Exchange Corrections to the Crystalline Field Parameter C_4 for Rare Earths in the Noble Metals

H. C. Chow

Department of Physics, University of California, Los Angeles, California 90024 (Received 18 September 1972)

A suggestion of Coles and Orbach involving the formation of virtual bound states is shown to account for the fourth-order crystalline field parameter in simple rare-earth-doped metals.

In a recent paper, $^{\rm 1}$ Williams and Hirst reporte measurement of magnetic susceptibilities of dilute alloys of heavy rare earths in Ag and Au, and attributed departure of the susceptibility from a Curie-Weiss behavior to the effect of crystal fields. Williams and Hirst found that their results could be fitted using conventional crystal field theory, with the appropriate symmetry, provided C_4 was negative. The magnitude, as well as the sign, differs from that calculated using a point-charge model. Invoking the hypothesis of a cubic crystal field split by a $5d$ nonmagnetic virtual bound state (vbs) at the rare-earth site, as proposed by Coles and Orbach, a large negative contribution to C_4 was obtained. The magnitude, however, appeared to be an order of magnitude larger than required by the crystal-field-theory fit, and it was necessary to invoke some mechanisms which would reduce this contribution. Specifically, they proposed two mechanisms: "First, because the finite width of the vbs will cause some population of the $5d\gamma$ type orbitals, with consequent cancellation of the nonspherical part of the potential; and second, because the total $5d$ population will decrease from one towards zero as the 5d energy rises from below to above the conduction-electron Fermi enerlow to above the conduction-electron Fermi ener
gy."¹ Their calculation utilized only the Coulom['] interaction between the $4f$ and $5d$ electrons. The exchange term was omitted "because of the small $4f-5d$ overlap." The purpose of this note is to point out that the exchange contribution to C_4 which they omitted is not small, cancels a large fraction of the Coulomb term, so that the mechanisms they proposed do not appear to be the dominant ones.

As noted in Williams and Hirst's treatment, the three $5d\epsilon$ orbitals have lower energy than the $5d\gamma$ orbitals in a cubic host. The vbs model correspondingly requires that it is three (nonmagnetic) $5d\epsilon$ orbitals which contribute to the effective crystalline field experienced by the (magnetic) $4f$ electrons. Let the state of a $4f$ electron be labeled by $|l^a m^a\rangle$ and the three $5d\epsilon$ orbitals be denoted by $\sum_i \alpha_i |l^{b_i} m^{b_i} \rangle$, $\sum_i \beta_i |l^{b_i} m^{b_i} \rangle$, $\sum_i \gamma_i |l^{b_i} m^{b_i} \rangle$, the latter being linear combinations of atomic orbitals with constant coefficients α , β , and γ . The Coulombic interaction E_{Coul} between a 4f state and the first $5d\epsilon$ orbital is given by²

$$
E_{\text{Coul}} = \sum_{i} \alpha_i^2 \langle l^a m^a | \langle l^{b_i} m^{b_i} | \frac{e^2}{r_{12}} | l^a m^a \rangle | l^{b_i} m^{b_i} \rangle
$$

=
$$
\sum_{i} \alpha_i^2 \Biggl(\sum_{k} \alpha^k (l^a m^a, l^{b_i} m^{b_i}) F^k (n^a l^a, n^b l l^{b_i})
$$

-
$$
\delta (m^a_s, m^b_s) \sum_{k} b^k (l^a m^a, l^{b_i} m^{b_i}) G^k (n^a l^a, n^b l^b) \Biggr),
$$

where a^k and b^k are coefficients obtained from angular integrations and tabulated by Condon and Shortely. F^k and G^k are radial Coulomb and exchange interelectronic integrals defined by

$$
F^{k}(n^{a}l^{a}, n^{b}l^{b}) = e^{2} \int_{0}^{\infty} \int_{0}^{\infty} \frac{r_{\zeta}^{k}}{r_{\zeta}^{k+1}} \times R_{1}^{2}(n^{a}l^{a}) R_{2}^{2}(n^{b}l^{b}) dr_{1} dr_{2},
$$

$$
\begin{split} G^k(n^a\,l^a\,,\,n^b\,l^b) = 2e^2\!\!\int_0^\infty\,dr_2\!\int_0^{\,r_2}\frac{r_1^{\,\,k}}{r_2^{\,\,k+1}}\,\,R_1\,(n^a\,l^a)R_2(n^b\,l^b) \\ \times R_2(n^a\,l^a)R_2(n^b\,l^b)\,dr_1\,. \end{split}
$$

The summation is carried out for each of the three $5d\epsilon$ orbitals and the average of the results is taken, in recognition of the fact that each orbital is

Rare $\operatorname*{earth}$	C_4 (°K) from direct Coulomb	C_A (°K) from exchange	Ratio (exchange/ direct)	C_A (° K) Coulomb and exchange	C^{expt}_{4} (° K) in Ag	C_4^{expt} (° K) in Au
Dy^{3*} Er ³⁺	-226.07	192.73	85%	-33.34	-70	\cdots
	-226.89	195.20	86%	-31.69	-70 ± 2	$-32+4$
Yh^{3+}	-220.38	189.04	86%	-31.34	\cdot .	-27 ± 3

TABLE I. Comparison of various contributions to C_4 .

equally likely to form a bound state. It is important as a next step that the interaction-energy matrix be evaluated in full, and made traceless, in order to be cast in the usual crystal field form. Upon completion of this prescription one finds, for the case $m^a = 0$, as an example,

 $E_{\rm Coul} = -\frac{14}{693} F^4(4f, 5d) + \frac{1}{70} G^1(4f, 5d) + \frac{2}{315} G^3(4f, 5d)$

for $Dy^{3*}: F^4(4f, 5d) = 11710.2$ cm⁻¹, $G^3(4f, 5d) = 8510.6$ cm⁻¹ for $Er^{3*}: F^{4}(4f, 5d) = 11752.4$ cm⁻¹ $G³(4f, 5d) = 8585.6 cm⁻¹$ for $Yb^{3*}: F^4(4f, 5d) = 11415.5$ cm⁻¹ $G^3(4f, 5d) = 8304.6$ cm⁻¹,

 $\bf 7$

 $+\frac{1}{3049.2} G^5(4f, 5d).$

The crystal field parameter C_4 may now be obtained by dividing the above quantity by the appropriate operator equivalent matrix element and multiplying factor.³

Using the Coulomb and exchange integrals⁴ from Hartree-Pock calculations

 $G¹(4f, 5d) = 10185.2$ cm⁻¹ $G^5(4f, 5d) = 6541.2$ cm⁻¹; $G^1(4f, 5d) = 10331.0 \text{ cm}^{-1}$ $G^5(4f, 5d) = 6584.6 \text{ cm}^{-1};$ $G^1(4f, 5d) = 10010.8$ cm⁻¹ $G^5(4f, 5d) = 6362.4$ cm⁻¹.

one finds the results displayed in Table I.

As can be seen from Table I, the exchange contribution is opposite in sign to the Coulomb, and (roughly) 8\$% of it in magnitude. The net contribution of the 5d vbs to C_4 is thus the correct magnitude to account for the experimental crystal field parameters used by Williams and Hirst to fit their data. The bare-point-charge contribution is about

five times smaller and of opposite sign, so that the Coles-Orbach suggestion may in fact satisfactorily account for the fourth-order crystalline field parameter in simple rare-earth-doped metals.

I am indebted to Professor R. Orbach and Professor E. Y. Wong for suggesting this work and for many valuable discussions.

- *Supported in part by the Office of Naval Research Contract No. N00014-69-A-0200-4032, and the National Science Foundation Grant No. GH 31973.
	- ¹G. Williams and L. L. Hirst, Phys. Rev. 185, 407 (1969).
	- ²E. V. Condon and G. H. Shortley, The Theory of Atomic

Spectra (Cambridge U. P., New York, 1953), Chap. IV. 3 K. W. H. Stevens, Proc. R. Soc. A 265, 209 (1952).

4We are grateful to Professor A. J. Freeman and to Dr. J. V. Mallow for providing us with these values prior to publication (private communication).