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Several new general methods of series analysis are introduced and tested on an assortment of known

functions. These methods are then applied to several of the series expansions known for the thermodynamic

properties of the spin-' Ising model. %e are able to obtain an unbiased analysis of the high-temperature
. 2

specific-heat singularity, and find a-0.13+0.01. The application of our methods in other cases generally

agrees with that of previous workers. Our methods in practice amount to procedures for looking more

closely at the dominant singularity, at the expense of accuracy for competing singularities. For certain types

of function, thought to occur in the study of critical phenomena, our methods are noticeably more effective

than those previously employed,

I. INTRODUCTION AND SUMMARY

Although many accurate estimates for the loca-
tion of singularities and the exponents with which
these divergences occur have been made from
series expansions for the thermodynamic proper-
ties of a system, there are also many instances
where accurate predictions of these parameters
have been impossible using current methods of
series analysis. The reasons for obtaining poor
results are not fully understood but certainly in-
clude the failure of the analysis to properly account
for all interfering singularities, and probably also
include the fact that the form of the function may
not correspond to that functional form presupposed
by the method of analysis. This question has been
investigated by Hunter and Baker~ (hereinafter re
ferred to as I) and the examples considered there
illustrate the effect of other singularities and the
form of the function on the accuracy of the analy-
sis.

In this paper we introduce several nem, quite
general methods of analyzing series expansions.
These methods are ideally suited to analyze func-
tions of the form

This seems a logical form to consider since the
Pads-approximant procedures, best suited to the
fol m

(1.2)

although very helpful do not give the desired pre-
cision for some physical functions (e. g. , Ising
low-temperature susceptibility and specific heat)
and for some of the functions considered in I. The
form (l. 1) is not as general as that proposed by
Thompson et al. , but their analysis which followed

was e»luivalent to assuming the form (l.2) (see I).
Our new methods offer an alternative for functions
not of the form (l. 2). Of course, the ratio method
does not presuppose that the dominant singularity
factors but, as it is capable of approximating only
one singularity, it is ineffective mhen there is in-
terference by other singularities regardless of
their form.

Tmo of our new methods are designed to detect
function forms which, although quite general in
themselves, are special forms of (l. 1). We also
consider the completely general case of (1.1), and

finally we modify that procedure to admit the even
more general case where to ihe right-hand side of
(1.1) one adds any function of z which in our analy-
sis is approximated by a Pads-approximant-like
term.

The first method described in Sec. II is appli-
cable to the case where y» = y for all i in (1.1) and
where an accurate estimate of y is available. (For
the low-temperature Ising susceptibility the expo-
nents for all of the singularities closer to the ori-
gin than the physical singularity (1 —T/T, ) " are
very close to y .) The binomial coefficient (J ) is,
for this case, a factor of the series coefficient g~,
so if the appropriate such factor is divided out of
each known series coefficient, one obtains the
series for a renormalized function whose singulari-
ties are now simple poles. One may then form
Pads approximants directly to the renormalized
series to deduce the location and amplitudes of the
singularities.

The second method is appropriate to detect con-
fluent singularities in a function, and is ideally
suited to (l. 1) with y, = y for all » when an accurate
estimate for y is available. No other method of
analysis of which we are aware mill detect con-
fluence to this degree of generality. In Sec. II B
we derive a transformation which when applied to
a function of the required form results in a func-
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tion whose poles (simple) have the same value as
the exponents in the original function. Our pro-
cedure is also useful for studying functions modi-
fied by the presence of an additive or multiplica-
tive function which is analytic at g =y ~, since when
expanded in a Taylor series about x =y ~ the func-
tion has the form of an infinite sum of confluent
singularities.

In our procedure for treating the general case
(1.1) with no restrictions, one calculates a set of
estimates for the 3Nparameters A, , y, , and y, ,
z = 1, . . . , N, by requiring that exactly 3N coeffi-
cients in the expansion of the right-hand side of
(l. 1) agree with the corresponding coefficients in
the given series. The conditions so imposed are
nonlinear in the parameters y, and y&, and the
solution of the equations is a difficult numerical
problem. The method and the difficulties which
arise are discussed in Sec. IIC. The generaliza-
tion to include a Pads-approximant-like term
makes the method applicable to a more general
class of functions than (l. 1) and in some cases it
permits us to obtain reasonable approximants to a
series using fewer general branch-point singulari-
ties. The generalized approximants are charac-
terized by parameters N, D, and 3f, which are,
respectively, the number of branch-point singulari-
ties of the form (l. 1) and the order of the denomi-
nator and numerator in the additive Pads term.
The case D=O corresponds to the procedures de-
scribed in Sec. IIC, and varying M merely deter-
mines which block of 3N coefficients is used in cal-
culating A;, y, , and y;. This generalized proce-
dure is discussed in Sec. IID.

We have applied these methods to several test
functions including those used in I in studying the
previously available methods. For the first two
methods we find the analysis is straightforward and
the results agree with what we would expect to
see on theoretical grounds. In applying the most
general form of analysis we occasionally find it dif-
ficult or impossible to solve for a particular ap-
proximant. In particular, for given N, it becomes
very difficult to obtain solutions for large D and
our tables have not yet been extended to include
such approximants. However, the evidence is
quite clear that for functions close to the form
(1.1) our general method provides more accurate
estimates of the critical parameters (up to three
more significant figures) than do the methods de-
scribed in I. For those functions where the domi-
nant branch point is multiplied by some function of
x we found, as expected, that the standard pro-
cedures were as good as or better than the new
method.

Finally, in Sec. IV, we apply the new methods to
some spin- —,

' Ising-model series. The analysis of
the low-temperature-susceptibility series using the

exponent-renormalization procedures indicates
that although the exponents of the nonphysical sin-
gularities are probably all equal to one another and
close to y', they probably do not equal y'. We al-
so conclude, on the basis of negative results using
the confluent-singularity method, that the present
imprecise results for the Ising low-temperature
functions are probably not due to a confluence of
singularities.

Although the application of the confluent-singu-
larity method to the high-temperature specific-
heat series gave no indication of confluence, the
Pads analysis of the transformed series did pro-
vide a biased table of estimates for g. We found
these to be in excellent agreement with the best
biased-ratio sequences3 for the three-dimensional
lattices we studied.

We have applied the most general method to two
high-temperature series and to the low-tempera-
ture susceptibility. For the high-temperature sus-
ceptibility the estimates of all the parameters as-
suming N=1 are very smoothly behaved. The esti-
mates for y are consistently just a little below the
best estimates using Pads approximants and ratios
(- l. 246 vs l. 250). This deviation is probably due
to the assumed additive form, and we do not sug-
gest any revision to previous conclusions. For the
high-temperature specific heat, our results which
are unbiased by any assumed value for the critical
point y indicate that the exponent

@=0.13+0.01 .
This is in good agreement with the accepted value
n= —,

' due to Sykes et pE. , whose published se-
quences of estimates depend upon the choice of y.
Our results represent a more complete set of
unbiased estimates than are obtainable by the un-
biased-ratio procedure [Eq. (2.7) of I].

The low-temperature susceptibility on the sc
lattice has two important branch points which we
have tried to study using N= 2 in our general pro-
cedure. Owing to numerical problems we are un-
able to reach a conclusion concerning the amena-
bility of this function to this type of analysis. The
evidence indicates that if the form we assume is
reasonable, then either there are more singulari-
ties beyond the Curie point which must be ac-
counted for by increasing N, or else we need high-
er-order denominators in the Pads-type term to
better approximate the corrections to (1.1).

II. SERIES-ANALYSIS METHODS

A. Exponent Renormalization

We shall first consider analytic procedures ap-
propriate when the form of the function is a re-
stricted case of Eq. (1.1). In the first instance we
consider the case where all the y, 's are equal and
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(2. 2)

B. Confluent-Singularity Analysis

The second restricted case applies to the case of
confluent singularities, i.e. , to

E(x) =0 X, (1 -yx)-"», (2.4)
)=i

where all the singularities of (l. 1) are restricted
to fall at g = y i. Usual Pads-approximant pro-
cedures are only capable of detecting the strongest
such singularity. Correction terms to the ratio
equations have been calculated for the case of two

where a reliable estimate of their common value-
say, y-is available. We shall refer to this pro-
cedure as the equal exponent or exponent-xeno~-
malization procedure. For the restricted form

E(x) =0 X,(1 -y, x)-", (2. 1)
]=1

the expansion coefficients have the form

a, =0 W»(;") (-y»)«,
5=1

where the binomial coefficient (&") is now a factor
of a&. Vfe wish to consider the auxiliary function
F(x) whose expansion coefficients have the form

a,*= A., -y, '
f, =i

and are obtained by dividing the coefficients of the
original function by ( f). F(x) has the form

S(x)=Z 2'W,(-y, )'2=2' ' . (2. 2)

The auxiliary function has simple poles (rather
than branch points) located at x= —y, «; the residue
at each of these poles is A»/y, . The auxiliary
function is of the form of an [t»t-1/N] Pad»«ap-
proxim ant.

The series-analysis procedure we propose for
situations where it is reasonable to assume that the
function the series represents may be of the form
(2. 1) or at least closely approximated by it, is to
form an auxiliary series by dividing the coefficients
a& by binomial coeffi.ci.ents ( &"), form Pad»«ap-
proximants, particularly [n —1/n] approximants,
directly to the auxiliary series, and examine the
roots and residue of these approximants.

If the index of one of the singularities —say, on
the real axis-is not exactly the value chosen for
renormalization, then the Pads approximant to the
auxiliary function will contain an alternation of
poles and zeros spreading outward along the real
axis from the expected location of the singularity.
This type of pattern is the way in which a Pa& ap-
proximant will approximate a branch cut in a func-
tion. The residue of the branch point (end point of
the cut) may no longer give a reliable estimate of
the amplitude of the singularity in the original func-
tion.

where

x = y-'(1 —e ') . -

«y«t (, ,)
&=1 ~0

(2 6)

Now multiply the kth coefficient in the expansion by
k! to obtain the expansion of F($),

~(~)=5 Zx, y,'~', (2.7)
i=i 0 =0

and performing the jp summation,

~(&)=~ (2.8)

The auxilary function F($) has simple poles at $
= 1/y«and residues —A»/y«, all of which may be
determined from the Pad««approximants to P($).

Using the simple integral identity

f "e 't" dt=n-), (2.9)

we note that the transformation from f($) to P($)
can be expressed as

7(()= f e 'f(t$) dt= (1/$) 2(1/$) (2. 10)

= f e ' E(y '(1 —e "))dt, (2. 11)

where Z(s) is the Laplace transform of f(z). The
complete transformation (2. 11) from E(x) was ob-
tained by substitution of (2. 5) into (2. 10). Since
we then approximate P($) by a Pad»«approximant,
we may then formally obtain the approximant to
E(x) using the inverse transformation

E(x) = . —F — e '"" '"' dt», (2. 12)
1 1 1

2 PTER g P P

where the constant c must be chosen greater than
the maximum of the real parts of the y, , i.e. , so
that the line Re(p) = c may be the right-hand bound-
ary of a contour in the p plane which encloses all
the singularities p=y, . However, this is equiva-
lent to writing

E(x)=5~,(l-yx)- » (2. 13)

directly from the roots and residue of the Pads ap-

confluent singularities' but simultaneous solution
for the two exponents is very difficult; rather, one
may calculate the location and the secondary expo-
nent given the primary exponent. For our pro-
cedure using Pads approximants, one may esti-
mate any number of exponents associated with con-
fluent singularities given the location.

From (2. 4 ) we form an auxiliary function F($)
in two steps. First we expand (2. 4) in the vari-
able $,

f(() =- E(x(g)) =5 +e "«"' '"'
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proximant.
We therefore have a procedure for detecting con-

fluence in the singularity structure of a series if
it is reasonable to assume that the form of the
function the series represents is close to (2.4).
We apply the transformation defined by (2. 5) and
(2. 10) to the series for F(x) and form Padh ap-
proximants to the transformed series. If F(g)
were exactly of the form (2.4), then the approxi-
mant [N- 1/N] would exactly represent the trans-
formed function. Exponent values close to zero
will be difficult to detect because in the trans-
formed function they appear as poles that are well
away from the origin and hence are poorly approxi-
mated in the Pads. approximant.

This procedure has the added advantage of being
able to represent quite accurately functions of the
forms

(2. 14)

and

(2. 15)

where g(x) is analytic at x = y ', provided a suffi-
cient number of terms in the expansion of F(x) are
available. With g(x) expanded as a Taylor series
about x= y ', the form of (2. 14) and (2. 15) is the
same as (2. 4) with N=~. Finite-order Padd ap-
proximants [n —1/n] then represent F(x) in a trun-
cated form.

The location of the poles of interest in the trans-
formed function is found to be quite insensitive to
errors in the estimation of y. If for a particular
singularity the value of y used in the transforma-
tion differs from the true value by hy, then we oU-
serve that the error of the [m+ 1/m] Pads approxi-
mant in the estimated exponent is of order
(y»+ 2m) (&y/y), while the error in the amplitude
is of order (y, +2m) In(y»+2m) (by/y). In princi-
pal, however, if we pick too large a value for y,
there will be no real positive pole, but a pair of
complex singularities in the $ plane. If, on the
other hand, we select slightly too small a value
for y, a cut on the entire positive real $ axis is
required.

If we define F($) by (2. 11), which is valid for
any formal power series F(x), then by the integral
representation, and by contour rotation, if F(x) is
continuous on 0&x&y ' and diverges no faster than
A(1 —xy) "at x=y ', then 6:($) is regular in iy]- —,'l

Of course, many times 6'($) will be analytic
in a wider domain than this minimal one.

C. General Analysis for Additive Singularities

The general case, where we consider E»I. (1.1)
and do not specialize any of the parameters or as-
sume accurate prior knowledge of any of them, is
much more difficult to treat. If there are N terms

where we have modified the assumed form (l. 1) to
become

(2. 17)

so that the possibility of a logarithmic singularity
of the form

(2. 18)

is included in (2. 17) in the limit y„-0. If the a&

are known for j& SN, then we may solve (2. 16)
using successive consecutive blocks of 3N coeffi-
cients and hence obtain sequences of estimates for
each of the parameters.

The y» and y, dependence in (2. 10) is nonlinear;
so we must resort to an iterative numerical-solu-
tion procedure. The problem is most easily cast
in the form of a minimization problem, i.e. , to
find the point for which

s(A», y», Y»)=- 2i a»-2i A»
—(,"')(-y»)'

g z &1 Yt

There are many numerical procedures available for
the minimization of a nonlinear function of several
variables including modified Newton-Raphson pro-
cedures, gradient procedures, and eigenvector
procedures; all of these procedures require start-
ing values for each of the parameters, the required
accuracy of which depends upon the nature of the
function. However, we have found that for (2. 19),
even in controlled situations where the starting
values are known to be very accurate and for N
values as low as 2, the function S is so poorly be-
haved that the repeated application of any one
recognized procedure often does not lead to a solu-
tion. To solve (2. 19) we have developed a diverse
strategy method which includes several possible
minimization techniques. The first is a modified
Newton-Raphson procedure where the step direc-
tion Ap, is calculated by

8 g —8S
(2. 2o)

in the right-hand side of (1.1), we seek a scheme
to simultaneously estimate the unknown param-
eters A&, y&, and y& for i =1, . . . , N. We may
choose these parameters so that any 3N coefficients
in the expansion of (l. 1) agree exactly with the cor-
responding 3N coefficients in the actual expansion
we are dealing with. In fact, we solve the equation

~(f )»(-y)»» =a&, j=J, J+1, . . . , J+3N I,-~

~ ~ ~

A

k=1 ~f

Jeo, (2. 16)
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and where

~~, N=r~
(2. 21)

Since we deal with series with real coefficients,
the singularities are either real or occur in com-
plex-conjugate pairs. In the former case, p, ,*=- p, &.

In the latter case, the complex-conjugate pair p, ,
and p,„,are relabeled p, , and p, ,* for clarity. Two
variations of this method where the minimization
is performed with respect to the A and y variables
and with respect to the A variables alone respec-
tively, are also used. The other two techniques
are a second-order gradient procedure where the
step is along the curve, expressed paramatically
in t as

—8/1~ 8S 83
P~ 8*"2 8 8 8

y p, ] p, g p,g

(2. 22)

and, finally, an "eigenvector" procedure where the
step direction is along the eigenvector correspond-
ing to the minimum eigenvalue of the matrix with
elements 8~S/8 p, ,*sp&. The local nature of the
second-derivative matrix is used to order the pro-
cedures according to their likelihood of achieving
the greatest reduction in g. The procedures are
then attempted in that order, with searches for the
minimum along each step direction, until one is
found which achieves a sufficient reduction to satis-
fy a predetermined criterion and that step is taken.
If none satisfies our criterion, the one coming
closest is used. The diverse strategy approach
sacrifices computation time in order to ensure that
the best reduction is obtained at each step. Details
of this procedure have been published elsewhere. '

The use of this basic diverse strategy has en-
abled us to solve (2. 19) for various test functions
and for several series from the theory of critical
phenomena. However, to improve the efficiency
it has been desirable to supplement the features of
the basic strategy. In many cases it is possible
to use the best estimates obtained from Pads-ap-
proximant analysis as starting values of the pa-
rameters. However, when reliable estimates of
all parameters but the amplitudes are available,
it is easy to perform a minimization with respect
to the A& alone, since S is purely quadratic in
them. We have also developed a modification of
the y-renormalization procedure, which enables
us to obtain reliable starting values for the y, when
the assumption that y& =y for all i is reasonable
and an estimate of y is available. However, since
we are trying to fit SN coefficients (a&) simulta-
neously and the freedom to choose the A, 's allows
us to fix Nof them, the Pads denominator, from
the roots of which the y, 's are calculated, is ob-
tained by a "least-squares" matching of 2N series
terms rather than an exact matching of N terms.

where, for X= 1, (2. 24) corresponds to (2. 19).
The standard procedure is to vary X from 0 to 1
using the solution A, , (X,), y, (X,), y, (X,) as the start-
ing point in seeking the solution for X„,. Using
the identification (2. 21), we note that for any solu-
tion S =0, the conditions

83

)t O

(2. 25)

determine the p& implicitly as functions of X.
Therefore on the locus of solutions (Vs=0) the con-
dition

833 82$
djx]+ ~ dk = 0

8 p,&* 8 p, 8 p, &* 8X

enables us to calculate dp& /dX. Hence we can
project even better starting values

(2. 26)

Py(4+ t) = 4g(~d+ g ~&a
dA.

(2. 27)

where X„,&=X,+AX, and hX, is not too large, given
the present solution p&(X~). It is better to make
the projections (2.27) on a Riemann sphere rather
than in the plane because A, may pass through in-
finity as the corresponding y, takes positive inte-
ger values; and similarly as y, passes through
zero, y; passes through infinity, changing signs in
the process. The choice of AX, is arbitrary but
we seek to choose it small enough to require only
a few iterations to reach the new solution p&(X, „&)
but large enough not to require too many incre-
ments in X to reach 1=1.

D. Extended Form of General Analysis

In order to approximately account for the possi-
bility of a more general form than (1.1) (e.g. ,
additive entire functions, more than N singulari-
ties, or variations in the nature of the singulari-
ties), we have extended the general form of analy-

A further optional feature used in conjunction
with the diverse strategy is the so-called David-
enko methods by which a problem with a known
solution is continuously distorted into the one for
which the solution is sought. Let us suppose that
3, , y&, and y& are initial estimates of the param-
eters we seek. We define

s, =- (&, /y, ) (,') (-j()', (2. 22)

so that A, , y, , and y, define the minimum point of
(2. 19) when a& is replaced by a&. The Davidenko
problem in this case is to minimize (locate zeros
of)

Z+ g-1
s(A, , y, , y, , x) = Zi a, +x(a, —a, )

g= J
2

-y, &, 2. 24
i=i
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sis to match the first 3N+ M+ D+ 1 terms of the
series to the form

E(x) =~ —t [(1 —y(x) "~ —1]+ ", (2. 28)
A a. . f„(x)
, ir,

where

+M(x) ~ +M- lx
L=O

and

Qn(x)=~ kn a'.
k=0

(2. 28)

1 -"0
p 3E+N+ D+ 1 2 31

where the symbol I'; = (1jy, ) ( „"') for i & 1, and
1", 0=—0. The second term on the left-hand side
does not affect powers of x higher than M; so if we
select the values of the A, , y, , y, , and gD k so
that the coefficients of g from order M+ 1 to M
+ D+ 3N inclusive vanish, then the coefficients
(p„, may later be chosen to satisfy the conditions
on the terms from order 0 to M. For this case
then we have to solve the nonlinear equations

min(g, D)

a, ., -R A;&i, ,(-yi)")z, , =o,
k=0

Without loss of generality we may choose the con-
stant coefficient gD =1. The second term has the
same form as a Pads approximant and it is capable
of approximating up to D singularities (admittedly
not precisely if they are not simple poles). The
inclusion of this term may account for several
singularities of lesser importance and mean that
reliable approximations can be obtained for smaller
N than would be otherwise required.

For D=O, Qn(x) =1.0, Eq. (2. 28) has the same
form as (2. 17) when Eqs. (2. 16) are solved for
J= M+1. The sequences of estimates obtained us-
ing the original procedure correspond to the esti-
mates we would obtain fitting (2.28) to the first
3N+ M terms of the series with D= 0 and M ranging
from 1 to the maximum permitted by the length of
the series.

Although we may now do well with a smaller N,
for a given N and D&0 the problem of solving for
the unknown parameters in (2. 28) is obviously
more difficult. The condition we impose is

Z a,x'-Z [(1—y;x) "& —1]—A a Z„(x)
)-0 ' «-i r»

* en(x)

0( 3K+ 4+ Dt 1) (2 30)

Multiplying (2. 30) by Qn(x) and expanding the func-
tions on the left-hand side, we get

~ min(g, D)

Z Q a, , -Zi Ar. . .(-y, )'-" Zn, x'
g=0 , k=0 1=1 J

gn=1, j=M+1, M+2, . . . , ~+D+3N (2. 32)

from which we obtain the minimization problem
Q+D+3g -min(g, D)

g=g+ f l k=0 i=i

- minimum = 0, (2. 33)

which is the analog of (2. 19) for the generalized
case.

Rather than minimize S simultaneously with re-
spect to the p's and the g's [p's defined as in

(2. 21)], we take advantage of the fact that with re-
spect to the g's alone Eqs. (2. 32) are linear. Our
procedure is to choose starting values for the p, 's,
solve for the g's which minimize S keeping the p, 's
fixed, then calculate an increment in the p's (using
the diverse strategy procedure already described)
which will tend to minimize S with respect to the
p, 's. The P's vary implicitly with the p, 's. Since
each evaluation of S now requires the solution of
D linear equations, the computation time rises
rapidly with D.

Using this minimization procedure, we have been
quite successful in obtaining solutions for small
values of D. However, for larger values of Dwe
often encounter difficulty.

III. NUMERICAL RESULTS ON TEST FUNCTIONS

In this section we apply the new methods of analy-
sis to various test functions including the functions
labeled 2- Jf' from I (where they were analyzed
using the previously available procedures). For
convenience we list again in Table I the functions

TABLE I. Test functions A-0 which we have used to
study the effectiveness of the methods of series analysis.
Functions A-E are discussed in more detail in Ref. 1.

(I -x)-"+e-"
B (I x) i~5(I + lx)1~5+ e x

C (I-x) ' (I-—'x) ' +e"
(I x)-1.5~ (I+ 1 2)-1.25+ (I+ 15 1 2)-1.25~X~4X
(I )-1,5(1 + 1

)1,5+ (I+ 1 2)»1,25+ (I+ 15 1 2)-1,25x gx

(I )-1 5(1 1X)1~5+ {I+1 2)-1,25+ (I+ 15 1 2)-1,25
4X ~X 4X

(I x)-1.5 + (2(I -x)(2 -x)6/[(2 -x) -x ]j '2

(j x) 1' (I+—x) '5+ (2(I x)(2 x)6/[(2 x)7 XY]j"

(I -x) ' (1--,'x)"+ $2(I-x)(2-x)'/[(2-x)'-x'])'"
)-1.5+ (I + 4 )-1.25j

(I x)-1,5+ (I+ 4 x)-1.25~ e-x
5

(I-x) ' '+{I-x) '+ {I-x) ' +{I-x)+' '+(I-x)+' +e"
tan xi 8 4 2 3 I 4

M xi/2 ~2 m
I — fx + + — I x +

2z 6

N (I -x) [I+k(I -x) ]"

0 ((I -x) [I+k(l -x) ])
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TABLE II. Location of poles in some Pads approximants.

Poles in [5/6] Poles in t9/10] Expected poles

+1.7581
—0. 0044 +1.9862i
—0. 9939
-1.1106
—6. 3013

+ 1.7510
0. 0022+ 2. 0033i

-0, 9968
—1.0460
-1.2344

etc.

+ 1.7500
+ 2. 0000i

cut beginning
at-1. 0000

A,-altogether with the additional test functions we
will use in this section.

is qualitatively similar to the Pads analysis of the
renormalized function obtained from

(2 2)

where y, = —1, ——,', +-,', +1 for a=1, 2, 3, 4.
We have analyzed functions A,-K by the method

of Sec. IIA, renormalizing with respect to three
exponent values y„=1.25, y„=1.375, and y„=1.5.
For y„41.5, the dominant singularity at x=+ 1 in

A. Exponent-Renormalization Method

When this procedure is applied to functions with
the precise form (2. 1), the [N-1/N] Padd approxi-
mant in theory should exactly reproduce the re-
normalized function, and attempts to calculate
[n+p/n], n&N, p&-1, shouM produce singular
matrices. However, numerical roundoff effects
which may arise can cause slight deviations from
the exact result. Padd approximants [ng/n], where
&&N, are unlikely to give very accurate predic-
tions for the location of g of the poles in the re-
normalized function unless the N- n other poles
are relatively very weak (much further away from
the origin or with much smaller amplitude). For
example, a Pads approximant forced to approxi-
mate two poles of equal amplitude at x, =+ 1 and

x~ =+ 2 by a single pole might have that pole located
at x,« = 1.20; as x, increases or the amplitude of
that pole decreases, x,«would move closer to x,.

If the function being analyzed has the form of
(2. 1) with an additive entire function as well, the
renormalization goes through as before except that
now there are contributions from the extra term
added to the coefficients. Since the exponent-re-
normalization transformation carries any entire
functi. on into another entire function (y4 negative
integer) the analysis is the same as for a mero-
morphic function with only a finite number of poles.
For y= 1, ( „")(- 1)" is a slowly varying function of
g. We are not surprised, for example, to find
that the direct Pads analysis of

each of these functions appears in the Pads ap-
proximant to the renormalized function as the be-
ginning of a cut represented by a sequence of poles
and zeros beginning near g= -1.0 and stretching
out along the negative real axis, provided the or-
der of the approximant is sufficiently large. If we
denote by F» the function obtained from a func-
tion Z by renormalizing with respect to y„, the
[5/6] and [9/10] Pades to 6'~, » have poles at the
locations given in Table II. The singularity in D
at ++~ does not appear as a pole inthe Pads ap-
proximant at -&~, since it would lie on the cut
axis. On the other hand, in Pads approximants to
F~ & 5 we would expect to see a pole at + 1.00 and
cuts along all four semiaxes starting at + ]-,
and + 2i. This behavior is approximately what we
observe in, say, the [9/10] Padh approximant, al-
though some of the complex poles do not quite fall
on the imaginary axes. For E and E using y„
= 1.25, the behavior we see is similar to that for
D, since x= -1.0 is already a branch point in

PD f p5 ~ In $z ~ 35 there is an indic ation of a cut
due to the convergent singularity in F, since it lies
opposite the dominant branch point. Using y„
= 1.50 to renormalize E and E still leaves a cut on
the negative real axis, this time caused by the fac-
tors multiplying the dominant singularity. Hence
there is little difference between S~, ~5 and F~ & 5

unless we can form high-enough-order Pads ap-
proximants to see the cuts on the other three
semiaxes in F~ & 5.

The behavior of G-I when analyzed by the method
of exponent renormalization is as we would expect
except that cuts along the line Re(x) = 1 are hard to
detect since it is already crowded with singulari-
ties. The cut on the real axis when y„=1.25 is
very apparent in the Pads approximants; it is not
so apparent in II and I for y„= 1.50.

For J and K the results of this analysis are
straightforward: The singularity whose exponent
matches the value used for renormalization is
represented by the Pads approximant to a very high
degree of accuracy; there is a long line of poles
and zeros stretching outward from the other singu-
lar point.

When the functions are renormalized using y„
= 1.375 none of the singularities transforms to a
simple pole, so that Pads-type approximations to
branch cuts abound.

The accuracy with which the exponent-renor-
malization method predicts the locations of the
singularities in the functions A.-Z is tabulated in
Table III for two values of the renormalization ex-
ponent, y„= 1.50 and y„= 1.25. The parameter
tabulated is q„defined in I as

&n
= logsopn y

where p„ is the relative error in. estimating one of
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TABLE III. Values of e„ for estimates of y~ using n

terms of the series (for functions A.-E) by the exponent-
renormalization method. Renormalization is performed
with respect to two different values: y„=1.50 (true ex-
ponent for ~ = 1) and y„=l. 25 (true exponent for i ~ 2).

Test
series i

y„=l. 50 'y„= 1.25
n=10 n=15 n=20 n=10 n=l5 n=20

70 &70 &70 18 2. 5

2. 3

3. 5 4. 0 1.5

3.1 3.7 1.6
2. 2 2, 4

2. 2 2. 6

1 3.1
2 1.2

3, 4 1.1
~ ~ ~

47 70 14
1.2 2. 0 1.6
1.4 1.8 1.1

2, 0
2. 7
2. 1

2. 5
3. 2

2. 7

1 1.9
2 1.1

3, 4 0. 9
5 ~ ~ ~

1 1.9
2 1.1

3, 4 0.7
~ ~ ~

3.2 4. 0 1.7
1.7 1.7 2. 3
14 18 15

27 31 1 7
12 18 20
1.4 1.5 1.4

2. 1 2. 2
2. 6 2. 9
2. 2 2. 7

2. 3 2. 3
2. 2 3.2
2. 4 2, 7

1 2, 4
3 ~ ~ ~

4 5 ~ ~ ~

6 7 ~ ~ e
7

3.3 4. 5 1.5
1~ 3 1 7
1 3 1 5 ~ ~ ~

0. 9 1.2 ~ ~ ~

1.8 2. 1
0. 7 2. 0
1.0 2. 1
0. 8 1.7

1 2. 2
~ ~ ~

4 5 ~ ~ ~

6 7

0. 5
3.2 1.5
1 7

ate

0 7 ~ ~ ~

1.8
0. 4

2, 0
1.4
1.6
0. 6

1 2. 0
2 3
4 5 ~ ~ ~

t
6 7 ' ~

2. 2 2. 4 1.6 1.9
1.5 2. 0 '' 1.3
1.4 1.5 ~" 1.6
l. 0 1,4 ~ '' l. 2

2. 1
2. 7
2. 1
1.7

67 &70 &70 20 20
1.9 2. 2 2. 5 5.7 &7. 0

2. 6
&7, 0

5. 2 &7. 0 &7. 0 1.8
1.6 2. 0 2. 4 2. 6

2. 1
5. 3

2. 5
&7. 0

the critical parameters (in this case y, ) using n
terms of the series expansion.

B. Confluent-Singularity Method

As with the first method, when the series being
analyzed represents a function which is exactly of
the assumed form, in this case (2. 4) for finite N,
then the [N- 1/N] Pads approximant will exactly
represent the transformed function. Minor excep-

A, =lim[n/n] a.s (-~, (3. 6)

and for the [4/4] we obtain AD=0. 2034. ]Note: An

[n —1/n] Pads approximant will approximate a con-
stant by putting a pole $0 far from the origin so that
Ao(1 —$/$0) '=Ao. This was illustrated in the
[9/10] Pads approximant in the previous example. )
Higher-order Pads approximants show improved

tions to this are observed due to rounding effects
when the inverses of two exponents are very close
together. If y„=0, i.e. , the last term in the func-
tion is an additive constant, the transformed func-
tion will be exactly represented by the diagonal
Pads approximant [N-1/N- 1] rather than by
[N-1/N].

When an entire function is added to the form
(2.4) as in the case of function I. (Table I), the
transformed function will contain poles corre-
sponding to the leading terms of the Taylor-series
expansion of the entire function. These poles tend,
with rapidly decreasing residue, to a limit point
at $ =0. Whereas when the last term in I is miss-
ing we obtain the five indices exactly from the [4/5]
Padd approximant, from the [9/10] Pads approxi-
mant to the transform of I. we see poles as given
in Table IV. The two strongest singularities, cor-
responding to y, =j and ys= 1, are represented ac-
curately. Beyond that the representation of the
singularities is much less accurate. There is as
expected an infinite sequence of singularities con-
verging on the origin from the expansion of the en-
tire function; the amplitude of these singularities
tends to zero as predicted. Hence the Pads ap-
proximant shows poles which are compromise val-
ues for the more important terms in the Taylor
expansion (marked +) and the other three si.ngular
terms in the function, but from which, in this or-
der, it is impossible to deduce reasonable values
for y3 y4y and y5.

As another example, we have considered the
function M whose divergence at the singular point
z= 4z is described by the expansion which is also
given in Table I. The transformed function for
M has the form

6'„($)=A, ~(1 —$) +Ao+A q(1+$) + ~ ~ ~ (3.4)

where A, , =0.8106, A0=0. 2026, andA, = —0.0147.
From the [4/4] Pads approximant we find poles at
$, , =1.0000 and (,= —1.1638, from whose residues
we predict A.„=0.8104 and A &

= —0.0155. From
an [n/n] Padd approximant we estimate

TABLE IV. Pade-approximant poles for the confluent-singularity-method transformation of I,
Expected poles + 0. 57 + 1 1+

2

[9/10] poles +0. 57 +l. 02 +10.50 -1.11 -0.56 —0. 30 -0. 20 —0. 15 —0.11 —0.08
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precision in ( ~ and A. &
and also approximate addi-

tional terms in (3.4).
The function N illustrates a problem which may

arise. We expect to see confluence of the form

Z, (x) =(1-x)'"-u(i-x)+a'(1-x)"'
—k'(1 —x)'+ ~ ~ . (&. 6)

However, for the case 0= 1 (and similarly P = —1),
the function is singular on one of its branches for
x=0, i.e. , when (1 —x)'~'= —l. in these special
cases, E„(x) does not have a Taylor-series repre-
sentation. For k = —,

' this singularity moves to x
= —15. On applying the transformation we see
clear estimates for the first two terms in (6.6);
for example, from [9/10], y, = —0. 500006, A,
= 1.0001 and yz = —0.9964, A.~ = —0.2438. The
other singularities seem to be tending toward their
limiting location from off the real axis. For k
= ——,

' we see the first three terms in (3.6) with ac-
curacy comparable with the above and we note that
the remaining roots of the Pads approximant are
real. For the test function 0, where the con-
fluence we are looking for has the form

Z, (x) = (1 —x)-"' —a + u'(1 —x)"' —u'(1 —x) + ~ ~ ~ ,

the results obtained are qualitatively similar and
of about the same accuracy as for N. However,
now, because of the constant term, we prefer to
look at [n/n] Padh approximants and estimate the
constant using (2. 5).

The usual Pads-approximant procedures applied
to the logarithmic derivatives [d inE(x)/dx] of these
functions are only capable of revealing the leading
exponent at any of these singular points. The esti-
mates obtained by the usual Pads-approximant
procedures for N and 0 are much less accurate;
typical values of y~= —0. 503, A,~=1.02 are fully
two to three significant figures worse than those
quoted above for the confluent-singularity method.

We have analyzed test functions A,-I' using the
confluent-singularity method, performing the
transformation with y = 1. Hence we are looking
for "confluence" at the location of the strongest
singularity. We would expect to see the leading
exponent y~ = 1.5 in all six cases. Since A. and D
have no factor multiplying this singularity, we will
see only the effect of an additive Taylor series
(since in both cases the additive terms are analyt-
ic at x= 1); that is, subsequent y's should be 0,
—1.0, —2. 0, . . . . However, for 8, C, E, and
Il the dominant singularity is multiplied by a fac-
tor analytic at x=1, and hence we should also see
exponents + 0. 5, —0. 5, —1.5, . . . in addition to all
of the above. The behavior of A is as expected;
we are able to see clearly the first six terms from
the [9/9] approximant. The leading exponent is
given to eight-figure accuracy, the second term

(the constant) corresponding to y= 0 is obtained to
five-figure accuracy from (2. 5), and the sixth
term (y= —4. 0) is given to 7% accuracy. The be-
havior of g and C is clearly not the same as for A..
The value y=+ 0. 5 is clear, while the exponents of
the opposite sign are not so distinct and not all the
expected values appear. Bather, for 9, where the
multiplying factor at &=1 is three times as great as
it is for C, the exponents tend to be closer to the
sequence —0. 5, —1.5, —2. 5, . . . , and for C they
tend to be closer to the sequence —1.0, —2. 0,
—3.0, . . . . The complexity of the functions D-F
precludes obtaining any detailed results using this
method. For D we do see both the leading singu-
larity to four figures and the constant to two fig-
ures. For E and Il we obtain the leading y to two
figures, but we can conclude nothing beyond that
except that their behavior is not similar to D.

C. General Method

We will denote a generalized approximant of the
form (2. 26) by the symbol [N, D, M]. We have
formed such approximants to the series expansions
of the functions 8-Z for various values of N, D,
and M and using up to 20 terms of the expansions,
i. e. , 3N+ D+ M & 19. As we pointed out earlier,
we encounter difficulty in calculating the approxi-
mant for other than quite small values of D. We
have obtained some approximants with Ã= 5 for
function D, but these also are difficult to obtain;
so usually we rely on the Pads-approximant term
to approximate the less important singularities as
simple poles. Approximants of the form [N, 0, M]
correspond to the procedure described in Sec. IIC
and, of course, i.n the new notation [0, D, M] is the
usual [M/D] Padd approximant.

The class of approximants for which we have
calculated the largest number has the form [1,D,
M]. The estimates for the parameters describing
the strongest singularity which are obtained from
such approximants are summarized in Table V.
The number tabulated for each value of D is

The maximum order of the numerator,
M, may be determined from the column headed
"M values" which lists those values of M which
we were able to calculate approximants for the giv-
en D value. In some cases M is not the maxi-
mum value which is theoretically possible given
20 terms of the series.

In considering the pattern of divergent singulari-
ties in the functions A,-Z, the functions obviously
fall into four groups: three groups of three in con-
secutive order with J and %forming the fourth
group. We note that 8 is exactly of the form (2. 1),
A., D, Q, and E are close to that form, and the re-
maining functions differ more from that form in
that the strongest singularity is multiplied by
some function of g. However, in Table V we are
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Series D

0 &10
1 &10
2 &10
3 &10
4 &10
5 9.0

&10
&10

8. 4
8.4
8.4
7. 7

1-16
0-15
1-14
2~13
3~12
6-7

M values

0
1
2
3

5
6

0
1
2

3

3.1
3. 5
3. 0
3. 0

2. 7
3.1
2. 8

3.1
4. 0
4. 0
5. 2

5, 4
4. 9
4. 2

2. 9
3, 1
3. 0
2. 9

2. 2
2, 6
2. 6
2. 5
2. 9

1.7
1.9
1.7
1.7
1.3
1.5
1.3
2. 0
3. 0
3. 0
4
4. 3
3.8
3. 3

1.6
1.7
1.6
1.6

1.5
l. 3
1.3
1.2
1.4

1-16
0-15
1-3,5-7
2-6

3-16
0-15
1-4, 6-9

0, 1,4-16
0-15
1-3,5-7, 9-11,13, 14
2-9, 11-13
3-6, 8-12
5-8
5

0-16
1-15
1-3,5-7, 9, 11,12
2-11

4, 6, 8-16
0-15
1-3,5-7, 9, 10, 12, 14
2-12
3-8, 10-12

TABLE V. Values of 6'2p for estimates of y~ and y~

from (1,D, M) generalized approximants to the functions
A-K. The value tabulated for each value of D represents
the best estimate from a sequence of approximants for
the various M values shown in the last column.

TABLE VI. Comparison of accuracy of estimates
(tabulation of E'2p) of the locations yi of the singularities
in functions A-K using the [1,D, M] generalized approxi-
mants, and the ordinary Padb approximants [M/D]
—= [0,D, M] to the logarithmic derivatives of the functions.

Test
series i

A 1

B 1

C 1

Exact location
of singularity yf

1.0000

1.0000

l. 0000

620 fOr
generalized-
approxim ant

analysis

&10

3. 5

3.1

e20 for usual
Pads approximant

analysis

4. 8

5. 1

4. 0

as (ni) ~ and are therefore well represented by a
low-order Pads approximant. The estimates ob-
tained for A in Table V are very close to the true
value. The estimates for D are considerably better
than those for E and F, reflecting the compatibility
of the form of D. Similarly, one might expect G

to be more amenable to this analysis than H or I,
but Table V shows this is not the case. However,
in |"-Ithe second and third singularities are only
about 10% further from the origin than the first
one, and approximating these strong algebraic
singularities by simple poles introduces a consid-
erable error into the [I, D, M] approximants. In

fact, we note that the estimates of y1 and y1 are
more accurate for H where A1, the effective am-
plitude of the closest singularity, is larger than for
6 and I. The functions J and E both have two sin-
gularities of approximately equal strength on op-
posite sides of the origin. Any attempt to approxi-
mate these functions by an approximant containing
only one singularity is unrewarding. Therefore

1.9
l. 5
2. 3
1.7
2. 2
2, 5
2, 5
2. 5

1.6
l. 1

3.8
6. 5
7. 2

3. 8
6. 5
3, 6

0. 9
0. 6
1.2

0. 8

l. 3
1.3
1.7
1.3
0.4
0. 2

2. 7
5. 5
6. 3

2. 7
5. 5
2. 9

0-12, 16
0-2, 4, 5, 7, 8

1, 3-5, 7-9
2-4

0-16
0-2, 4, 5
1 3-12
2 j 3

1~11
0 2t4&5~7s8

0-15
1-9,12-14
2, 5, 8

0-15
1-4, 7-14
3, 4

D 1
2

3, 4
5

1
2

3, 4
5

1
2

3, 4
5

1
2 j 3

4, 5

6, 7

1
23
4, 5
6, 7

l. 0000
-1.7500
+ 2. 0000i

2. 2857

1.0000
—1.7500
x 2. 0000i

2. 2857

1.0000
1.7500

+ 2. 0000i
2. 2857

1.0000
1.0000+ 0.4816i
1.0000 + 1.2540i
1.0000 +4 ~ 3813i

1.0000
1.0000 + 0.4816i
1, 0000 + 1.2540i
1.0000 + 4. 3813i

5.4
1.7
1.7
1.1
3. 8
1.4
0. 7

2, 9
1.6
1.5

2. 3
0. 5

2. 5
0. 6

3. 5
2. 2
2. 0

3.7
2. 2
1.8

2. 7
2. 1
2. 0

2. 7
0. 9
0. 5
0. 5

2. 4
0. 9
0. 5
0. 2

considering only approximants with X= 1; so none
of the functions will be exactly representable by
such an approximant. Function A is most closely
representable by (2.28) with %= 1, since e ' is en-
tire and the coefficients in its expansion drop off

1
23
4, 5

6, 7.

1.0000
l. 0000+ 0. 4816i
1.0000+1, 2540i
1.0000+ 4. 3813i

1.0000
-1.2500

1.0000
-1.2500

7. 2

2. 0

6. 5
2. 1

2. 2
1.0
1.0
0. 7

4
4. 2

3.9
2. 7
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TABLE VII. Estimates for y~, y~, Agog, i=1,2, forthefunction E using t2, D, M] generalized approzimants.

D=1 D=O

0
1
2
3
4
5
6
7
8
9

10
11
12
13

0
1
2
3
4
5
6
7
8
9

10
11
12
13

1.053 302 075
1, 005 551 024
0. 988 715721
1.004 489 791
0. 998 862 991
1.000 220 611
0. 999 964 678
1.000 004 840
0. 999 999419
1.000 000 062
0. 999 999 994
1.000 000 001
1.000 000 000
l. 000 000 000

0. 877 532421
0.973 088 747
0. 920 171195
0. 848 583 628
0.814 161710
0.803 294 100
0.800 643 923
0.800 108 840
0.800 016 215
0. 800 002 160
0. 800 000 259
0. 800 000 028
0.800 000 003
0.800 000 000

1, 021118441
0. 980876 269
0. 998 395 175
l. 000 251 649
0.999 962 931
1.000 004 899
0. 999 999422
1.000 000 061
0. 999 999 994
1.000 000 001
l. 000 000 000
1.000 000 000
1.000 000 000

0. 904 703 326
0. 937481 957
0.697 984 970
0.789 831652
0. 798 631567
0.799 812 091
0.799 975 502
0.799 997 028
0, 799 999 666
0.799 999 965
0.799 999 996
0.799 999 999
0.800 000 001

1.235 295 184
1.473 025 520
l. 578 433 014
1.464 432 204
1.510241 807
l. 497 789 382
1.500390 002
1.499 941654
1.500007 590
l. 499 999 126
1.500 000 090
1.499 999991
l. 500000 001
1.500 000 000

0. 429 095 856
0. 083 056 919
0. 328 190707
0. 797898 999
l. 096607 900
l. 209928 427
1.241 362 181
1.248406 097
1.249742 595
1.249963 048
1.249995 249
l. 249 999444
1.249 999 947
1, 249999 992

1.382732649
1.639 848 163
1.511953 108
l.497 837 613
1, 500 359 342
1.499 947 284
1.500 006 824
1.499 999 214
1.500 000 082
1.499 999992
1.500 000 001
1.500 000 000
1.500 000 000

1.419282159
0. 231 272 564
2. 661 023 675
1.374 971145
1.267 817 204
l. 252 639 170
1.250 371361
1.250 048 488
1.250 005841
l. 250 000647
1.250 000 072
1.250 000 011
1.249 999980

1.558 321 056
1.501437 690
1.459 429 408
1.526 520 128
1,490 855 267
1.502 312 014
1.499 540 946
1.500 075 779
1.499 989 293
1.500 001 324
1.499 999 854
l. 500 000 015
1.499 999 999
1.500 000 000

2. 440 232 120
2. 725 925 743
2. 311931387
1.689 457 731
1.394404 959
l. 290 027 628
l. 259 428 056
l. 251 894 605
l. 250 330 117
l. 250 050 654
1.250 006 908
1.250 000851
l. 250 000 085
1.250 000 014

A2y2

1.535 267 203
l.421 497 617
1,492432 677
l. 501 802732
1.4gg 641 862
1.500 060 123
1.499 991338
1,500 001 090
1.499 999878
1, 500 000 012
l. 499 999 999
1.500 000 000
1.500 000 000

0. 361333 356
2. 492 997 579
0. 536 231 230
1.136861412
1.231964 444
1.246 994495
l. 249 543 420
l. 249 936 196
1.249 991832
1.249 999 044
1.249 999888
1.249 999 984
1.250 000 033

we have omitted the case D=0 for X=1. The ac-
curacy of the estimation for y& and y~ is very good
for J and K even though the more distant singulari-
ty is approximated by a simple pole. The differ-
ence between J and E is hardly noticeable, since
the e " term is so insignificant in its contribution
to the 20th term.

The last feature of the results in Table V that we
emphasize is the marked improvements in esti-
mates for y& and y& for function D when the order
of the Pads-approximant denominator increases to
3. This at first seems rather odd, since D con-
tains four additional singularities. However, for
third-order denominators the Pads-approximant-
type term has singularities which approximate the
two imaginary and the negative real singularity
quite well. The fifth singularity lies well beyond
the dominant singularity on the positive real axis.
Its contribution to the series coefficients is quali-
tatively similar to the main contribution, and quan-
titatively is only a small perturbation to it. Hence
it is much less important to the form of the func-
tion than the dominant singularity and the other
three lesser ones. Once the generalized approxi-

mant is able to reproduce these four singularities-
one on each axis-the accuracy of the estimates
improves by more than an order of magnitude.

In Table VI we compare estimates for the loca-
tions of all the singularities obtained from the [1,
D, M] generalized approximants and from the stan-
dard Pads-approximant analysis of the logarithmic
derivative of the function. In the former case the
locations of the secondary singularities are esti-
mated from the poles of the Pads-approximant-type
term when such estimation is possible. In gen-
eral, the ordinary Pads-approximant analysis gives
better estimates for the location of the secondary
singularities, since they are not constrained to be
simple poles. One exception to this is the case of
the fifth singularity in D, where the generalized
approximants yield estimates with q = 1.1, while
there is no indication of this singularity in the
standard Pads-approximant analysis. Estimation
of the dominant singularity in A., D, J; and %[that
is, most of the cases that are exactly or nearly
of the form (1.1)] is markedly better using the gen-
eralized approximants. When the form of the func-
tion is altered by multiplying the dominant singu-
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TABLE VIII. Estimates for yg, y;, Agp;, i= l. . . 5 for function D using [5,D, M] generalized approximants.

(5, 0, 0)
(5, 0, 1)
(5, 0, 2)
(5, 0, 3)
(5, 0, 4)

(5, 1, 0)
(5, 1, 1)
(5, 1, 2)

(5, 1, 3)
exact

l. 000 003 246
0. 999 998 082
1.000 001 224
0. 999 999 534

0. 999 998 121
1.000 000 092

1.000 000 000

0. 572 594 498
0. 572 420 606
0. 572 233 257
0. 572 050 476

0. 572 418 313
0. 570 622 244

0.571 428 571

0.429 669 758
0.448 865408
0, 420 427 151
0. 457 261493

0. 448 532 828
0. 437 166 719

0.437 500 000

Rey3 = Rey4

0. 000 687 850
0. 000 486 788
0. 001 020129
0, 000729852

0. 000468 824
0'. 000 006 473

0.000 000 000

/Imy3[ = (Imy4I

0. 500723 412
0. 501 932 865
0. 501 694 768
0. 500 017 867

0. 501 929651
0. 501 062 620

0.500 000 000

(5, 0, 0)
(5, 0, 1)
(5, 0, 2)
(5, 0, 3)
(5, 0, 4)

(5, 1, 0)
(5, 1, 1)
(5, 1, 2)
(5, 1, 3)
exact

(5, 0, 0)
(5, 0, 1)
(5, 0, 2)
(5, 0, 3)
(5, 0, 4)

(5, 1, 0)
(5, 1, 1)
(5, 1, 2)
(5, 1, 3)
exact

l. 499 950790
l. 500 030 826
1.499 978 981
l. 500 008 568

l. 500 030192
1.499 998 362

1.500 000 000

l. 500 079 989
l. 499 947 384
1.500 037 834
l. 499 983 756

l.499 948 491
1.500 003 025

1.500 000 000

1.215 409 960
l. 218 219919
l. 221 578 540
l. 225 182 098

l. 218 261 086
1.270 200482

1.250 000 000

0, 648 748 706
0. 647433 816
0.645 650 268
0. 643 532 371

0. 647 411860
O. 604 292963

0.614167635

l. 300 654 019
1.087 491 525
1.478 706 078
0. 902 732 388

1.091 744 831
l. 225 739 995

1.250 000 000

0, 467 097 852
0. 485 565 597
0.427 098 497
0. 566 436 864

0.484 803 552
0.468 785426

0.439 852 494

Reps= Re y4

l. 218 112693
l. 198 067 963
l. 198 733 836
l. 233 452 808

l. 198 084 950
1.212 213 952

1.250 000 000

ReAg3= ReA4yg

0. 556 797 025
0. 563 621 570
0. 565 299 830
0. 549 330 050

0. 563 639 473
O. 558 927 550

0.525 560 260

lImp3 I
= [Imp~4 f

0. 009827 343
0. 009 422 286
0. 018 524 353
0. 016 763 614

0. 009 088 721
0. 000 060 843

0.000 000 000

IlmAgq l
= lImA. 4'Y41

0 ~ 002 506 934
0. 004 041 014
O. 007 413 702
0. 008 438 881

0. 003 904 195
0. 005 837 795

O. 000 000 000

larity by some function of x, the Pads-approximant
estimates are either clearly better (functions H
and C) or about the same accuracy (function E, E,
H, and I). The relatively poor results for G using
the generalized approximants have already been
discussed.

We have not completed the analysis for all N val-
ues greater thanone. For example, to analyze func-
tions G-f with N= 7 (the number of divergent singu-
larities) would seem beyond the limits of the pres-
ent method of solution and computer capabilities,
judging frompresent experience. To analyze J3 and
C with N& 1 would necessitate using ~ large enough
to include several terms in the Taylor-series ex-
pansion. These functions are much better suited
to analysis by the method for confluent singulari-
ties.

The function Z is exactly representable by (2. 22)
with N= 2and P„(x)—= 0 f-or all M and D. This solu-
tion is readily found provided reasonable starting

estimates are provided. For E we would expect
to get very accurate representations for N=2. We
have obtained solutions for 8= 0, 1, 2, 3, 4 and we
tabulate these for D=0 and D= 1 in Table VII. For
g) = 2, 3, 4, the progression toward the exact pa-
rameters is even faster, except that the sequences
are not complete. The computer program in sev-
eral instances encounters relative minima in S
which prevent it from finding the true solution to
the nonlinear equations. Since yj and y& are quite
close in magnitude to y2 and y2, the apparent con-
vergence of the sequences in Table VII is only
slightly faster for the parameters describing the
stronger singularity. If one expands the Pads-ap-
proximant term, it is obviously very close to the
expansion of e " with the necessary modification
to the constant term For exam. ple, for [2, 0, 13]
the difference between the tenth term in the ex-
panded Pads-approximant term and 1/10! is only
seven parts in 10000. The approximate relation-
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ship b,y/y: b,y: hP/P as 1:Z: JlnJ (where J is the
order of last term used) derived in I is evident in
Table VII.

Finally, for test function D we have succeeded in
obtaining some solutions for N= 5. This result is
the largest value of N for which we have found solu-
tions, and although enough coefficients can easily
be calculated to permit solutions with second- and
higher-order denominators, the solutions we have
found have only been for D= 0 and D= 1. The solu-
tions we have obtained are given in Table VIII.
The form of D differs from (1.1) in that the "am-
plitudes" other than A& are not constant. The re-
sults in Table VIII indicate that the estimates per-
taining to the four incorrectly represented singu-
larities are much less precise than those for the
first singularity. The instability apparent in the
estimates for the fifth (weakest) singularity is
further evidence that the form of the function is not
as represented and that higher-order denomina-
tors in the Padd-approximant-type terms would be
necessary for any sort of reasonable representa-
tion to be effected.

IV. APPLICATION TO ISING MODEL

A. Exponent-Renormalization Method

We have applied this method to the Ising-model
low-temperature-susceptibility expansions in zero

field, 7 since one reason for deriving this procedure
was the observation that the exponents of the inter-
fering singularities in these functions were quite
close to the best estimate for y'. Pads-approxi-
mant analysis of these singularities, whose loca-
tions have been given by Domb and Guttmann, in-
dicates that they all have exponents approximately
equal to 1 —'„while y' is variously estimated be-
tw'een 1 —,

' and 1 f8. We have analyzed these series
by renormalizing with exponent values of 1.1250,
1.1875, 1.2500, 1.3125, and 1.3750. We conclude
that the singularities do not share some intermedi-
ate exponent value and that little can be added to
the conclusions based on ordinary Pads-approxi-
mant analysis. When the renormalization expo-
nent is 1.125, the locations of all the interfering
singularities are estimated most precisely, while
the estimates of the Curie point fluctuate more
widely and in some cases appear to be the begin-
ning of a row of poles and zeros along the positive
real axis. On the other hand, when the renormal-
ization is performed with respect to values of
1.2500 and 1.3175, the interfering singularities
are located much less precisely and the fluctuation
in Curie-point estimates is considerably reduced.
As far as distinguishing between y' =1 4 and y'
= 1@as a preferred value is concerned, the same
ambiguity persists as was present in earlier anal-

TABLE IX. Estimates of the high-temperature specific-heat exponent 0, =p~ —j from the application of the confluent-
singularity method of analysis to jth-order derivatives of the specific-heat series in x. For the fcc lattice, j= 1 and x= v;
for the bcc and sc lattices, j=2 and x=v .
fcc lattice

3
4
5
6
7
8

bcc lattice
ngnr

1
2
3

5
6

sc lattice
u+N

1
2
3

5
6

0. 154 68
—0. 06917

0. 11553
0. 120 87
0. 128.48
0. 12153

0. 127 58
0, 07481
0. 263 95
0. 246 36

0.44182

0. 396 18
0. 19103
0. 09213
0. 22180
2. 08777

0. 108 09
0. 123 37
0. 12030
0. 11139
0.12425
0. 13034

0. 081 28
0. 11626
0. 13264
0, 08684
0. 157 55

—0. 223 11
0. 107 71
0. 147 55
0. 120 10
0. 11681
0, 12008

0. 12976
0. 12077
0. 122 66
0. 123 23
0. 11754

0. 228 93
0.13387
0. 12164
0.12115

0.789 49
Q. 207 42
0. 124 51
0.11649
0.11846

0. 11264
0. 124 68
0. 123 27
0, 12269

—0, 017 35
0. 063 63
0.12116

-0.134 22

0. 11814
0. 11931

0. 167 67
0. 12281
0. 12486

0.11324
—0. 04061

—0. 239 36
0.11957

-0.05412
0. 083 21

0.857 61

0.75145
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TABLE X. Estimates of y~ ——u, for the fcc, bcc, sc,
and diamond lattices from [1,D, M] generalized approxi-
mants to the high-temperature-susceptibility series.

fcc
0
1
2
3
4
5
6
7
8

bcc
0
1
2
3
4
5
6
7
8
9

sc
0
1
2

3
4
5
6
7
8
9

d iRII1011d

0
1
2
3

5
6
7
8
9

10
11
12
13

D=O

9.90990
9.834 50
9.824 80
9.828 10
9, 830 92
9.830 64
9.830 06
9.82979
9.82974

7. 00000
6, 02041
6. 710 71
6. 156 93
6. 61940
6. 226 01
6. 56477
6. 267 07
6. 530 82
6. 293 98

5. 000 00
4. 360 00
4. 813 55
4. 390 55
4. 736 80
4. 455 31
4, 696 56
4. 486 98
4. 671 57
4. 506 03

3. 000 00
3. 000 00
3. 000 00
2. 555 56
2. 912 80
2. 839 00
2. 890 26
2. 720 19
2. 886 09
2, 80262
2 ~ 868 22
2, 773 46
2. 865 42
2. 798 53

D=l

9.834 09
9.82347
9.827 28
9, 838 86
9.830 67
9.817 37
9. 829 56
9.829 73

5. 836 17
6. 432 39
6. 401 17
6. 41055
6, 406 02
6. 408 65
6. 405 95
6. 407 22
6.405 84

4. 24561
4. 63018
4.592 92
4. 582 15
4 ~ 580 97
4. 585 66
4. 584 15
4, 58533
4. 58416

3. 00000
3. 00000

2. 754 63
2, 85160
2. 869 37
2. 85079
2. 804 32
2, 83049
2. 839 41
2. 82941
2. 820 17
2. 826 67

9. 827 23
9.832 51
9.830 07
9, 830 13
9.829 75
9.829 80

6. 400 58
6. 408 60
6. 407 44
6.40770
6. 407 30
6. 406 82
6. 406 55

4. 591 64
4. 579 03
4. 580 82
4. 581 92
4. 584 51
4. 584 82
4, 584 74

2. 792 25

2. 807 14
2. 884 91
2, 856 40

2. 818 33
2. 848 18
2, 834 00

D=3

9.830 06
9, 830 13
9.830 09

6.407 43

4 ~ 580 79

2. 793 04
2, 83545
2. 828 79
2, 827 53
2. 826 64
2. 827 51
2, 827 06
2. 827 03
2. 826 59

9.819 27
9.829 74

2, 828 28
2, 827 28
2. 825 08
2, 827 08
2, 827 20
2. 827 03

'The approach to the minimum is extraordinarily slow
for these approximants, suggesting a relative minimum
rather than a solution.

values of the index. For the diamond lattice there
is a strong indication for 1/6 using both criteria.

B. Confluent-Singularity Method

We have applied the confluent-singularity meth-
od to the spin- —,

' Ising-model series for susceptibil-
ity and specific heat at both high and low temper-
atures. We find no evidence that any of the known
singularities have weaker singularities confluent
with them. However, in the case of the high-tem-
perature specific heat, the results obtained using
the transformation are noteworthy for another rea-
son. As indicated previously, the root in the
transformed series corresponding to the inverse of
an exponent such as 0, will be hard to detect be-
cause of its distance from the origin. However,
we have differentiated the series as was suggested
by Hunter~1 to reduce the effect of the correction
terms, but in this case the differentiation also
serves to move the pole closer to the origin. The
values of o tabulated in Table IX are calculated
from the Pads approximants to the transforms of
the second derivative of the fcc specific heat ex-
panded in g and the first derivatives of the bcc and
sc specific heats expanded in v . We use critical-
point values y=e, of 9.8290, 6.4055, and 4. 5844
for the fcc, bcc, and sc lattices, respectively. The
estimates we obtain are in very good agreement
with the biased ratio estimates of Sykes et al.3 and
hence with the accepted value a = —,'. Our analysis
using the confluent-singularity transformation is
more consistent with n =-,' than is the standard
Pads-approximant analysis of the derivatives of
the specific-heat series. "

In other cases the values indicated for the expo-
nents of the known singularities are all consistent
with, and no more precise than, estimates obtained
from other methods. We conclude that the poor
behavior of the low-temperature series is not at-
tributable to confluent singularities that would have
been invisible to other methods of analysis.

C. General Method

yses. We consider two criteria for such an
assessment, neither of them truly definitive.
These are (i) the amount of fluctuation in estimates
and (ii) the consistency with predictions of the lo-
cation of the Curie point from high-temperature-
susceptibility series. For the fcc lattice the first
criterion favors y' = 1 is and the second favors the
lower value. For the bcc lattice both criteria in-
dicate a marked preference for y'=1 —,', although a
value of 1.26 or l. 27 (consistent with Padd-ap-
proximant estimates) might be better still. For
the sc there is a slight indication from the second
criterion that y' is closer to the larger value, al-
though the fluctuation is about the same for both

We have analyzed series expansions for the Ising
zero-field high-temperature susceptibility (HT y),
specific-heat (HT C„), and low-temperature sus-
ceptibility (LT y) using the method of Sec. IID.
For HT y we have looked at the series for several
lattices. For HT C~ we have looked at the fcc ex-
pansions since previous analyses indicate most can
be learned from the more complete, albeit lower-
order, expansion on this lattice. For LT y we en-
countered considerable difficulty obtaining solu-
tions for the sc lattice, the lattice for which there
is only one interfering singularity; hence we have
not attempted the analysis for more difficult situa-
tions.

The estimates for y and y for HT g are given for
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TABLE XI. Estimates of the high-temperature-sus-
ceptibility exponent &i= & from [1,D, M] generalized ap-
proxim ants.

fCC

0
1
2
3

5
6
7
8

bCC

0
1
2
3
4
5
6
7
8
9

sc
0
1
2

3

5
6
7
8
9

dia1110Yld

0
1
2

3
4
5
6
7
8
9

10
11
12
13

D=O

1, 22018
1, 24461
l. 248 80
1, 24703
l. 245 25
1.24545
1.24594
1.24619
1.246 24

1.00000
l. 488 14
1.026 46
1.478 57
1.025 93
1.469 86
1.03279
l. 461 87
1.03937
1.454 77

1.00000
1.440 37
1.021 98
l. 505 82
1.030 26
1.474 43
l. 03912
1,461 31
1, 047 95
1.45384

1.00000
1, 00000
l. 00000
1.869 57
l. 027 04
1, 20969
1.064 10
l. 630 80
1, 01980
l. 347 89
l. 06548
1.51193
1.046 17
1.40578

D=l

1.24478
1.249 53
1.247 54
1.237 50
l. 24543
l. 269 04'
l. 246 45
1, 246 25

l. 635 18
1, 22665
1.248 00
1, 24017
l. 244 65
l. 24164
1.24514
1.243 30
l. 245 51

1.564 34
l. 205 01
1, 240 03
1.25250
1.25415
1, 24663
1, 24937
1, 246 96
1.24959

l.000 00
l.000 00

1,40510
1.174 18
1.127 13
1 ~ 178 93
l. 326 69
1, 22959
l. 19362
l. 23660
l. 279 69
l. 246 67

D=2

l. 247 57
l. 244 02
1.245 90
1.245 86
1.246 23
l. 246 18

1.248 50
1.242 03
1.243 09
l. 24282
1.243 28
1.243 92
1.244 32

1.241 51
1.257 03
1.254 39
1.25278
1, 248 67
1, 248 07
1.248 23

1.817 98

1.289 08
l. 078 85
l. 16235

1, 27716
1.153 02
1.216 09

D=3

l. 245 91
1, 24586
1, 24590

1.243 10

1.25443

1, 323 99
1, 224 16
1.240 68
1.244 20
1.246 70
1.243 94
1, 24565
1.24579
1, 24779

1.268 37
1.246 24

~ ~ ~

1.242 10
1.244 99
1.253 42
1.245 52
1.245 08
1, 245 80

'See Ref. a in Table X.

four three-dimensional lattices in Tables X and XI,
respectively. The most notable aspect of these
results is that the y estimates are consistently just
a little lower than ratio and Pads-approximant re-
sults have indicated. Estimates for y are corre-
spondingly slightly higher than the most recent
estimates. ' However, the revised estimates,
based on longer series, all represent increases
from previously accepted values'3 as compared in
Table XII.

The generalized approximants for the diamond
lattice undergo a rather marked change as D
changes from 2 to 3. The strong oscillation pres-
ent for a&2 disappears, indicating that, in addi-
tion to the antiferromagnetic singularity on the

TABLE XII. Comparison of the best 1967, 1972, and

present estimate of v, .

Present results
Old (Ref. 13) New (Ref. 12) by general method

fcc
bcc
sc
diamond

9.8280
6.4032
4. 5840
2. 8262

9.8290
6.4055
4. 5844
2. 8262

9.8300
6.4065
4. 5847
2, 8270

Reference 14.

TABLE XIII. Estimates for y~ = v, and pi = 0. for the
high-temperature specific heat from [1,D, I] generalized
approximants to the series for the fcc lattice.

Estimates for yf vo
2
3

5
6
7
8
9

10
11

8. 3849
8. 8564
9.7720

10.0497
9.9489
9.8641
9.8280
9.8185
9.8186
9.8206

9, 9973

9.9751

9.8041
9.8152

D=2

9. 1602
9.8407
9.8692
9.8130
9.8192
9, 8227
9.8236

D=3

9 ~ 8650
9, 8725

Estimates for 0.
2
3
4
5
6
7
8
9

10
11

0. 91575
0. 654 09
0. 124 28

-0.04495
0. 02552
0. 094 57
0, 12793
0. 13774
0. 13765
0. 13512

—0, 13221
0. 557 92 —0. 091 39
0. 11165 0. 085 09

0 ~ 005 13 0 ~ 088 11
0. 143 89

0. 154 ll 0. 13674
0, 14154 0. 132 26

0. 13094

negative real axis, there are two other nearby
singularities. Closer examination of the standard
Pads table indicates a similar onset of stabil. ity
as the order of the denominator increases from
3 to 4. These other singularities are very roughly
at x=+0. 5i.

Form (2. 28) should be very well suited to the
HT C~, since this is essentially the form used by
Sykes et al.3 to represent the specific heat for all
temperatures above the Curie point. We have cal-
culated most of the generalized approximants for
X= 1, a&2 for the fcc specific heat, as shown in
Table XIII. Specific-heat series are much more
notorious than susceptibility series and, as the re-
sults in Table XIII are unbiased in the sense that
no estimate depends upon an assumed value for any
other parameter, the consistency of these results
with ratio results is noteworthy. The deviations
in the z estimates, i. e. , a=~a„ from the accepted
value z = ~2 are certainly greater than for the ratio
sequence calculated by Sykes et al. using e„
= n(a„/a„q) y

' —n+1, where the a„are the coeffi-
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[+,a, m]

[2, o, o]
f2, o, ll
f2, o, 2]
[2, 0, 3l
[2, o, 4]
f2, 0, 5]
[2, o, 6]
[2, o, 7]
[2, 0, 8]
[2, 0, 9]
[2, o, lo]

[2, 1, o]
[2, 1, 1]
[21 2]
[21 3]

[2, 1, 5]
[2, 1, 6]
[2, 1,7]
[2, 1, 8]
[2, 1, 9]

[2 21]
[2.2 2]
[2, 2, 3]

3.2926
3.3329
3.4277
3.4663
3.4788
3.4846
3.4855
3.4872
3.4885
3.4904
3.4918

3.3315
3.7203
3.4925
3.4845
3.4894
3.4856

3.4919

3.4966

3.4814
3.4837
3.4871

2. 3694
2. 2892
2. 5566
2. 4004
2. 4720
2. 4250
2. 4350
2. 4064
2. 4366
2. 3778
2. 4440

2. 2849
2. 3977
2. 4584
2. 4499
2. 4435
2. 4332

2. 4212

2. 4090

2. 4493
2. 4511
2. 4189

l. 4948
l. 4317
1.2615
l. 1839
l. 1554
l. 1406
1.1381
1, 1326
l. 1282
1.1215
l. 1158

l. 4343
0. 5503
1.1196
l. 1402
1.1260
l. 1377

l. 1135

1.0913

l. 1482
1.1425
l. 1329

1.4013
l. 5622
O. 9604
1.3619
1.1424
l. 3044
l. 2653
l. 3897
l. 2462
1.5544
1, 1812

1.5733
1.3320
l. 1917
1.2149
1.2351
1.2726

1.3222

1.3825

l. 2159
1.2112
1.3537

cients in the expansion. However, the latter se-
quence is biased, and hence converges faster,
since the value of y used comes from HT y esti-
mates. The estimates of y from our analysis of
the specific-heat series are slightly lower than
those from the susceptibility series, which is con-
sistent with the slightly higher value of cv. Phys-
ically, of course, we expect the same location for

TABLE XIV. Estimates of yi, y2-—u~, 'Yi, 72='Y' from
[2,D, M] generalized approximants to the low-tempera-
ture-susceptibility expansion on the sc lattice.

the singularity from both series.
The incomplete table of generalized approxi-

mants for LT y on the sc lattice is reproduced in
Table XIV. We seek approximants with %=2 to ac-
count for the strong singularity on the negative
real axis and the Curie singularity; any other fea-
tures will hopefully be absorbed in the Pads-ap-
proximant term. Estimates of y~ and y& are con-
sistent with Pads-approximant and exponent-re-
normalization results. For D=O there is a strong
oscillation in y2 which appears to be diverging as
M increases. This would indicate either that there
are other singularities that should be approximated
by increasing N or D, or that form (2. 28) is not at
all reasonable for the LT y. The oscillation is
less pronounced for D= 1 (and presumably for D
= 2) but there is no indication that even D= 2 is suf-
ficient to fit (2. 28) to the series. We have ex-
pended considerable effort in attempts to extend the
table using various starting estimates for the pa-
rameters and resorting to the Davidenko proce-
dure. If it were possible to solve for higher B
values, one might observe the sudden disappear-
ance of the oscillation as was noted in the HT g
for the diamond lattice. There is no hard evidence,
from standard Pads-approximant analysis of other
singularities beyond the physical one, but never-
theless we have tried ¹3and used several start-
ing values for the third singularity, placing it con-
fluent with each of the two known singularities
(despite the negative indications of Sec. IVB) and
at other points in the complex plane. Experience
would indicate that without a good starting esti-
mate of the location of a singularity we are unlike-
ly to find solutions. At this time no conclusion
seems possible as to whether or not the form
(2.28) with additive singularities is a reasonable
form for the LT y.
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Energy Commission.
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