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Several new general methods of series analysis are introduced and tested on an assortment of known
functions. These methods are then applied to several of the series expansions known for the thermodynamic
properties of the spin-;_ Ising model. We are able to obtain an unbiased analysis of the high-temperature |
specific-heat singularity, and find a~0.134-0.01. The application of our methods in other cases generally
agrees with that of previous workers. Our methods in practice amount to procedures for looking more
closely at the dominant singularity, at the expense of accuracy for competing singularities. For certain types
of function, thought to occur in the study of critical phenomena, our methods are noticeably more effective

than those previously employed.

I. INTRODUCTION AND SUMMARY

Although many accurate estimates for the loca-
tion of singularities and the exponents with which
these divergences occur have been made from
series expansions for the thermodynamic proper-
ties of a system, there are also many instances
where accurate predictions of these parameters
have been impossible using current methods of
series analysis. The reasons for obtaining poor
results are not fully understood but certainly in-
clude the failure of the analysis to properly account
for all interfering singularities, and probably also
include the fact that the form of the function may
not correspond to that functional form presupposed
by the method of analysis. This question has been
investigated by Hunter and Baker! (hereinafter re-
ferred to as I) and the examples considered there
illustrate the effect of other singularities and the
form of the function on the accuracy of the analy-
sis,

In this paper we introduce several new, quite
general methods of analyzing series expansions.
These methods are ideally suited to analyze func-
tions of the form

F(x)=ﬁ51A,(1 T (1.1)

§=
This seems a logical form to consider since the
Padé-approximant procedures, best suited to the
form
N

F(x)=A(x)H (1 -2y, 1.2)
although very helpful do not give the desired pre-
cision for some physical functions (e.g., Ising
low-temperature susceptibility and specific heat)
and for some of the functions considered in I. The
form (1.1) is not as general as that proposed by
Thompson et al.,? but their analysis which followed

7

was equivalent to assuming the form (1. 2) (see I).
Our new methods offer an alternative for functions
not of the form (1.2), Of course, the ratio method
does not presuppose that the dominant singularity
factors but, as it is capable of approximating only
one singularity, it is ineffective when there is in-
terference by other singularities regardless of
their form,

Two of our new methods are designed to detect
function forms which, although quite general in
themselves, are special forms of (1.1). We also
consider the completely general case of (1.1), and
finally we modify that procedure to admit the even
more general case where to the right-hand side of
(1.1) one adds any function of x which in our analy-
sis is approximated by a Padé-approximant-like
term.

The first method described in Sec. II is appli-
cable to the case where y; =y for all  in (1.1) and
where an accurate estimate of y is available. (For
the low-temperature Ising susceptibility the expo-
nents for all of the singularities closer to the ori-
gin than the physical singularity (1 - T7/7T,)" " are
very close to #'.) The binomial coefficient (77) is,
for this case, a factor of the series coefficient ¢,
so if the appropriate such factor is divided out of
each known series coefficient, one obtains the
series for a renormalized function whose singulari-
ties are now simple poles. One may then form
Padé approximants directly to the renormalized
series to deduce the location and amplitudes of the
singularities.

The second method is appropriate to detect con-
fluent singularities in a function, and is ideally
suited to (1.1) with y, =y for all 7 when an accurate
estimate for y is available, No other method of
analysis of which we are aware will detect con-
fluence to this degree of generality. In Sec. II B
we derive a transformation which when applied to
a function of the required form results in a func-
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tion whose poles (simple) have the same value as
the exponents in the original function. Our pro-
cedure is also useful for studying functions modi-
fied by the presence of an additive or multiplica-
tive function which is analytic at x=y"!, since when
expanded in a Taylor series about x=y! the func-
tion has the form of an infinite sum of confluent
singularities.

In our procedure for treating the general case
(1.1) with no restrictions, one calculates a set of
estimates for the 3N parameters A4;, y,, and y;,
i=1, ..., N, by requiring that exactly 3N coeffi-
cients in the expansion of the right-hand side of
(1.1) agree with the corresponding coefficients in
the given series. The conditions so imposed are -
nonlinear in the parameters y; and v;, and the
solution of the equations is a difficult numerical
problem. The method and the difficulties which
arise are discussed in Sec. IIC. The generaliza-
tion to include a Padé-approximant-like term
makes the method applicable to a more general
class of functions than (1.1) and in some cases it
permits us to obtain reasonable approximants to a
series using fewer general branch-point singulari-
ties. The generalized approximants are charac-
terized by parameters N, D, and M, which are,
respectively, the number of branch-point singulari-
ties of the form (1.1) and the order of the denomi-
nator and numerator in the additive Padé term.
The case D=0 corresponds to the procedures de-
scribed in Sec. IIC, and varying M merely deter-
mines which block of 3N coefficients is used in cal-
culating A;, y;, and v;. This generalized proce~

dure is discussed in Sec. II D.
We have applied these methods to several test

functions including those used in I in studying the
previously available methods. For the first two
methods we find the analysis is straightforward and
the results agree with what we would expect to
see on theoretical grounds. In applying the most
general form of analysis we occasionally find it dif-
ficult or impossible to solve for a particular ap-
proximant. In particular, for given N, it becomes
very difficult to obtain solutions for large D and
our tables have not yet been extended to include
such approximants. However, the evidence is
quite clear that for functions close to the form
(1.1) our general method provides more accurate
estimates of the critical parameters (up to three
more significant figures) than do the methods de-
scribed in I. For those functions where the domi-
nant branch point is multiplied by some function of
x we found, as expected, that the standard pro-
cedures were as good as or better than the new
method.

Finally, in Sec. IV, we apply the new methods to
some spin-% Ising-model series. The analysis of
the low-temperature-susceptibility series using the

|3

exponent-renormalization procedures indicates
that although the exponents of the nonphysical sin-
gularities are probably all equal to one another and
close to y’, they probably do not equal y’. We al-
so conclude, on the basis of negative results using
the confluent-singularity method, that the present
imprecise results for the Ising low-temperature
functions are probably not due to a confluence of
singularities.

Although the application of the confluent-singu-
larity method to the high-temperature specific-
heat series gave no indication of confluence, the
Padé analysis of the transformed series did pro-
vide a biased table of estimates for a. We found
these to be in excellent agreement with the best
biased-ratio sequences® for the three-dimensional
lattices we studied.

We have applied the most general method to two
high-temperature series and to the low-tempera-
ture susceptibility. For the high-temperature sus-
ceptibility the estimates of all the parameters as-
suming N=1 are very smoothly behaved. The esti-
mates for y are consistently just a little below the
best estimates using Padé approximants and ratios
(~1.246 vs 1.250), This deviation is probably due
to the assumed additive form, and we do not sug-
gest any revision to previous conclusions. For the
high-temperature specific heat, our results which
are unbiased by any assumed value for the critical
point y indicate that the exponent

a=0,13+0.01.

This is in good agreement with the accepted value
a =% due to Sykes et al.,® whose published se-
quences of estimates depend upon the choice of y.
Our results represent a more complete set of
unbiased estimates than are obtainable by the un-
biased-ratio procedure [Eq. (2.7) of IJ.

The low-temperature susceptibility on the sc
lattice has two important branch points which we
have tried to study using N=2 in our general pro-
cedure, Owing to numerical problems we are un-
able to reach a conclusion concerning the amena-
bility of this function to this type of analysis. The
evidence indicates that if the form we assume is
reasonable, then either there are more singulari-
ties beyond the Curie point which must be ac-
counted for by increasing N, or else we need high-
er-order denominators in the Padé-type term to
better approximate the corrections to (1.1).

II. SERIES-ANALYSIS METHODS
A. Exponent Renormalization

We shall first consider analytic procedures ap-
propriate when the form of the function is a re-
stricted case of Eq. (1.1). In the first instance we
consider the case where all the y,’s are equal and
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where a reliable estimate of their common value—
say, y—is available. We shall refer to this pro-
cedure as the equal exponent or exponent-renor-
malization procedure. For the restricted form

F0) =2 A1 - y,07 (2.1)
i=1
the expansion coefficients have the form
42 AL 3 2.2)
1=

where the binomial coefficient () is now a factor
of @;. We wish to consider the auxiliary function
F(x) whose éxpansion coefficients have the form

a;k=§At(‘ )

and are obtained by dividing the coefficients of the
original function by (*}). F(x) has the form

sr(x)=fi 2A51A‘(-y,)fxf=f5 A
j=0 =

(2.3)
-1 l+yx

The auxiliary function has simple poles (rather
than branch points) located at x=— y;; the residue
at each of these poles is A4;/y;. The auxiliary
function is of the form of an [N—-1/N] Padé ap-
proximant,

The series-analysis procedure we propose for
situations where it is reasonable to assume that the
function the series represents may be of the form
(2.1) or at least closely approximated by it, is to

form an auxiliary series by dividing the coefficients

a; by binomial coefficients (7), form Padé ap-
proximants, particularly [#—1/x] approximants,
directly to the auxiliary series, and examine the
roots and residue of these approximants.

If the index of one of the singularities—say, on
the real axis—is not exactly the value chosen for
renormalization, then the Padé approximant to the
auxiliary function will contain an alternation of
poles and zeros spreading outward along the real
axis from the expected location of the singularity.
This type of pattern is the way in which a Padé ap-
proximant will approximate a branch cut in a func-
tion, The residue of the branch point (end point of
the cut) may no longer give a reliable estimate of

the amplitude of the singularity in the original func-

tion.
B. Confluent-Singularity Analysis

The second restricted case applies to the case of
confluent singularities, i.e., to

Flx) =2°51 AL =yt (@.4)
i=

where all the singularities of (1.1) are restricted
to fall at x=y"!, Usual Padé-approximant pro-
cedures are only capable of detecting the strongest
such singularity. Correction terms to the ratio
equations have been calculated for the case of two

confluent singularities? but simultaneous solution
for the two exponents is very difficult; rather, one
may calculate the location and the secondary expo-
nent given the primary exponent. For our pro-
cedure using Padé approximants, one may esti-
mate any number of exponents associated with con-
fluent singularities given the location.

From (2.4 ) we form an auxiliary function F(¢)
in two steps. First we expand (2. 4) in the vari-
able &,

f(g)E F(x(g)) =§.A4e-74 1n(1- yx)

. Rek
=f)A,e’t‘ 35 % At , (2.5)
i=1 i=1 R=0 kl

where
x=yHl=-e"%). (2.6)

Now multiply the %th coefficient in the expansion by
k! to obtain the expansion of F(¢),

F(E)=2 T Attt @.7)
i=1 k=0
and performing the » summation,
5(5)=f‘/ A (2.8)

i=1 1"7{& )

The auxilary function & (¢) has simple poles at ¢

=1/y, and residues — A, /y,, all of which may be

determined from the Padé approximants to F(¢).
Using the simple integral identity

fo”e-ft"dt=n1 , 2.9)

we note that the transformation from f(£) to F(¢)
can be expressed as

F(e)=[ e teg) dt=(1/8) £(1/¢) (2.10)

=f0’°e'*F(y-‘(1—e-“))dt, @.11)
where £(s) is the Laplace transform of f(z). The
complete transformation (2. 11) from F(x) was ob-
tained by substitution of (2. 5) into (2.10). Since
we then approximate F (&) by a Padé approximant,
we may then formally obtain the approximant to
F(x) using the inverse transformation

1 ("1 _n
F - = = -p1n(1- yx) .12

) 2mi -[-iw p E(P) ¢ a, (2.12)
where the constant ¢ must be chosen greater than
the maximum of the real parts of the vy,, i.e., so
that the line Re(p)=c may be the right-hand bound-
ary of a contour in the p plane which encloses all
the singularities p=9,. However, this is equiva-
lent to writing

F(x>zf‘,1A,(1 )T (2.13)
i=

directly from the roots and residue of the Padé ap-
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proximant,

We therefore have a procedure for detecting con-
fluence in the singularity structure of a series if
it is reasonable to assume that the form of the
function the series represents is close to (2.4).
We apply the transformation defined by (2. 5) and
(2.10) to the series for F(x) and form Padé ap-
proximants to the transformed series. If F(x)
were exactly of the form (2.4), then the approxi-
mant [N - 1/N] would exactly represent the trans-
formed function. Exponent values close to zero
will be difficult to detect because in the trans-
formed function they appear as poles that are well
away from the origin and hence are poorly approxi-
mated in the Padé approximant.

This procedure has the added advantage of being
able to represent quite accurately functions of the
forms

Flx)=(1 - yx)-"g(x)
and
F(x)= A(1 = yx) 7 + glx) ,

where g(x) is analytic at x =y, provided a suffi-
cient number of terms in the expansion of F(x) are
available, With g{(x) expanded as a Taylor series
about x=y!, the form of (2.14) and (2. 15) is the
same as (2.4) with N=«, Finite-order Padé ap-
proximants [z — 1/x] then represent F(x) in a trun-
cated form,

The location of the poles of interest in the trans-
formed function is found to be quite insensitive to
errors in the estimation of y. If for a particular
singularity the value of y used in the transforma-
tion differs from the true value by Ay, then we ob-
serve that the error of the [m+1/m] Padé approxi-
mant in the estimated exponent is of order
(yy+2m) (Ay/y), while the error in the amplitude
is of order (y, +2m) In(y, + 2m) (Ay/y). In princi-
pal, however, if we pick too large a value for y,
there will be no real positive pole, but a pair of
complex singularities in the ¢ plane., If, on the
other hand, we select slightly too small a value
for y, a cut on the entire positive real ¢ axis is
required.

If we define F(£) by (2.11), which is valid for
any formal power series F(x), then by the integral
representation, and by contour rotation, if F(x) is
continuous on 0<x<y! and diverges no faster than
A(l = xy)"? at x=9yY, then F(¢) is regular in |yz-%|
<%, Of course, many times F(¢) will be analytic
in a wider domain than this minimal one.

(2.14)

(2.15)

C. General Analysis for Additive Singularities

The general case, where we consider Eq. (1.1)
and do not specialize any of the parameters or as-
sume accurate prior knowledge of any of them, is
much more difficult to treat. If there are N terms

in the right-hand side of (1.1), we seek a scheme
to simultaneously estimate the unknown param-
eters 4;, y;, and y, for ¢=1, ..., N. We may
choose these parameters so that any 3N coefficients
in the expansion of (1.1) agree exactly with the cor-
responding 3N coefficients in the actual expansion
we are dealing with, In fact, we solve the equation

ﬁéi(']f)(—yi)’:a,, j=d,J+1,...,J+3N-1,

=1 Vi
J#0, (2.16)

where we have modified the assumed form (1.1) to
become

F(x)=Ao+f> é[(l—yix)"'i—l] R (2.17)
i=1 Vi

so that the possibility of a logarithmic singularity

of the form

A, In(1 - y,x)

is included in (2.17) in the limit y,~ 0. If the g,
are known for j> 3N, then we may solve (2.16)
using successive consecutive blocks of 3N coeffi-
cients and hence obtain sequences of estimates for
each of the parameters.

The v, and y; dependence in (2. 10) is nonlinear;
so we must resort to an iterative numerical-solu-
tion procedure. The problem is most easily cast
in the form of a minimization problem, i.e., to
find the point for which

5(A1,3’1:7¢)EJ+3£-1 <aj‘§ 4 % (-51)(—3&)1)2

(2.18)

(2.19)

7 +3N-1
= ff $2~0.
i=d

There are many numerical procedures available for
the minimization of a nonlinear function of several
variables including modified Newton-Raphson pro-
cedures, gradient procedures, and eigenvector
procedures; all of these procedures require start-
ing values for each of the parameters, the required
accuracy of which depends upon the nature of the
function. However, we have found that for (2.19),
even in controlled situations where the starting
values are known to be very accurate and for N
values as low as 2, the function § is so poorly be-
haved that the repeated application of any one
recognized procedure often does not lead to a solu-
tion. To solve (2.19) we have developed a diverse
strategy method which includes several possible
minimization techniques. The first is a modified
Newtorl—Raphson procedure where the step direc-
tion Apu is calculated by

8%s -8

= (2.20)
o ouFap, M TayF
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and where

=4, Hison =Yi » i=1, ..., N.

(2.21)
Since we deal with series with real coefficients,
the singularities are either real or occur in com-
plex-conjugate pairs. In the former case, uf=p;.
In the latter case, the complex-conjugate pair pu,
and u,,,are relabeled pu; and p¥ for clarity. Two
variations of this method where the minimization
is performed with respect to the A and y variables
and with respect to the A variables alone respec-
tively, are also used. The other two techniques
are a second-order gradient procedure where the
step is along the curve, expressed paramatically
in t as

His N = Y1 5

N1 1 9%s 88
Pouf T2 apep, ouf

t?, (2.22)

and, finally, an “eigenvector” procedure where the
step direction is along the eigenvector correspond-
ing to the minimum eigenvalue of the matrix with
elements 8%/8u*dp,. The local nature of the
second-derivative matrix is used to order the pro-
cedures according to their likelihood of achieving
the greatest reduction in §. The procedures are
then attempted in that order, with searches for the
minimum along each step direction, until one is
found which achieves a sufficient reduction to satis-

fy a predetermined criterion and that step is taken.
If none satisfies our criterion, the one coming
closest is used. The diverse strategy approach
sacrifices computation time in order to ensure that
the best reduction is obtained at each step. Details
of this procedure have been published elsewhere.?
The use of this basic diverse strategy has en-
abled us to solve (2.19) for various test functions
and for several series from the theory of critical
phenomena. However, to improve the efficiency
it has been desirable to supplement the features of
the basic strategy. In many cases it is possible
to use the best estimates obtained from Padé-ap-
proximant analysis as starting values of the pa-
rameters. However, when reliable estimates of
all parameters but the amplitudes are available,
it is easy to perform a minimization with respect
to the A; alone, since § is purely quadratic in
them. We have also developed a modification of
the y-renormalization procedure, which enables
us to obtain reliable starting values for the y; when
the assumption that ¢, = for all { is reasonable
and an estimate of y is available, However, since
we are trying to fit 3N coefficients (aj) simulta-
neously and the freedom to choose the A;’s allows
us to fix N of them, the Padé denominator, from
the roots of which the y,’s are calculated, is ob-
tained by a “least-squares” matching of 2N series
terms rather than an exact matching of N terms.
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A further optional feature used in conjunction
with the diverse strategy is the so-called David-
enko method® by which a problem with a known
solution is continuously distorted into the one for
which the solution is sought. Let us suppose that
fl‘-, y;, and ';/i are initial estimates of the param-
eters we seek, We define

2= A, /5) (=3, @.23)

so that 4;, %, and ¥, define the minimum point of
(2.19) when a; is replaced by @;. The Davidenko
problem in this case is to minimize (locate zeros
of)

J+g—1
S(Ai’yi,‘)’l’x)z (&j +)\(aj-&j)

2
'éAt 717('5’) (- y;)’) . (2.24)

where, for A=1, (2.24) corresponds to (2.19).

The standard procedure is to vary x from 0 to 1
using the solution 4;(\,), y;(\,), ¥;(x,) as the start-
ing point in seeking the solution for X,,;. Using
the identification (2. 21), we note that for any solu-
tion §=0, the conditions

98

a—uf =0 (2.25)

A=0

determine the pu; implicitly as functions of x.
Therefore on the locus of solutions (V$=0) the con-
dition
82 s 2
J=1 8“-}*8“'{
enables us to calculate dp, /dx. Hence we can
project even better starting values

dx=0 (2.26)

d+_88__
Kt guron

A

Ilj(xk+ V= uj()\k)+.t_ldiij. ANy, (2.27)
where 2, ,;=X,+A), and A), is not too large, given
the present solution y,(,). It is better to make
the projections (2.27) on a Riemann sphere rather
than in the plane because A; may pass through in-
finity as the corresponding y; takes positive inte-
ger values; and similarly as y; passes through
zero, v; passes through infinity, changing signs in
the process. The choice of A\, is arbitrary but
we seek to choose it small enough to require only
a few iterations to reach the new solution p;(,, ;)
but large enough not to require too many incre-
ments in A to reach A=1,

D. Extended Form of General Analysis

In order to approximately account for the possi-
bility of a more general form than (1.1) (e.g.,
additive entire functions, more than N singulari-
ties, or variations in the nature of the singulari-
ties), we have extended the general form of analy-
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sis to match the first 3N+ M+ D+1 terms of the
series to the form

- 4; _ - _ Py(x)
F(x)—é oy [(1 =y 7 11*5&5’ (2.28)
where
Py0)=25 @y
1=0
and
(2.29)

Qu(x) :Z—Z 2p- kxk .

Without loss of generality we may choose the con-
stant coefficient 9,=1. The second term has the
same form as a Padé approximant and it is capable
of approximating up to D singularities (admittedly
not precisely if they are not simple poles). The
inclusion of this term may account for several
singularities of lesser importance and mean that
reliable approximations can be obtained for smaller
N than would be otherwise required. .

For D=0, Q,(x)=1.0, Eq. (2.28) has the same
form as (2.17) when Egs. (2.16) are solved for
J=M+1. The sequences of estimates obtained us-
ing the original procedure correspond to the esti-
mates we would obtain fitting (2.28) to the first
3N+ M terms of the series with D=0 and M ranging
from 1 to the maximum permitted by the length of
the series.

Although we may now do well with a smaller N,
for a given N and D >0 the problem of solving for
the unknown parameters in (2.28) is obviously
more difficult. The condition we impose is

= A, _ v _ _Pyx)

= 0(x3N+M+ D+1) ] (2. 30)

Multiplying (2. 30) by @,(x) and expanding the func-
tions on the left-hand side, we get

min(j, D)
<aj_ P ‘é ATy 5 al=9)" k) 2p- k] x

)
225 By = OGO Y) | (2.31)
1=0

where the symbol T'; , =(1/;) (;}) for i>1, and

T, 0=0. The second term on the left-hand side
does not affect powers of x higher than M; so if we
select the values of the A;, y;, ¥;, and 9,_, S0
that the coefficients of x from order M+1 to M

+ D+ 3N inclusive vanish, then the coefficients.
®,.; may later be chosen to satisfy the conditions
on the terms from order 0 to M. For this case
then we have to solve the nonlinear equations

min(j, D)
<aj- k —iﬁ:lAiri']- K= yi)]-‘k) 25270,

k=0

AND D. L. HUNTER 7

9p=1, j=M+1, M+2,...,M+D+3N (2.32)

from which we obtain the minimization problem

2
<a,_ k ‘jéAiri,j- wl= )" k)-‘ZD- k]

(2.33)

which is the analog of (2.19) for the generalized
case,

Rather than minimize § simultaneously with re-
spect to the y’s and the 2’s [u’s defined as in
(2.21)], we take advantage of the fact that with re-
spect to the 2’s alone Eqs. (2.32) are linear. Our
procedure is to choose starting values for the u’s,
solve for the ’s which minimize § keeping the u’s
fixed, then calculate an increment in the u’s (using
the diverse strategy procedure already described)
which will tend to minimize 8 with respect to the
w's. The @’s vary implicitly with the y’s. Since
each evaluation of § now requires the solution of
D linear equations, the computation time rises
rapidly with D.

Using this minimization procedure, we have been
quite successful in obtaining solutions for small
values of D. However, for larger values of D we
often encounter difficulty.

III. NUMERICAL RESULTS ON TEST FUNCTIONS

M+ D+ 3N [ min(j, D)

J=M+1 k=0

- minimum=0,

In this section we apply the new methods of analy -
sis to various test functions including the functions
labeled A- K from I (where they were analyzed
using the previously available procedures). For
convenience we list again in Table I the functions

TABLE I. Test functions A—O which we have used to
study the effectiveness of the methods of series analysis.
Functions A-K are discussed in more detail in Ref, 1.

@ —x)'1'5+e"‘

(1 =x)"1501 +%x)1.5+e-x

(1 —x)"15(1 —%x)1’5+ et

1 _x)-i.s +(1+ }vcz)-l.% +(1+ ﬁ%" - z%"2)--1.25

(=) 5+ Fo0) 10+ (L J D)1 (1 o — ) 1o
1 —x)""”(l _%x)1.5+ (1+éx2)'1'25+(1 +I11_5236_4%762)-1.25
1 =x)15+{2(1 = x) (2 = x)8/[(2 = %) = xT]}1-2

(L =) 15 (L + 3154 {2(1 = ) (2 = )8/ [(2 = )T = 7] }125
@ =x)15 (1 =204 21— 0) (2= )8/ [(2 = )T~ "] }1 25
(1L —x)"1e54 (1+-§»x)'1’25

A =x)15 4 (1+%-x)‘1'25+ e

L) A (=) (=) s (L )24 (L) 44

tanx'/2 8 (0 4 Nt o2z (3 1\( 4\ ..
% L w\en? T8 J\ TR

1 =x)l/2 [1+2(1 —x)1/2
{@ =021+ R -0V 2

O 2 ¥ MRS~ O HY oW
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TABLEII. Locationofpoles in some Padé approximants.

Poles in [5/6] Poles in [9/10] Expected poles

+1.7581 +1.7510 +1.7500

—~0.0044+1,9862  0.0022+2.0033  +2.0000;

—0.9939 ~0.9968 -

~1.1106 —1.0460 cut beginning

—6.3013 —1.2344 at—1, 0000
ete.

A-K together with the additional test functions we
will use in this section.

A. Exponent-Renormalization Method

When this procedure is applied to functions with
the precise form (2.1), the [N-1/N] Padé approxi-
mant in theory should exactly reproduce the re-
normalized function, and attempts to calculate
[n+p/n], n>N, p>~1, should produce singular
matrices. However, numerical roundoff effects
which may arise can cause slight deviations from
the exact result. Padé approximants [m/n], where
n< N, are unlikely to give very accurate predic-
tions for the location of # of the poles in the re-
normalized function unless the N - other poles
are relatively very weak (much further away from
the origin or with much smaller amplitude). For
example, a Padé€ approximant forced to approxi-
mate two poles of equal amplitude at x;=+1 and
x2=+2 by a single pole might have that pole located
at x4, =1.20; as x, increases or the amplitude of
that pole decreases, x,,, would move closer to x;.

If the function being analyzed has the form of
(2.1) with an additive entire function as well, the
renormalization goes through as before except that
now there are contributions from the extra term
added to the coefficients. Since the exponent-re-
normalization transformation carries any entire
function into another entire function (y# negative
integer) the analysis is the same as for a mero-
morphic function with only a finite number of poles.
For y=1, (-7)(~1)" is a slowly varying function of
n. We are not surprised, for example, to find
that the direct Padé analysis of

$(x)=251(1 — ) 04 ¥ (3.1)
i=

is qualitatively similar to the Padé analysis of the
renormalized function obtained from

f(x)=i1(1 — )yt ® (3.2)
i=

where y,==1, =%, +%, +1fori=1, 2, 3, 4,

We have analyzed functions A-K by the method
of Sec. II A, renormalizing with respect to three
exponent values y,=1.25, 4,=1.375, and y,=1.5.
For vy, #1.5, the dominant singularity at x=+1 in

each of these functions appears in the Padé ap-
proximant to the renormalized function as the be-
ginning of a cut represented by a sequence of poles
and zeros beginning near x=-1.0 and stretching
out along the negative real axis, provided the or-
der of the approximant is sufficiently large. If we
denote by & 5, the function obtained from a func-
tion Z by renormalizing with respect to y,, the
[5/6] and [9/10] Padés to Fj, ; o5 have poles at the
locations given in Table II. The singularity in D
at +% does not appear as a pole inthe Padé ap-
proximant at -4, since it would lie on the cut
axis. On the other hand, in Padé approximants to
Fp,1.5 We would expect to see a pole at +1.00 and
cuts along all four semiaxes starting at +§, -4,
and + 24, This behavior is approximately what we
observe in, say, the [9/10] Padé approximant, al-
though some of the complex poles do not quite fall
on the imaginary axes. For E and F using y,
=1,25, the behavior we see is similar to that for
D, since x=-1.0 is already a branch point in
Fp,1.25- In Fp 4 o5 there is an indication of a cut
due to the convergent singularity in F, since it lies
opposite the dominant branch point. Using ¥,
=1,50 to renormalize E and F still leaves a cut on
the negative real axis, this time caused by the fac-
tors multiplying the dominant singularity. Hence
there is little difference between &Fp 1 o5 and Fp 4 5
unless we can form high-enough-order Padé ap-
proximants to see the cuts on the other three
semiaxes in Fg 4 5.

The behavior of G-I when analyzed by the method
of exponent renormalization is as we would expect
except that cuts along the line Re(x)=1 are hard to
detect since it is already crowded with singulari-
ties. The cut on the real axis when y,=1.25 is
very apparent in the Padé approximants; it is not
so apparent in H and I for y,=1. 50.

For J and K the results of this analysis are
straightforward: The singularity whose exponent
matches the value used for renormalization is
represented by the Padé approximant to a very high
degree of accuracy; there is a long line of poles
and zeros stretching outward from the other singu-
lar point.

When the functions are renormalized using v,
=1, 375 none of the singularities transforms to a
simple pole, so that Padé-type approximations to

branch cuts abound.
The accuracy with which the exponent-renor-

malization method predicts the locations of the
singularities in the functions A-K is tabulated in
Table III for two values of the renormalization ex-
ponent, v,=1.50 and 4, =1.25. The parameter

tabulated is ¢, defined in I as
€= = 10g10pn ’ (3. 3)

where p, is the relative error in estimating one of
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TABLE III. Values of ¢, for estimates of y; using »
terms of the series (for functions A-K) by the exponent-
renormalization method. Renormalization is performed
with respect to two different values: 7v,=1.50 (true ex-
ponent for 7=1) and v,=1.25 (true exponent for = 2).

Test ¥,=1.50 Y,=1.25

series A n=10 n=15 n=20 n=10 »n=15 »n=20
A 1 7.0 >7.0 >7.0 1.8 2.1 2.5
B 1 2.5 3.5 4.0 1.5 2.2 2.4
C 1 2,3 3.1 3.7 1.6 2,2 2.6
D 1 3.1 4.7 7.0 1.4 2.0 2.5
2 1.2 1.2 2.0 1.6 2.7 3.2

3,4 1.1 1.4 1.8 1.1 2.1 2.7

5 eee soe cee ee e eee ee e

E 1 1.9 3.2 4.0 1.7 2.1 2.2
2 1.1 1.7 1.7 2.3 2.6 2.9

3,4 0.9 1.4 1.8 1.5 2,2 2.7

5 cee es e cee ee e ee e see

F 1 1.9 2.7 3.1 1.7 2.3 2.3
2 1.1 1.2 1.8 2.0 2,2 3.2

3,4 0.7 1.4 1.5 1.4 2.4 2.7

5 see eeo seo oo e o0 e

G 1 2.4 3.3 4.5 1.5 1.8 2.1
2,3 cee 1.3 1.7  eee 0.7 2.0

4,5 e 1.3 1.5 see 1.0 2.1

6,7 *vo 0.9 1.2 e 0.8 1.7

H 1 2.2 2.7 3.2 1.5 1.8 2.0
2,3 e 0.5 1.7 see 0.4 1.4

4,5 e e 1.4 oo e 1.6

6’7 see eee 0‘7 D) s 0'6

I 1 2.0 2.2 2.4 1.6 1.9 2.1
2,3 e 1.5 2.0 e 1.3 2.7

4,5 e 1.4 1.5 eee 1.6 2.1

6,7 e 1.0 1.4 eee 1.2 1.7

J 1 6.7 >7.0 >7.0 2.0 2.0 2.6
2 1.9 2,2 2.5 5.7 >7.0 >7.0

K 1 5.2 >7.0 >7.0 1.8 2.1 2,5
2 1.6 2.0 2.4 2.6 5.3 >7.0

the critical parameters (in this case y;) using »
terms of the series expansion,

B. Confluent-Singularity Method

As with the first method, when the series being
analyzed represents a function which is exactly of
the assumed form, in this case (2.4) for finite N,
then the [N —1/N] Padé approximant will exactly
represent the transformed function. Minor excep-
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tions to this are observed due to rounding effects
when the inverses of two exponents are very close
together. If y4=0, i.e., the last term in the func-
tion is an additive constant, the transformed func-
tion will be exactly represented by the diagonal
Padé approximant [N —1/N-1] rather than by
[N-1/N].

When an entire function is added to the form
(2. 4) as in the case of function L (Table I), the
transformed function will contain poles corre-
sponding to the leading terms of the Taylor-series
expansion of the entire function. These poles tend,
with rapidly decreasing residue, to a limit point
at £=0, Whereas when the last term in L is miss-
ing we obtain the five indices exactly from the [4/5]
Padé approximant, from the [9/10] Padé approxi-
mant to the transform of L we see poles as given
in Table IV. The two strongest singularities, cor-
responding to y; =F and y,=1, are represented ac-
curately. Beyond that the representation of the
singularities is much less accurate. There is as
expected an infinite sequence of singularities con-
verging on the origin from the expansion of the en-
tire function; the amplitude of these singularities
tends to zero as predicted. Hence the Padé ap-
proximant shows poles which are compromise val-
ues for the more important terms in the Taylor
expansion (marked *) and the other three singular
terms in the function, but from which, in this or-
der, it is impossible to deduce reasonable values
for Y3s Ya> and V5

As another example, we have considered the
function M whose divergence at the singular point
x=%4n% is described by the expansion which is also
given in Table I. The transformed function for
M has the form

FulB)=A,, 1 =)+ A+ AL +E)y 400, (3.4)

where A, ,=0.8106, A,=0.2026, and A_, = - 0.0147.
From the [4/4] Padé approximant we find poles at
£,1=1.0000 and ¢ _;=-1,1638, from whose residues
we predict A,;~0.8104 and A_;~~0.0155. From
an [n/n] Padé approximant we estimate

Ag=lim[n/n] as t—-o, (3.5)

and for the [4/4] we obtain A;~0.2034. {Note: An
[#—=1/xn] Padé approximant will approximate a con-
stant by putting a pole &, far from the origin so that
Ayl - £/E) = Ap. This was illustrated in the
[9/10] Padé approximant in the previous example.}
Higher-order Padé approximants show improved

TABLE IV. Padé-approximant poles for the confluent-singularity-method transformation of L.

Expected poles *

[9/10] poles +0.57  +1.02 +10.50

+0.57  +1 +4 o -2 -1*
-1.11 =-0.56

_% -1 -1 L _15_
-0.30 =0,20 -0.15 -0,11 —0.08
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precision in £_; and A_; and also approximate addi-
tional terms in (3.4).

The function N illustrates a problem which may
arise., We expect to see confluence of the form

Fy(x)=(1 = x)t2 = k(1 - x) + 21 = x)3/?

-l =xf+eee . (3.6)
However, for the case k=1 (and similarly k= ~1),
the function is singular on one of its branches for
x=0, i.e., when (1 -x)}/2=—1, In these special
cases, FN(x) does not have a Taylor-series repre-
sentation, For k=% this singularity moves to x
=-15, On applying the transformation we see
clear estimates for the first two terms in (3. 6);
for example, from [9/10], y,=-0.500006, A,
=1,0001 and y,=—0,9964, A,=-0,2438. The
other singularities seem to be tending toward their
limiting location from off the real axis. For &

= -1 we see the first three terms in (3. 6) with ac-
curacy comparable with the above and we note that
the remaining roots of the Padé approximant are
real., For the test function O, where the con-
fluence we are looking for has the form

Fo)=(1=x) 2+ PL =) 2= P(L = x) 4o+,

the results obtained are qualitatively similar and
of about the same accuracy as for N. However,
now, because of the constant term, we prefer to
look at [#/n] Padé approximants and estimate the
constant using (3. 5).

The usual Padé-approximant procedures applied
to the logarithmic derivatives [d InF(x)/dx] of these
functions are only capable of revealing the leading
exponent at any of these singular points. The esti-
mates obtained by the usual Padé-approximant
procedures for N and O are much less accurate;
typical values of y,~ - 0,503, A;~1.02 are fully
two to three significant figures worse than those
quoted above for the confluent-singularity method.

We have analyzed test functions A-F using the
confluent-singularity method, performing the
transformation with y=1. Hence we are looking
for “confluence” at the location of the strongest
singularity. We would expect to see the leading
exponent y; =1.5 in all six cases. Since A and D
have no factor multiplying this singularity, we will
see only the effect of an additive Taylor series
(since in both cases the additive terms are analyt-
ic at x=1); that is, subsequent y’s should be 0,
-1.0, -2.0, .... However, for B, C, E, and
F the dominant singularity is multiplied by a fac-
tor analytic at x=1, and hence we should also see
exponents +0.5, —0.5, —1.5, ... in addition to all
of the above. The behavior of A is as expected;
we are able to see clearly the first six terms from
the [9/9] approximant. The leading exponent is
given to eight-figure accuracy, the second term
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(the constant) corresponding to y=0 is obtained to
five-figure accuracy from (3.5), and the sixth
term (y=-4.0) is given to 7% accuracy. The be-
havior of B and C is clearly not the same as for A.
The value y=+0.5 is clear, while the exponents of
the opposite sign are not so distinct and not all the
expected values appear. Rather, for B, where the
multiplying factor at x=1 is three times as great as
it is for C, the exponents tend to be closer to the
sequence —-0.5, -1.5, -2.5, ..., and for C they
tend to be closer to the sequence - 1.0, —2.0,
-3.0, ... . The complexity of the functions D-F
precludes obtaining any detailed results using this
method. For D we do see both the leading singu-
larity to four figures and the constant to two fig-
ures. For E and F we obtain the leading y to two
figures, but we can conclude nothing beyond that
except that their behavior is not similar to D.

C. General Method

We will denote a generalized approximant of the
form (2. 28) by the symbol [N, D, M]. We have
formed such approximants to the series expansions
of the functions A-K for various values of N, D,
and M and using up to 20 terms of the expansions,
i.e., 3N+D+M<19. As we pointed out earlier,
we encounter difficulty in calculating the approxi-
mant for other than quite small values of D. We
have obtained some approximants with N=5 for
function D, but these also are difficult to obtain;
so usually we rely on the Padé-approximant term
to approximate the less important singularities as
simple poles. Approximants of the form [N, 0, M]
correspond to the procedure described in Sec. IIC
and, of course, in the new notation [0, D, M] is the
usual [ M/ D] Padé approximant.

The class of approximants for which we have
calculated the largest number has the form [1, D,
M]. The estimates for the parameters describing
the strongest singularity which are obtained from
such approximants are summarized in Table V.
The number tabulated for each value of D is

€3. D+ Mgy INE Maximum order of the numerator,
M, ., may be determined from the column headed

“M values” which lists those values of M which

we were able to calculate approximants for the giv-
en D value. In some cases M,,, is not the maxi-
mum value which is theoretically possible given

20 terms of the series.

In considering the pattern of divergent singulari-
ties in the functions A-K, the functions obviously
fall into four groups: three groups of three in con-
secutive order with J and K forming the fourth
group. We note that J is exactly of the form (2.1),
A, D, G, and K are close to that form, and the re-
maining functions differ more from that form in
that the strongest singularity is multiplied by
some function of . However, in Table V we are
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TABLE V. Values of € for estimates of y; and 74
from (1, D, M) generalized approximants to the functions
A-K. The value tabulated for each value of D represents
the best estimate from a sequence of approximants for
the various M values shown in the last column.

Series 1 Y1 M values

A

>10 >10 1-16
>10 >10 0-15
>10 1-14
>10 2-13
>10 3-12
9.0 67

1-16
0-15
1-3, 57
2-6
3-16

0-15
1-4, 69

ESJRN IRV R P I NN NN

0,1,4-16
0-15
1-3,5-7,9-11,13,14
29, 11~13

3-6,8-12

5-8

5

0-16
1-15
1-3,5-7,9,11,12
2-11

4,6,8-16
0-15
1-3,5-7,9,10,12, 14
212

3-8,10-12

0-12,16
0-2,4,5,7,8
1,3=5,7=9
24

0-16
0-2,4,5
1,3-12
2,3

1-11
0-2,4,5,7,8

0~15
1-9,12—14
2,5,8

015
1-4, 714

D
0
1
2
3
4
5
0
1
2
3
0
1
2
0
1
2
3
4
5
6
0
1
2
3
0
1
2
3
4
0
1
2
3
0
1
2
3
0
1
1
2
3
1
2
3 3,4

POR SON OO0 HEEE OROC HRERER HEFRR OORROEN RRR RRRR 9o oo

PR® NPw BE PPPN ENER DRNRDON NOWN RROO ARG NGN @00 e

1
5
0
0
7
1
8
1
0
0
2
4
9
2
9
1
0
9
2
6
6
5
9
9
5
3
7
2
5
5
5
6
1
8
5
2
8
5
6

©UT WOUN MR WTWW PN BNPDWWUT OO0 WOwWwWNOoOOoOC WU w

considering only approximants with N=1; so none
of the functions will be exactly representable by
such an approximant. Function A is most closely
representable by (2.28) with N=1, since e * is en-
tire and the coefficients in its expansion drop off

as (z!)! and are therefore well represented by a
low-order Padé approximant., The estimates ob-
tained for A in Table V are very close to the true
value. The estimates for D are considerably better
than those for E and F, reflecting the compatibility
of the form of D. Similarly, one might expect G
to be more amenable to this analysis than H or ],
but Table V shows this is not the case. However,
in G-I the second and third singularities are only
about 10% further from the origin than the first
one, and approximating these strong algebraic
singularities by simple poles introduces a consid-
erable error into the [1, D, M] approximants. In
fact, we note that the estimates of y; and y, are
more accurate for H where A;, the effective am-
plitude of the closest singularity, is larger than for
G and I. The functions J and K both have two sin-
gularities of approximately equal strength on op-
posite sides of the origin. Any attempt to approxi-
mate these functions by an approximant containing
only one singularity is unrewarding. Therefore

TABLE VI. Comparison of accuracy of estimates
(tabulation of €y) of the locations y; of the singularities
in functions A-K using the [1, D, M] generalized approxi-
mants, and the ordinary Padé approximants [M/D]
=[0, D, M] to the logarithmic derivatives of the functions.

€ for
generalized-
approximant
analysis

€y for usual
Padé approximant
analysis

Test Exact location
series i of singularity y;

A 1, 0000 >10 4.8
1, 0000

1.0000
-1.7500

3,4 +£2.00007
2. 2857

1
B 1
C 1 1. 0000
D 1

2

roNL A oo
oSN G © =

E 1 1. 0000
2 ~1.7500
3,4 +2.0000¢

2., 2857

. 0000
7500
0000¢
. 2857

. 0000

0000+ 0.48167
00001, 2540¢
00004, 38137 cee

0000 . 2
0000+0.48167 0.
00001, 25407 .
.0000+4. 38137 .

0000 1.6
00000, 48167 s
0000 +1, 25407 eee
0000 +4, 3813¢ cee

0000 7
2500 2
0000 6.
2500 2
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TABLE VII. Estimates for y;, vi, A1Vi, ¢=1,2, forthefunction K using [2, D, M] generalized approximants.

M D=0 D=1 D=0 D=1 D=0 D=1
51 Y1

0 1.053 302075 1,021118441 1.235295184 1.382732649 1,558 321 056 1.535 267 203
1 1.005 551024 0.980876 269 1.473025520 1.639848163 1.501437690 1.421497617
2 0.988715721 0.998 395175 1,578433014 1.511953108 1.459429408 1.492432677
3 1.004 489791 1,000251649 1.464432204 1,497837613 1.526520128 1.501802732
4 0.998 862991 0.999 962931 1.510241807 1.500359 342 1.490855 267 1.499 641 862
5 1.000220611 1.000004 899 1.4971789 382 1.499947 284 1,502312 014 1.500060123
6 0.999 964 678 0.999999422 1.500390002 1.500006 824 1.499 540 946 1.499991 338
7 1. 000004 840 1,00000C 061 1.499941654 1.499999 214 1.500075779 1.500 001 090
8 0.999999419 0.999 999 994 1. 500007 590 1.500000082 1.499989293 1.499 999878
9 1.000 000062 1.000000001 1.499999126 1.499999992 1.500001 324 1.500000012
10 0.999 999994 1.000000000 1.500000 090 1.500000 001 1.499999 854 1.499999999
11 1. 000000001 1.000 000000 1.499999991 1.500000 000 1.500000015 1.500000000
12 1.000000000 1. 000000000 1.500000 001 1.500000000 1.499999999 1.500 000000

13 1.000 000000 oo 1.500000 000 e 1.500000 000 see

Y2 Y2

0 0.877532421 0.904703 326 0.429 095856 1.419282159 2.440232120 0.361333356
1 0,973 088 747 0.937481 957 0.083056 919 0.231272564 2.725925743 2,492 997 579
2 0.920171195 0.697 984 970 0.328190707 2.661023675 2.311931387 0. 536 231230
3 0.848 583628 0.789831652 0.797898 999 1.374971145 1.689457731 1.136861412
4 0.814161710 0.798 631 567 1.096 607 900 1.267817 204 1,394404 959 1.231964444
5 0.803294100 0.799812 091 1,209928427 1. 252639170 1.290027 628 1. 246994 495
6 0.800643923 0.799975502 1.241362181 1.250371361 1.259428 056 1.249 543420
7 0.800108 840 0.799 997 028 1.248406 097 1.250048 488 1.251894 605 1.249936 196
8 0.800016 215 0.799999 666 1,249742595 1.250005841 1.250330117 1.249991832
9 0.800002160 0.799999 965 1.249963 048 1.250000647 1.250050654 1.249999 044
10 0.800 000259 0,799 999 996 1.249995249 1.250000072 1. 250006 908 1.249999888
11 0.800000028 0.799 999 999 1.249999 444 1.250000011 1.250000851 1.249999 984
12 0.800000003 0.800000001 1.249999947 1.249999980 1.250 000085 1.250000033

13 0.800000000 toe 1.249999992 eve 1.250000014 oee

we have omitted the case D=0 for N=1. The ac-
curacy of the estimation for y, and vy, is very good
for J and K even though the more distant singulari-
ty is approximated by a simple pole. The differ-
ence between J and K is hardly noticeable, since
the e~* term is so insignificant in its contribution
to the 20th term.

The last feature of the results in Table V that we
emphasize is the marked improvements in esti-~
mates for y; and ¢, for function D when the order
of the Padé-approximant denominator increases to
3. This at first seems rather odd, since D con-
tains four additional singularities. However, for
third-order denominators the Padé-approximant-
type term has singularities which approximate the
two imaginary and the negative real singularity
quite well. The fifth singularity lies well beyond
the dominant singularity on the positive real axis.
Its contribution to the series coefficients is quali-
tatively similar to the main contribution, and quan-
titatively is only a small perturbation to it. Hence
it is much less important to the form of the func-
tion than the dominant singularity and the other
three lesser ones. Once the generalized approxi-

mant is able to reproduce these four singularities—
one on each axis—the accuracy of the estimates
improves by more than an order of magnitude.

In Table VI we compare estimates for the loca-
tions of all the singularities obtained from the [1,
D, M) generalized approximants and from the stan-
dard Padé-approximant analysis of the logarithmic
derivative of the function. In the former case the
locations of the secondary singularities are esti-
mated from the poles of the Padé-approximant-type
term when such estimation is possible. In gen-
eral, the ordinary Padé-approximant analysis gives
better estimates for the location of the secondary
singularities, since they are not constrained to be
simple poles. One exception to this is the case of
the fifth singularity in D, where the generalized
approximants yield estimates with ¢=1.1, while
there is no indication of this singularity in the
standard Padé-approximant analysis. Estimation
of the dominant singularity in A, D, J, and K [that
is, most of the cases that are exactly or nearly
of the form (1.1)] is markedly better using the gen-
eralized approximants. When the form of the func-
tion is altered by multiplying the dominant singu-
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Estimates for y;, v;, AiY;, ¢=1...5 for function D using [5, D, M] generalized approximants.

Y5

Reys=Rey,

[Imyg| = |Im yy|

3388
TABLE VIII.
Y1 Y2

(5,0,0) 1.000003 246 0.572594 498
(5,0,1) 0. 999 998 082 0. 572420606
(5,0,2) 1. 000001 224 0. 572233 257
(5, 0, 3) 0.999999 534 0.572050476
(5, 0,4)

(5,1, 0) 0. 999 998 121 0.572418 313
(5,1,1) 1. 000 000 092 0. 570622 244
(5, 1,2)

(5,1, 3)

exact 1.000000000 0.571428571

Y1 Y2

(5,0, 0) 1.499 950790 1. 215409 960
(5,0,1) 1.500030826 1.218219919
(5,0,2) 1.499978 981 1.221578 540
(5,0,3) 1.500 008 568 1.225182098
(5,0, 4)

(5, 1,0) 1.500030192 1.218 261 086
(5,1,1) 1.499998 362 1.270200482
®,1,2)

(5, 1,3)

exact 1.500 000000 1.250 000000

AgYy Ayye

5,0, 0) 1. 500079 989 0. 648748706
(5,0,1) 1.499947 384 0.647433816
(5,0, 2) 1.500 037 834 0.645 650 268
(5,0,3) 1.499983 756 0.643532371
5,0,4)

(5,1, 0) 1.499948491 0.647411860
(5,1,1) 1.500003025 0.604 292963
(5.1, 2)

(5,1, 3)

exact 1.500000000 0.614167635

0.429 669758
0.448 865408
0.420427151
0.457 261493

0.448 532828
0.437166719

0.437500 000

Vs

1.300654 019
1.087491525
1.478706 078
0.902732 388

1,091744 831
1.225739995

1.250000 000

AgYs

0.467 097852
0.485 565 597
0.427 098 497
0. 566 436 864

0.484 803 552
0,468 785426

0.439852 494

0, 000687850
0.000486 788
0. 001020129
0.000729852

(=]

. 000468824
0. 000006473

0.000 000000

Rey;=Re?,

1.218112693
1.198 067 963
1.198733836
1.233452808

1.198 084 950
1.212213952

1.250000 000

Re Azys=Re A4’}’4

0. 5566797 025
0.563621570
0.565299830
0. 549330050

(=}

. 563639473
0. 558 927 550

0.525 560260

0.500723412
0.501932865
0.501 694768
0.500017 867

0.501929651
0.501062620

0.500000000

[Imys | = Imy,|

0.009827 343
0, 009422286
0.018 524 353
0.016763614

(=]

.009088721
0. 000060843

0.000000 000

lh‘ﬂAg’)’g | = IIIM4’Y4I

0.002 506 934
0.004 041 014
0.007413702
0.008438881

0.003904 195
0. 005837795

0.000 000000

larity by some function of x, the Padé-approximant
estimates are either clearly better (functions B
and C) or about the same accuracy (function E, F,
H, and I). The relatively poor results for G using
the generalized approximants have already been
discussed.

We have not completed the analysis for all N val-

ues greater thanone. For example, to analyze func-

tions G-I with N=7 (the number of divergent singu-
larities) would seem beyond the limits of the pres-
ent method of solution and computer capabilities,
judging from present experience. Toanalyze B and
C with N>1 would necessitate using N large enough
to include several terms in the Taylor-series ex-
pansion, These functions are much better suited
to analysis by the method for confluent singulari-
ties.

The function J is exactly representable by (2. 22)
with N=2 and P,(x)=0 for all M and D. This solu-
tion is readily found provided reasonable starting

estimates are provided. For K we would expect
to get very accurate representations for N=2. We
have obtained solutions for D=0, 1, 2, 3, 4 and we
tabulate these for D=0 and D=1 in Table VII. For
D=2, 3, 4, the progression toward the exact pa-
rameters is even faster, except that the sequences
are not complete. The computer program in sev-
eral instances encounters relative minima in §
which prevent it from finding the true solution to
the nonlinear equations. Since y; and y, are quite
close in magnitude to y, and y,, the apparent con-
vergence of the sequences in Table VII is only
slightly faster for the parameters describing the
stronger singularity. If one expands the Padé-ap-
proximant term, it is obviously very close to the
expansion of e¢** with the necessary modification
to the constant term. For example, for[2, 0, 13]
the difference between the tenth term in the ex-
panded Padé-approximant term and 1/10! is only
seven parts in 10000. The approximate relation-
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ship Ay/y:Ay: AA/A as 1:J: J1InJ (where J is the
order of last term used) derived in I is evident in
Table VII.

Finally, for test function D we have succeeded in
obtaining some solutions for N=5. This result is
the largest value of N for which we have found solu-
tions, and although enough coefficients can easily
be calculated to permit solutions with second- and
higher-order denominators, the solutions we have
found have only been for D=0 and D=1. The solu-
tions we have obtained are given in Table VIII.

The form of D differs from (1. 1) in that the “am-
plitudes” other than A, are not constant. The re-
sults in Table VIII indicate that the estimates per-
taining to the four incorrectly represented singu-
larities are much less precise than those for the
first singularity. The instability apparent in the
estimates for the fifth (weakest) singularity is
further evidence that the form of the function is not
as represented and that higher-order denomina-
tors in the Padé-approximant-type terms would be
necessary for any sort of reasonable representa-
tion to be effected.

IV. APPLICATION TO ISING MODEL
A. Exponent-Renormalization Method

We have applied this method to the Ising-model
low-temperature-susceptibility expansions in zero

field,” since one reason for deriving this procedure
was the observation that the exponents of the inter-
fering singularities in these functions were quite
close to the best estimate for y’. Padé-approxi-
mant analysis of these singularities, whose loca-
tions have been given by Domb and Guttmann,® in-
dicates that they all have exponents approximately
equal to 14, while v’ is variously estimated® be-
tween 1% and 1. We have analyzed these series
by renormalizing with exponent values of 1.1250,
1.1875, 1.2500, 1.3125, and 1.3750. We conclude
that the singularities do not share some intermedi-
ate exponent value and that little can be added to
the conclusions based on ordinary Padé-approxi-
mant analysis. When the renormalization expo-
nent is 1,125, the locations of all the interfering
singularities are estimated most precisely, while
the estimates of the Curie point fluctuate more
widely and in some cases appear to be the begin-
ning of a row of poles and zeros along the positive
real axis. On the other hand, when the renormal-
ization is performed with respect to values of
1.2500 and 1, 3175, the interfering singularities
are located much less precisely and the fluctuation
in Curie-point estimates is considerably reduced.
As far as distinguishing between 5’ =11 and y’
=15 as a preferred value is concerned, the same
ambiguity persists as was present in earlier anal-

TABLE IX. Estimates of the high~-temperature specific~heat exponent o =% —j from the application of the confluent-

singularity method of analysis to jth-order derivatives of the specific-heat series in x.

for the bee and se lattices, j=2 and x=2%

For the fcc lattice, j=1 and x=v;

fec lattice

D\WN 3 4 5 6 7 8
3 0.154 68 0.108 09 0.12976 0.11264 0.167 67 —0.05412
4 —0.06917 0.123 37 0.12077 0.124 68 0.12281 0.08321
5 0.11553 0.12030 0.12266 0.12327 0.124 86
6 0.12087 0.11139 0.12323 0.12269
7 0.12848 0.12425 0.117 54
8 0.12153 0.13034

bee lattice

D\N 1 2 3 4 5 6
1 0.12758 0.08128 0.228 93 —0.01735 0.11324 0.85761
2 0. 07481 0.116 26 0.13387 0.06363 —0.,04061 :
3 0.26395 0.13264 0.12164 0.12116
4 0. 246 36 0. 086 84 0.12115
5 0.15755
6 0.44182

sc lattice

D\WN 1 2 3 4 5 6
1 0. 39618 —-0.22311 0.78949 -0.13422
2 0.19103 0.10771 0.207 42 —0.23936 0.75145
3 0.09213 0.14755 0.124 51 0.11814 0.11957
4 0.22180 0.12010 0.116 49 0.11931
5 2.08777 0.11681 0.118 46
6 0.12008
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TABLE X. Estimates of y1=v',',1 for the fee, bee, sc,
and diamond lattices from [1, D, M] generalized approxi-
mants to the high-temperature-susceptibility series.

N D=0 D=1 D=2 D=3 D=4
fce
0 9.90990 9.834 09 .
1 9.834 50 9.82347 9.82723 e
2 9.824 80 9.82728 9.83251 9. 83006 oo
3 9.82810 9.838 86 9.83007 9.83013 9,819 272
4 9.83092 9.83067 9.83013 9.83009 9.82974
5 9.83064 9.81737* 9.82975 e
[ 9.83006 9. 829 56 9.82980
7 9.82979 9.82973 e e oo
8 9'82974 XY e TRy oeo0
bee
0 7,000 00 5.83617 oo
1 6.02041  6.43239  6.40058 eee
2 6.71071  6.40117 6.40860  6.40743
3 6.156 93 6.41055 6.407 44
4 6.61940 6.406 02 6.40770
5 6.22601 6.408 65 6.407 30
6 6,564 77 6.40595 6.40682
7 6.26707  6.40722  6.40655 see
8 6.53082 6.40584 ses eee
9 6.293 98 oo see
sc
0 5.00000 4.24561 v
1 4.36000 4.63018 4.59164 e
2 4.81355 4.59292 4.57903 4.58079
3 4.39055 4.58215 4.58082
4 4,73680 4.58097  4.58192
5 4.45531 4.58566 4,584 51
6 4.696 56 4,584 15 4,584 82
7 4,486 98 4,58533 4.584 74
8 4,67157  4.58416 oo
9 4‘50603 sese LY e
diamond
0 3.00000 3. 00000 e e e
1 3. 00000 3.00000 2.79225 oo
2 3.00000 2.793 04 e
3 2,55556 2.75463 2.80714  2,83545  2,82828
4 2,91280 2.85160 2.88491 2.828179 2,82728
5 2.83900 2.86937 2,856 40 2.82753 2.82508
6 2.89026 2.85079 2.826 64 2,82708
7 2.72019 2.804 32 2.81833 2.82751 2.82720
8 2.886 09 2.83049 2.84818 2,827 06 2.82703
9 2.80262 2.83941 2.834 00 2.827 03
10 2.868 22 2.82941 2,826 59 o
11 2,77346  2.82017 oo
12 2.86542  2,82667 oo .
13 2.79853 s oo tee

2The approach to the minimum is extraordinarily slow
for these approximants, suggesting a relative minimum
rather than a solution.

yses. We consider two criteria for such an
assessment, neither of them truly definitive.
These are (i) the amount of fluctuation in estimates
and (ii) the consistency with predictions of the lo-~
cation of the Curie point from high-temperature-
susceptibility series. For the fcc lattice the first
criterion favors ¢’ =1¢ and the second favors the
lower value. For the bcc lattice both criteria in-
dicate a marked preference for y’=11%, although a
value of 1.26 or 1. 27 (consistent with Padé-ap-
proximant estimates) might be better still. For
the sc there is a slight indication from the second
criterion that ¢’ is closer to the larger value, al-
though the fluctuation is about the same for both

values of the index. For the diamond lattice there
is a strong indication for 1 155 using both criteria,

B. Confluent-Singularity Method

We have applied the confluent-singularity meth-
od to the spin-% Ising-model series for susceptibil-
ity and specific heat at both high!® and low temper-
atures. We find no evidence that any of the known
singularities have weaker singularities confluent
with them. However, in the case of the high-tem-
perature specific heat, the results obtained using
the transformation are noteworthy for another rea-
son. As indicated previously, the root in the
transformed series corresponding to the inverse of
an exponent such as « will be hard to detect be-
cause of its distance from the origin. However,
we have differentiated the series as was suggested
by Hunter®! to reduce the effect of the correction
terms, but in this case the differentiation also
serves to move the pole closer to the origin. The
values of ¢ tabulated in Table IX are calculated
from the Padé approximants to the transforms of
the second derivative of the fcc specific heat ex-
panded in » and the first derivatives of the bcc and
sc specific heats expanded in 2. We use critical-
point values y=v;' of 9.8290, 6,4055, and 4. 5844 2
for the fcc, bee, and sc lattices, respectively. The
estimates we obtain are in very good agreement
with the biased ratio estimates of Sykes et al.? and
hence with the accepted value a=%. Our analysis
using the confluent-singularity transformation is
more consistent with o =% than is the standard
Padé-approximant analysis of the derivatives of
the specific-heat series.!

In other cases the values indicated for the expo-
nents of the known singularities are all consistent
with, and no more precise than, estimates obtained
from other methods. We conclude that the poor
behavior of the low-temperature series is not at-
tributable to confluent singularities that would have
been invisible to other methods of analysis.

C. General Method

We have analyzed series expansions for the Ising
zero-field high-temperature susceptibility (HT y),
specific-heat (HT C,), and low-temperature sus-
ceptibility (LT y) using the method of Sec. I D.
For HT y we have looked at the series for several
lattices. For HT C, we have looked at the fcc ex-
pansions since previous analyses indicate most can
be learned from the more complete, albeit lower-
order, expansion on this lattice. For LT y we en-
countered considerable difficulty obtaining solu-
tions for the sc lattice, the lattice for which there
is only one interfering singularity; hence we have
not attempted the analysis for more difficult situa-
tions.

The estimates for y and y for HT y are given for
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four three-dimensional lattices in Tables X and XI,

respectively. The most notable aspect of these

results is that the y estimates are consistently just

a little lower than ratio and Padé-approximant re-
sults have indicated. Estimates for y are corre-
spondingly slightly higher than the most recent
estimates.!? However, the revised estimates,
based on longer series, all represent increases
from previously accepted values!® as compared in
Table XII.

The generalized approximants for the diamond
lattice undergo a rather marked change as D
changes from 2 to 3. The strong oscillation pres-
ent for D<2 disappears, indicating that, in addi-
tion to the antiferromagnetic singularity on the

TABLE XI. Estimates of the high-temperature-sus-
ceptibility exponent y;=7 from [1, D, M] generalized ap-
proximants.

N D=0 D=1 D=2 D=3 D=4
fece

0 1,22018  1.24478

1 1.24461  1.24953 1.24757

2 1.24880  1.24754 1.24402  1.24591

3 1.24703  1.23750 1.24590 1,24586  1.26837%

4 1.24525  1.24543 1.24586  1.24590  1.24624

5 1.24545  1,26904% 1,246 23

6 1.24594  1.24645 1.246 18

7 1.24619  1,24625

8 1.24624 e vee cee ces
bee

0 1.00000 1.63518

1 1.48814  1,22665 1.248 50

2 1.02646  1,24800 1.24203  1.24310

3 1.47857  1.24017 1.24309

4 1.02593  1.24465 1.24282

5 1.46986  1,24164 1.24328

6 1.03279 1.24514 1.24392

7 1.46187  1.24330 1.244 32

8 1.03937  1.24551

9 1_45477 eee e e

sc

0 1.00000 1.56434 .

1 1.44037  1.20501 1.24151

2 1.02198  1.24003 1.25703  1.25443

3 1.50582  1.25250 1.254 39

4 1.03026 1.25415 1.25278

5 1.47443  1,24663 1.24867

6 1,08912  1,24937 1.24807

7 1.46131 1,24696 1.248 23

8 1.04795  1.24959

9 1.45384
diamond

0 1.00000  1.00000

1 1.00000 1.00000 1.81798

2 1.00000 1.32399

3 1.86957 1.40510 1.28908 1.22416 1.24210

4 1.027 04 1.17418 1.07885 1.24068 1.244 99

5 1.20969 1.12713 1.16235  1.24420  1.25342

6 1.06410 1.17893 1.24670 1.24552

7 1.63080 1.32669 1.27716  1.24394  1,24508

8 1.01980 1.22959 1.15302  1.24565  1.24580

9 1.34789 1.19362 . 1.21609  1.24579

10 1.06548 1,23660 1.24779
11 1.51193  1.27969 [
12 1.04617  1.24667 . [

13 1.40578 see DRy .o .o

2See Ref. a in Table X.
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TABLE XII. Comparison of the best 1967, 1972, and

present estimate of v;l.

Present results

Old (Ref. 13) New (Ref. 12) by general method

fce 9.8280 9.8290 9.8300
bee 6.4032 6.40565 6.4065
sc 4.5840 4.5844 4.5847
diamond 2,8262 2.8262% 2,8270

®Reference 14.

negative real axis, there are two other nearby
singularities. Closer examination of the standard
Padé table indicates a similar onset of stability

as the order of the denominator increases from

3 to 4. These other singularities are very roughly
at x==0, 53,

Form (2.28) should be very well suited to the
HT Cy, since this is essentially the form used by
Sykes et al.® to represent the specific heat for all
temperatures above the Curie point. We have cal-
culated most of the generalized approximants for
N=1, D<2 for the fcc specific heat, as shown in
Table XIII. Specific-heat series are much more
notorious than susceptibility series and, as the re-
sults in Table XIII are unbiased in the sense that
no estimate depends upon an assumed value for any
other parameter, the consistency of these results
with ratio results is noteworthy. The deviations
in the o estimates, i.e., a=%, from the accepted
value «a =12‘e are certainly greater than for the ratio
sequence calculated by Sykes et al. using a,
=nla,/a,.1) y* -n+1, where the a, are the coeffi-

TABLE XIII. Estimates for y1=v;1 and vy= o« for the
high-temperature specific heat from [1, D, M] generalized
approximants to the series for the fcc lattice.

M D=0 D=1 D=2 D=3

Estimates for y;=v!

2 8.3849 9.9973

3 8.8564 9.1602 9.8650

4 9.7720 9.8407 9.8725

5 10. 0497 9.9751  9.8692

6 9.9489 9.8130

7 9.8641 9.8041  9.8192

8 9.8280 9.8152  9.8227

9 9.8185 9.8236 oo
10 9.8186 ces oo
11 9. 8206 ces ) e

Estimates for a

2 0.915675 -0.13221

3 0.654 09 0.55792 —0.09139

4 0.12428 0.11165 0.08509

5 —-0.04495 0.00513 0.08811

6 0.02552 0.14389

7 0.094 57 0.15411 0.13674

8 0.12793 0.14154 0.13226

9 0.13774 0.13094
10 0.13765
11 0.13512 see e e
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TABLE XIV. Estimates of v;, ya=uZ, ¥i, Y2=7’ from
[2, D, M] generalized approximants to the low-tempera~-
ture-susceptibility expansion on the sc lattice.

[N, D, M] V1 P 71 M
[2,0,0] 3.2926 2.3694 1.4948 1.4013
[2,0,1] 3.3329 2.2892 1.4317 1.5622
[2,0, 2] 3.4277 2.5566 1.2615 0.9604
[2,0,3] 3.4663 2.4004 1.1839 1.3619
[2,0,4] 3.4788 2.4720 1.1554 1.1424
[2,0, 5] 3.4846 2.4250 1.1406 1. 3044
[2,0, 6] 3.4855 2.4350 1.1381 1. 2653
[2,0,7] 3.4872  2.4064  1.1326  1.3897
2,0, 8] 3.4885  2.4366  1.1282  1.2462
[2,0,9] 3.4904 2.3778 1.1215 1.5544
[2,0,10] 3.4918 2.4440 1.1158 1.1812
[2,1, 0] 3. 3315 2., 2849 1.4343 1,5733
[2,1,1] 3.7203 2, 3977 0. 5503 1.3320
12,1, 2] 3.4925  2.4584  1.1196  1,1917
(2,1, 3] 3.4845  2.4499  1.1402  1.2149
[2,1,4] 3.4894 2.4435 1.1260 1.2351
[2,1, 5] 3.4856 2.4332 1.1377 1.2726
[2,1, 6]

[2,1,7] 3.4919 2,4212 1.1135 1.3222
2,1, 8]

[2,1,9] 3.4966 2.4090 1.0913 1.3825
2,2,1] 3.4814  2.4493  1.1482  1.2159
[2, 2, 2] 3.4837 2.4511 1.1425 1.2112
[2, 2, 3] 3.4871 2.4189 1.1329 1. 3537

cients in the expansion. However, the latter se-
quence is biased, and hence converges faster,
since the value of y used comes from HT y esti-
mates. The estimates of y from our analysis of
the specific-heat series are slightly lower than
those from the susceptibility series, which is con-
sistent with the slightly higher value of @. Phys-
ically, of course, we expect the same location for

13

the singularity from both series.

The incomplete table of generalized approxi-
mants for LT y on the sc lattice is reproduced in
Table XIV. We seek approximants with N=2 to ac-
count for the strong singularity on the negative
real axis and the Curie singularity; any other fea-
tures will hopefully be absorbed in the Padé-ap-
proximant term., Estimates of y, and y, are con-
sistent with Padé-approximant and exponent-re-
normalization results. For D=0 there is a strong
oscillation in y, which appears to be diverging as
M increases. This would indicate either that there
are other singularities that should be approximated
by increasing N or D, or that form (2.28) is not at
all reasonable for the LT y. The oscillation is
less pronounced for D=1 (and presumably for D
=2) but there is no indication that even D=2 is suf-
ficient to fit (2. 28) to the series. We have ex-
pended considerable effort in attempts to extend the
table using various starting estimates for the pa-
rameters and resorting to the Davidenko proce-
dure. If it were possible to solve for higher D
values, one might observe the sudden disappear-
ance of the oscillation as was noted in the HT y
for the diamond lattice. There is no hard evidence,
from standard Padé-approximant analysis of other
singularities beyond the physical one, but never-
theless we have tried N=3 and used several start-
ing values for the third singularity, placing it con-
fluent with each of the two known singularities
(despite the negative indications of Sec. IV B) and
at other points in the complex plane. Experience
would indicate that without a good starting esti-
mate of the location of a singularity we are unlike-
ly to find solutions. At this time no conclusion
seems possible as to whether or not the form
(2.28) with additive singularities is a reasonable
form for the LT y.

*Worked performed under the auspices of the U. S. Atomic
Energy Commission.
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