what limiting condi-

tions one may expect a surface-mode branch to ex-
ist down to (d =0. We believe that in the absence
of any more detailed microscopic derivation of
the true inhomogeneous kernel e(zl z', k„,~)
for the phonon case, the most reasonable approxi-
mation is to replace it by its bulk expression, as
done in Ref. 30. Also, recall that this approxi-
mation becomes exact for positions z and z' suf-
ficiently far away from the surface, whereas the
kernels in Eqs. (5) do not have this important
property.
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