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The single order parameter Q= (1(8 ) —3S(S+1)) is, in general, insufficient to describe
ordering in low-symmetry magnet;ic crystals with quadrupolar coupling. After a brief dis-
cussion of the general situation, we study in detail the molecular-field theory of an array of
quadrupoles coupled in pairs (12) by the Hamiltonian (J(12) &0), 3C =—),&&2&P(12) ][ 2([S (1)]
—s S(S+1))([S(2)] ——S(S+1))+~ {IS"(1)] —[Sp(l)] $([S"(2)] —[Sp(2)] ) ] For 'g& 1, both Q and
the biaxiality parameter P= ((S") —(S~) ) become simultaneously nonzero at sufficiently low
temperatures. We exhibit (q, T) phase diagrams and give the temperature dependence of the
ordering for spins S=1, 2, 2, &, and ~. The transitions in Q and P may be separated by in-
troducing single-ion anisotropy into the Hamiltonian.

I. INTRODUCTION

Quadrupolar ordering in magnetic crystals has
been investigated theoretically' ' in connection with
experimental results on magnetic and crystallograph-
ic phase transitions in some rare-earth compounds
such as DyVO4, however, with two exceptions,
previous authors have only considered the pos-
sibility of uniaxial order in the single order pa-
rameter Q=((S') ——', S(S+1)). This restriction is
both unnecessary and (except in special cases) in-
correct. A general purely quadrupolar system
may have up to 2l+ 1 = 5 independent, nonzero or-
der parameters, though this number may often be
reduced by a judicious choice of axes, when the
system possesses appreciable symmetry. In par-
ticular, the asymmetry para. meter ("biaxiality7
parameter") P=((S") —(S')s) does not, in general,
vanish and both P and Q may well be necessary"
to describe states of quadrupolar order in low-
symmetry magnetic crystals such as the rare-
earth vanadates, phosphates, and arsenates.

In this paper we study in considerable detail
within the molecular-fieM approximation the or-
dering of an array of quadrupoles interacting in
pairs via a coupling with a restricted axial sym-
metry. We do not introduce dipolar coupling' or
any sublattice structure. This system is simple
enough so that (at most) only the two order param-
eters P and Q are nonzero; however, it is still
rich enough to exhibit phase diagrams of consid-
erable complexity, including uniaxial and biaxial
ordering, first- and second-order phase transitions,
and tricritical points.

In Sec. II we discuss the various possible sym-
metries of the quadrupolar Hamiltonian, develop
the molecui. ar-field approximation, and extract a
few analytic results at high and low temperatures.

Section III describes specific numerical results
for systems of spin S=1, z+, 2, z+, and ~, including
both phase diagrams and a general study of the
temperature-dependent ordering. Section IV sug-
gests a few conclusions and extensions. The Ap-
pendix discusses symmetries in the molecular-
field approximation.

II. FORMULATION AND THEORY

A. Hamiltonian

We consider a regular array of atomic or molec-
ular quadrupoles described in a spin representa-
tion by the symmetric Hermitian operators,

Q s= —,'(S'S +SsS ) ——,
' 5 sS(S+1) . (1)

a and P label Cartesian components. Q is a trace-
less tensor of rank two. It is convenient to work
with linear combinations of the five independent
components of Q which transform irreducibly under
important symmetry groups. We theref ore in-
troduce (a) the l= 2 cubic harmonics' (6, =sti),

(2a)

which belong to the representation Eg of the cubic
group and

p), =V2 Q"', t), =M2Q"', 6, =v 2Q", (2b)

which belong to the representation Ts„and (b) the
l= 2 spinspherical harmonics~ [Yp, = (- 1)

r =-'(5/4~)'"Q*'

Fs„=T 2(15/2v)'~ (Q + iQ"),

Fp p
= 4(15/2v) Q (Q + 2t'Q )

The most general possible symmetric bilinear
coupling between two fixed quadrupoles is
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X(12)=-Z ~(peg(I) sg(2), ~gg=~fg=~g~ (4)

where numerical arguments label the atomic quad-
rupoles. The 5&&5 matrix J,&

of quadrupolar "ex-
change" constants may depend on the atomic sepa-
ration (r, —r~) and can contain as many as 15 in-
dependent nonvanishing elements. ' When sym-
metries are present, the number of independent
el.ements is greatly reduced, as shown in Table I
for some important cases. For spherical sym-
metry the interaction is proportional to the mani-
festly isotropic operator g &(- I) y'z (1)F& „(2).
For axial symmetry (about the z axis) the pairs

83, 84 —e5 transform into one another, and the
interaction is equivalent to P za~„~(- I)"Fz (I,)
&F3 (2). "Restricted" axial symmetry, with which
our calculations will primarily be concerned, de-
notes the special case a& =-0. "Uniaxial" coupling
refers to the situation a, =a2=0.

Thorpe and Blume" and Liu and Joseph'2 have
solved exactly for the statistical mechanics of a
linear chain of isotropicall. y interacting classical
(8= ~) quadrupoles. Blume and Hsieh'~ have
studied the S = 1 isotropic quadrupolar interaction
in the molecular-field approximation (MFA). Bys'~
and Hintermann and Bys'4 have treated the uniaxial.
8= 1 system (including a variety of dipolar and
single-ion interactions) exactly in one dimension
and more generally in MFA„Griffiths" has shown
that the S= 1 uniaxial system with certain single-
ion terms can be mapped rigorously onto the S = —,

'
Ising model. Sivardier e and Blume' have studied
the S=+2 uniaxial case with additional dipolar terms
in MFA. Chen and Levy4 performed similar cal-
culations with S=1 and S=+2. They considered
uniaxial symmetry and (for 8= 1) special cases of
cubic and axial. symmetry. In addition, the clas-
sical (8= ~) isotropic Hamiltonian forms a model
for orientational interactions in uniaxial nematic
liquids' '7 and has been treated by Krieger and
James" and Maier and Saupe" via MFA, in which
context it is fully equivalent (see below) to the
uniaxial case. In all of these special cases of the
Hamiltonian (4), the quadrupolar order is entirely
uniaxial ((s,) =0, i=2, 3, 4, 5). Freiser'6'~' and,
more recently, Alben, McColl, and Shih2 have
found biaxial order ((0~), (6 z) e0) within MFA for
nonuniaxial nematics; however, the applicable
Hamiltonian is not of the form (4), as we now dis-
cuss.

It is worth commenting on the connection between
the general biquadrupolar pair Hamiltonlan (4) and
the interactions among rigid molecular quadrupoles
as, for example, in nematic liquids. '6'~ In nemat-
ics the existence of local quadrupoles is due to
strong intxamolecular forces which fix the "shape"
of the molecules, The much weaker gntexmolecular
orientational forces depend on the relative align-

ment of molecular quadrupolar axes and involve"
the rotation matrix D+'(R) for the rotation R which
brings these axes into alignment, This interaction
is not, in general, of the form (4) but reduces to
our classical isotropic case when the elementary
molecular quadrupoles are uniaxial. By contrast,
in the problem we treat the existence of the local
quadrupoles and their alignment arise together
from the intermolecular interaction. 2'

In Eq. (7), lnZ(1) is to be regarded as a function
of the set of expectation values (8~(2)) via the mo-
lecular field T, (l). Molecular-field theory then
requires that W(/(8&(1))j) be maximized with re-
spect to variations of all the parameters (8~(1)).
The maximum value W,„=—pA. (T, N) gives the
MFA (Helmholtz) free energy, and the correspond-
ing (g, (1))'s are the MFA quadrupole moments at
each site.

For attractive interactions, which we assume
henceforth, the variational solution is expected to
be translationally invariant, so we may drop the
site dependence23 and maximize

[(s )]-=—=lnZ- —Z v (6 )(@),1
N 2])

v) ) = P Q Z)~(12),
2

TABLE I. Nonvanishing coupling constants consistent
with various symmetries. When there is one preferred
axis, z has been chosen.

Symmetry

Spherical (is otropic)
Cubic (0)
Axial (C„, D„)
"Restricted" axial
"Uniaxial"
Quadratic, with reflection (D4)
Quadratic, without reflection {C4)
Orthorhombic (D2)

Nonvanishing J;&

J» =J22 = J33 = J44 =J55

Jll= J2» J33=J44=J;5
J22= J33 J44= J55

J«J22=J33
Jl,

11 J22 J33 J44 J55

11 22 J33 J23 J32 J44 J55
J22~ J12 J21& J33~ J44~ J55

B. Molecular-Field Approximation

Consider an array of quadrupoles interacting in
pairs according to the Hamiltonian (4). The effec-
tive single-ion Hami1, tonian for the quadrupole 1 is

5

~...(I)=- Z 7, (I) s;(I), 7';(I) = Z &;,(»)«, (2)&,

(5)
where T, (1) is the effective quadrupolar field and
(8&(2)) denotes the thermal average of 6&(2). The
effective partition function is

Z(1) = Trge ~ MFA~

and we define the variational function

W=—Q lnZ(1) ——'pQ 8, (12)(n,(1))(8 (2)) . (7)
1, ,2
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"restricted" axial problem. The symmetry of the
solution only changes when local maxima pass one
another; however, the precise crossover point can-
not, in general, be predicted on grounds of symme-
try alone.

For "restricted" axial symmetry, (e,) =(e,) =0
immediately. The Hamiltonian is invariant with
respect to rotations about the z axis, so (6,) may
be set to zero by an appropriate choice of axes in
the x-y plane with no loss of generality. These
simplifications reduce (8) to

w(Q, P) =inZ ——,
'

vQ —,'rivP~, —v=-v», iiv -=vz,-. ,

where (10)

FIG. 1. Physical region of the Q, P plane. The maxi-
mum of se(Q, P) lies in the shaded area. The diagram is
drawn to scale for $=3 but remains qualitatively similar
for other spins.

with respect to the five parameters (8,). A neces-
sary but not sufficient condition for the (global)
maximum is the self-consistent equations (local
extremum conditions)

8 lng
8( )

=Qv„(e). (9)

There are, in general, several solutions of (9), so
the maximal. solution must be selected by hand.

For general v,.~ all five potential order param-
eters (s,) may be nonzero at the maximum and the
situation is complicated. Of course, at any fixed
T, (Q ~) can be diagonalized, so (63) =(ti4) =(65) =0
in the appropriate coordinate system; however, we
have been able to find no argument which excludes
the possibility that the orientation of the principal
axes may be temperature dependent. 24 On the
other hand, when symmetries such as those shown
in Table I exist, it is often possible to show that
several of the order parameters may be chosen to
vanish with no loss of generality.

In what follows we shall study in detail the case
of "restricted" axial symmetry. While this prob-
lem by no means exhibits the most general possible
features of thefull maximization problem (8), never-
theless, within MFA it subsumes both the spherical
and "uniaxial" problems as special cases and, in
addition, as we show in the Appendix, it is fully
equivalent to the cubic problem. Finally, we note
that because of the variational structure of MFA,
small changes in those v;& which do not contribute
to the dominant maximum will leave the symmetries
of the solution intact. For example, we expect that
for sufficiently small v«and v» (relative to v» and

vaz ——v~~) the full axial problem will reduce to the

((S') ) = —,'[S(S I)] Q,

((S")')= 3[S'(S+ I)j- 2 Q+

((S')') = -', [S(S+I)]——,'Q- —,'P .
The molecular-field partition function is now

2 S+1
Tre-BxMFA Q eux (Q,P)

w1
(12)

where X„are the (2S+1) eigenvalues of the matrix,

—P '&, = lQOS')'- l [S(S+I)j}+l Pn[(S')'+ (S )'1,

S' = S" + iS" . (13)

C. Second-Order Transitions: Landau Development

When the factor e ~»& in (12) is expanded in

powers of v, standard tables2' make it easy to
evaluate the traces of the first few terms. One
finds for small Q and P the expression

Note that the nonuniaxial (second) term only couples
M values differing by 2. Thus, for S= —,', —'„+2, etc. ,
there are at most (S+ —,') different levels, each
doubly degenerate, while for integer S the problem
factors into an S-tuplet and an (S+ 1)-tuplet.

Since w(Q, P) = w(Q, —P), we may take P &0 with-
out loss of general. ity. In addition 0 &((S )3) &S,
so the search for the maximum of w(Q, P) may be
restricted to the shaded regions shown in Fig. 1.
In the calculations reported in Sec. III, we have
used two techniques for locating the maximum.
For each value of ii and v we either (i) directly
maximize w(Q, P) or (ii) find all solutions of the
self-consistent equations Bw/&Q = Sw/SP = 0 and
select the one which maximizes m. Both methods
require a computer. In addition, analytic work
may be done when the order parameters Q and P
are both smail (Sec. IIC) and at low temperatures,
where v is large (Sec. IID).
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w —ln(2S+ 1) = [vX(4X- 3)-30]+ [IlvX(4X- 3)- 30]
vQR

40 120

v 'X 2~3 P 2X
+ 4 (4X-3) (4X- 15) —

4 (4X- 3) (4X- 15)

z (4X-3)(8X3+54X-105)+ ~ ~, (14)

t, (rl) =I/n, (rl) =~qX(4X- 3) . (i5)

Just below the transition, P ~ (t, —f)"~ and Q ~ (f,
—f). As q is decreased, the second-order transi-
tion terminates in a tricritical point. ~' On exam-
ining the self-consistent equations at temperatures
f just greater than t, (q), one finds that a first-or-
der transition (to a state with small but finite Q
and P) occurs just below the tricritical value

2 68X~ —111X+195
~' 7 8X'+ 54X-105 (16)

where X-=S(S+ 1).
When the bracketed expressions in the first two

terms of (14) are both negative, the origin of the
Q-P plane is a local maximum. If the origin is a
global maximum, the system undergoes a second-
order transition of the Landau type~' when the nor-
malized temperature f = 1/v—decreases through a
critical value which makes one or both brackets
vanish. The locus of these incipient transitions
is sketched in Fig. 2. For 0& g & 1 the Landau
transition is (except when S =+~) preempted (Sec.
III) by a first-order transition at a higher tempera-
ture; however, for sufficiently large p, the sec-
ond-order transition is realized at

(Q, P) as follows: (- 1, + 3) for &, 2, (2, 0) for Q,
and for X, both (+ 2, 0) and (0, + 2~3. The g de-
pendence of the associated values of (d is shown
in Fig. 3. For 0& @& 1 the points (+2, 0) are de-
generate to order v; however, g and A., are de-
generate at (+ 2, 0), giving an extra contribution
ln2 to (17), so by (11) the low-temperature phase
is uniaxially elongated along z, with ((S ) ) = 4,
((S")~)= ((S')~) = 1 at t = 0. When q & 1, the global
maximum is at (0, + 29 3), so the ground state is
always biaxial, elongated along x and squeezed along

jI or conversely. A special situation (unique to
S=2) develops for q &1 at low but finite tempera-
ture. For q 1 the eigenvalues are nondegenerate
at both (0, +2~3 and (-1, +3); however,

X4 (- 1, + 3) = 3(1+3q 3)" = 6+f (7I —1) +O ((q —1)~), .

which is degenerate with X, 3 except for terms
O((q —1) ). This accidental degeneracy allows
(- 1, + 3) to compete (entropically) with (0, + 2~3;
and, for q& 1, as t increases, the system under-
goes a first-order transition at t&= —,

'
(g —1)/ln2 to

a nearly uniaxial state, ((S")2)= 4, ((S')3) = ((S')2)
=1 (or with x—y). The full phase diagram is
shown in Fig. 4.

as indicated in Fig. 2.

D. Low Temperatures

v is large at low temperatures, and analytic solu-
tion of MFA is again possible, provided the eigen-
values &„(Q,P) of (13) are available. This is use-
ful. , since it provides a direct understanding of the
ordering in the low-temperature phase.

At low temperatures,

~(Q, P) = ~[~,.(Q, P) —:Q'- .' nP']——
+ lng(Q, P)+ O(e-"), (IV)

where ~,„ is the maximum eigenvalue A„and
g(Q, P) is its degeneracy. For each eigenvalue,
the (Q, P) which maximizes go is determined. Then
the magnitudes of the maxima must be compared.

We illustrate by studying the particularly in-
teresting example S=2. The doublet (M=+ I) gives
eigenvalues X, z

————,'Q+ —2qP. The triplet (M=0,
+2) gives X =3Q and A, , =+(9Q2+3qaP2)"2. Lo-
cal maxima in so for various A„occur at points

Tricritical
Point

—(4x-33x
50
s(s+~)

FrG. 2. Potential second-order phase transitions in
MFA. The plot is to scale for S=3. The position of the
tricritical point is given by O.6}. Only the dashed por-
tion of the second-order phase boundary is actually real-
ized. The heavy line shows the beginning of the first-
order phase boundary.
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which directly exhibit the development of biaxial-
ity in the departure of P, from zero.

III. RESULTS

W

V

0 I/2 3/2

FIG. 3. Local maximum values of ~(g) at low tem-
peratures for S=2. Plots are labeled by the position
(Q, P) of the maximum.

0, -=(9'') = ——.
' 0- —.'P,

P„=-(Q-- Q"")= -', Q- ,'P, —
(18)

E. q = 1, Uniaxial-Biaxial Transition

When g=1, the "restricted" axial problem de-
fined by (10)-(13)becomes a special case ( Js~
= J~4= J« —-0) of cubic symmetry(see TableI). Un-

der the cubic operations regions of the MFA free-
energy surface map into one another; i. e. , w(Q, P)
is the same at the following six equivalent points
inthe (Q, P) plane: (Q, +P), (- —,'Q+ ', P, + (2 @+ ——,'P)),
and (- —,Q —,'P, +(2Q ———,'P)). For 0&q&l the dom-
inant maximum in the ordered phase is always at
(Qo (t), P = 0), corresponding to uniaxial order in
the z direction. As g approaches unity, equivalent
maxima develop near the points (- —,

'
Qo(t), + ~ Qo(t)),

corresponding to uniaxial order in the x or y direc-
tions. Beyond q=1 these new maxima take over,
and the system undergoes a first-order transition
to a state which becomes increasingly biaxial as
q increases. It will sometimes be convenient for

.g&1 to plot variables such as

Molecular-field phase diagrams are shown for
S=1, —,', 2, 2, and ~ in Fig. 4. Table II gives
numerical values for several of the principal fea-
tures. First- and second-order phase boundaries
are shown as full and dashed lines, respectively.
Between g =1 and g, the trans' .ion remains first
order, but the discontinuity hQ in Q decreases
from its g= 1 value to zero at the tricritical point.
The discontinuity in P vanishes at both ends of the
interval. For 0& g &1 the ordering is always uni-
axial; for g& 1 it is biaxial. We comment briefly
on the special features of each spin value.

3,0— S= I

Q, P ~ 0
2.0—

I.O
Q & 0
P = 0

/

/

Tricri t i ca I

Point

ope = 3.7
=P=O

I i I

0 0.4 0.8
1.5—

I

1.2 4

S=2
Q, P/0

slope = 0.31~
Tricritical
Point

I.O

Qt0
05- P =0 Q=P=O

2.0— S =3/2

1.5 — Q, P ~ 0

I.O—

0.5—

00 I

I.o

I

I

I Q=P=O
I

I

I

I I

2.0 3.0 g

1.4—

g 1.2

1.0

S = 2 (detail)

I sol a ted
Critical
Point

st uniaxia I

e = .924

A. S=1

The three eigenvalues of (13) and their corre-
sponding eigenfunctions are A. = —Q (I M = 0)), & Q

,'rP ((—1/~2)(I1)+ I
—1))). The single-ion molec-

ular-field energy levels are (in our notation) E„
= —kTvX„, which are shown schematically in Fig.
5. The uniaxial (P=O) ordering for 0&q&1 in-
volves compression along 2 with dilation along g
and y (Fig. 6). The ground state is the singlet
I0), and at t=0 one finds Q= ——,.';, so ((S') ) =0,

TABLE II. Important parameters of the molecular-
field solutions. t&

——1/v~ [see (8)] is the reduced transi-
tion temperature (first order, except for S= 2) for 0 —g
—1. AQ is the corresponding discontinuity in Q. g& and

t& are the tricritical-point parameters from (15) and (16).
$= data are specially normalized, as explained in the
text.

I

0 2

2.0—

I.O

S =5/2
Tricritical
Point

Q, P/0

I i I

4 6 t I i I i I

0.2 0.4 0.6 0

Tricritical
3.0 —Point

Q, P/
g 2.0—

Spin

1 0.361
3 3
2 2

2 4.251
9.80
0.147 (Ref. 15)

-0.333 2
0 ~ ~ ~

0.473 1.114
1.10 l.292
0.286 (Ref. 15) 2.429

4.679
12.054
0.324

0

Q80
P=0 Q =P=0

12 18 4

I.o
g&0
P =0

I

0 O. I

Q=P =0
I I I

0.2 0.3 0.4 g

FIG. 4. Phase diagrams for spins S=1, 2, 2, ~, and

8=1/v is the reduced temperature and q measures the
anistropy. First- and second-order phase boundaries
are shown as full and dashed lines, respectively.
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0&~&1
~1(1»+I-»)

T

Io)

v—(q- —)2 3
t

W2
—( l1) +1-1))

10)
I—(q+ —)

v 1
2 —(11)+I —1) )

FIG. 5. Single-ion molecular-field energy levels for
S=1. Because of the self-consistency the splittings vary
with both temperature t =1/v and anisotropy g.

((S")s)= ((S')s) = l. At ri = 1 the three axes become
equivalent.

Above g = 1 the ground state belongs to the M = + 1
doublet. At t= 0 the ordering is uniaxial, shaped
as for 0&g&1, only with the "pancake's" axis now

along x or j. For t &0 the ordering is weakly bi-
axial. Variation of Q, and P~ [Eq. (18)] is shown
in Fig. 7.

Note that for g & 1 transitions in the two param-
eters Q and P occur simultaneously. The transi-
tions in Q and P can be separated by adding to the
Hamiltonian a single-ion anisotropytermDQ, [S'(1)]a,
which modifies the phase boundary along p =1 by
shifting its low-temperature end to g=1+4&,
-=PD/v, and by diverting its high-temperature end
from the horizontal (see Fig. 8). Thus for D) 0,
inside a range of g just above g= 1+46, a first-
order transition in Q at P = 0 is followed at lower
temperature by another first-order transition into
the fully biaxial state, as long as 5&0.010. For
5& 0.010 the high-temperature transition disappears
and Q(t) is continuous at low ri. A similar range ex-
ists just below g= 1+45 for D &0: A second-order
transition in P with Q smooth is followed at a lower
temperature by a first-order transition out of the
fully biaxial state (as shown, for example, in Fig.
8 for 5= —0. 1).

-Q S = I S= I

20.8 I'Sx) ) &(S)I'I )0.8—
II—
I

I

I

I
0.4—0 4—

I ((
I

I I I
l

I

0 O. I 0.2 0.3 0.4 t O. I 0.2 0.3 0.4 t0

2.0
+Q

0.8—

0.4—

S= 3/2 +Q
I.5—

1.0—

0 I

0.5
I

I.O

0.5—
I

I

I
s I i I I a I

I 5t 0 2 4 6t
+Q

S =5/2 +Q

0.8—

I

I

I

s I s I Is

0 4 8 l2 t

0.4
I

I

I
I I il

0 .05 .IO . I 5 t
FIG. 6. Thermal variation of the order parameter Q

in the uniaxial regime 0 ~g ~1. The corresponding
variation of ((S )~), o.'=x, y, s, is shown for S= 1.
Dashed lines indicate the discontinui. ties at first-order
transitions.

This is a ver'y special case. The eigenvalues
of (13) are A=+ —,'(Qgs+3qsPs)'r'. There are only
two energy levels (each doubly degenerate), so the
system is quite Ising-like. Furthermore, the
single-ion energies (and, therefore, w) depend

0.6—

0.4—

~ z~+i
0.2 — 2.0

TricriticalI

Point

0 0.4 0.8 1.2 t

0.2- 2.0
-P O. i

-i.&+
Y Point

0 0.4 0.8. 1.2 4

FIG. 7. 8=1; the variation
of the quadrupolar order
parameters Q„and P~ fEq.
(18)] with temperature I; and
anistropy q. Note that P~= 0
at n =1.
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8 = .008

le2
Q P

I.O—
Q& 0
P=0

Q&0
P=O

0.8— I ( I

0.2 0.4

'9

l.o—

0.5—

0
0

/
/

/
/

/
/

/
/

Q, P &0

Q&0
P=O

I

0.2

Q&0
P=0

( I

0.4

8 = —.l00 single self-consistent equation R = 4 tanhvR, so
R(t) corresponds to a whole family of solutions
Q(t), P(f) at each temperature

Above g =1 the ordering is biaxial. At t= 0, we
find Q=O, P=+ M3, which represents a dilation
along x and a compression along g (or vice versa)
with 2 remaining fixed.
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FIG. 8. Phase diagrams and thermal variations of the
order parameters for S =1 in the presence of single-ion
anisotropy. Arrows on the phase diagrams show the
ranges of q corresponding to successive transitions.
Positive (negative) Q shifts the tricritical point in the +q,
+t direction (-q, -t direction); for g = —0.1, the tri-
critical point has disappeared.

only on Q and P', so ((l(+ Q, + P) are all degenerate.
All transitions in t are second order and can be
located by the methods of Sec. IIC. For t=0
and 0 & (I & 1 the uniaxial ground state is Q = a 1,
P=O, i.e. , either ((S")2)=((6')~) = —,', ((S')3)=+ or
((S")~)= ((S')2) = +, ((S')~) = —,'. These two alternative
orderings are rigorously degenerate within MFA
and remain so at finite f because of the Q2 depen-
dence noted above.

At g = 1 the system is even more degenerate, be-
cause (o(Q, P) becomes a function of the single vari
able R -=-,'(9Q~+3P3)"2, which must satisfy the

The eigenvalues were given in Sec. IID, where
the low-temperature properties are discussed in
detail. The low-g phase is uniaxially elongated
along z. At g=1 for any finite t there is a first-
order phase transition (with increasing (I) to a
state which is elongated along one of the transverse
axes. Biaxiality develops away from p =1. At low
temperatures and g & 1 there is another first-order
phase boundary, separating the nearly uniaxial
state ((I near 1) from the fully biaxial state, which
always dominates as t-O. This phase boundary
terminates in a critical point at t*=0. 294, g*= 1.34,
beyond which the shape of the ordering changes
continuously. Figure 9 shows the variation of Q
and P.

As for S=2, the low-q phase is uniaxially elon-
gated in the z direction. Biaxiality develops above
q=1. The phase diagram is represented in Fig. 4,
and the thermal variation of Q for q= 1 is given in

Fig. 6. The thermal variation of Q and P for
g & 1 is qualitatively similar to that found for S= ~
and shown in Fig. 10.

It is convenient to normalize the S-~ limit in
such a way that the fundamental variable is 5/S,
which becomes a classical unit vector as S-~.
To do this, we write in (4) J=J/S4, c( =S 6, and
interpret Tr -f (dA)/4v, dropping the irrelevant

l.4

ical

-1,0 P 2

FIG. 9. 8=2; the variation of
the quadrupolar order parameters
Q and P with temperature t and
anistropy q.
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FIG. 10. S=~; the variation of the (normalized) quad-
rupolar order parameters Q and P with the (normalized)
temperature t and the anisotropy q. The normalized
variables are defined in the text.

constant ln(2S+ 1) which appears in w [e.g. , (14)].
Thus, v =S4v and t = t/S'. In place of (ll) one
finds

&(s'/s)') = —,'+ q, &(s"/s)'&= -', ——,'q+ —,'p,

((s'/s)') = —,'- —,
' q ——,

' p .
(19)

We plot the normalized variables t, q, and P.
The behavior is entirely analogous to that of

8= —,
' and we expect qualitatively similar results

for all —,'&8& ~. For 0&g&1 the quadrupoles'9 are
uniaxially elongated along 2, with ((S'/S) ) = 1,
((S"/S) ) = ((S"/S) ) = 0 at t = 0. At rt = 1 the long axis
shifts to x or g. See Fig. 10.

IV. CONCLUSION
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APPENDIX: SYMMETRIES IN THE MOLECULAR-FIELD
PROBLEM

Within the context of Eq. (8),
5

Z=Tr exp+ V;6;, V, =g v„(6,) . (Al)

g is scalar under rotations and must be a function
of the two spherical invariants which can be con-
structed from the quadrupolar field V. '~ These
are

5

polar (I=3) or hexadecapolar (/=4)]2' and to de-
termine the number of independent parameters
necessary to describe the most general multipolar
ordered state. (When symmetries are present, a
proper choice of coordinate axes may reduce the
number appreciably from 2l+ l. ) It seems likely
that the onset of ordering in these new parameters
will tend to drive ordering in order parameters of
lower /. For instance, ordering in a nontetrahedral
octupolar order parameter wil. l drive quadrupo1. ar
ordering.
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We have shown that the description of quadrupolar
ordering in magnetic crystals involves at least two
order parameters, q=((S')2 ——,'S(s+ 1)) and P
= ((S")2—(S')2). The restricted axial situation has
been investigated in detail within the mo1.ecular-
field approximation. Two separate phase transi-
tions in q and P appear only if uniaxial single-ion
anisotropy is introduced into the Hamiltonian (di-
polar interactions might produce a third transition).

One may speculate on the ways in which exact
results for the quadrupolar system might differ
from the molecular-field results which we have
studied. Extensive experience suggests that the
MFA phase diagram is likely to be qualitatively
correct; however, quantitative changes may well
be appreciable. The disordering effects of fluc-
tuations (neglected in MFA) will certainly reduce
all transition temperatures. In addition, the influ-
ence of low-energy collective excitations will ren-
der the behavior of the order parameters at low
temperatures much "softer" than in MFA, partic-
ularly near q= 1. It is quite like1.y, for example,
that the special S= 2 behavior is reduced in scope
or entirely suppressed.

It should be interesting to consider multipolar
interactions of orders higher than l = 2 [e.g. , octu-

I2 = (2/~3 V( (—,
'

Vg —V2) —(2/~3 Vg V2+ 2V2 V4 V2

+ V2[(1/v 3)v, + v, ]+ v', [(I/M3)v, —v, ] . (A2)

The self-consistent equations (9) can then be writ-
ten

&I, &I2
1 s(6) 2 s(s )

+ kj( J) (A3)

where 81nZ/BI, =F,(I„I2), i'2=1, 2. The structure
of the five equations (A3), i = 1, . . . , 5, can often
be exploited without reference to the explicit form
of E& and Fz.

As an example, we sketch the reduction of the
cubic problem (vii = V22 v v28 v44 v22 v v'y
for i wj) to the "restricted" axial problem solved
in the text. We assume for simplicity that v v w0

I
and v ev . (These special cases are easily reduced
to the uniaxial problem by proper choice of axes. )
The following propositions are easily proved by
manipulation of the equations (A3):

(i) If (82), (@,), and (6,) o0, then (s,)=(s2)=0,
and the solution has uniaxial structure along a (ill)
dir ection.

(ii) It is not possible for only one (8;), i= 3, 4, 5, -
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to vanish.

(iii) If (8S) =(84)=(85) =0, then the solution re-
duces to the g=1 case of the text; i. e. , the solu-
tion is uniaxial along a (100) direction.

(iv) If (8~) =W2 (Q"') e0, (84) =(8s)=0, thenthe
solutions reduce to "restricted" axial solutions, re-
ferred to axes (I/v 2) (x+y), s. The cases (Q ) e0
and (Q'') 00 follow by cyclic permutation.
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