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We survey the principal types of methods of series analysis which have been used in the study of critical
phenomena with a view to determining their accuracy and applicability to the treatment of the critical-point
singularities. These methods include the ratio method and its variants, such as the Neville-table method; the
Pade-approximant procedures; and the procedures based on the generalized-Polya theorems of Thompson et
al, We show that the actual procedures of Thompson et al. are mathematically equivalent to certain of the
Pade-approximant procedures. We give a general error analysis for the series-analysis procedures and derive

a relation between the expected magnitude of the errors in the parameters of A(1 —yx) ~, namely,

5y:5y:hA as 1:J:J ln J, where J is the order of the last term of the series analyzed. This relation is briefly

illustrated by numerical data. We further give procedures for establishing estimates of the magnitude of
errors in the parameters that have the same type of validity as those commonly used to determine the

accuracy of a truncated Taylor series. We discuss the commonly occurring but anomalous case of "defects"
(errant close pole and zero) in Fade-approximant procedures. We show them to be related to Pade's block
structure of the approximant table and emphasize the artificial nature of the apparently rapid convergence
that they cause. By numerical investigation of many test functions, similar in structure to those believed to
appear in problems of critical phenomena, we have illustrated the following conclusions. First, for series
where there is only a simple algebraic singularity, closer to the origin and well separated from any other

singularity, the ratio method, perhaps with Neville-table improvement, is the most effective procedure.

Second, for series where there are interfering singularities close to the one considered, or where there
are singularities either closer than or nearly at the same distance from the origin as the one considered, the
Pade procedures are best. Finally, for not exactly representable singularity structures of the type just
decscribed, the convergence of even the Pade-approximant procedures are significantly slowed. None of the
general methods described does a very impressive job in computing the y value if the function is in fact of
the form A (I —yx) "in~i —yx~.

I. INTRODUCTION AND SUMMARY

Many important results in the theory of critical
phenomena have been obtained by deducing the
asymptotic behavior of functions from their series
expansions. Relatively few rigorous results are
available for the many models that have been in-
troduced to describe systems in the region of a,

phase transition. In the absence of many exact
results, considerable effort has been directed to-
ward calculating series expansions, often of con-
siderabl. e length, for the model partition functions,
and thence the thermal and magnetic (or a counter-
part) functions. Various methods have been used
to extract estimates of the critical points and crit-
ical. exponents from the series. Many of the re-
sults that have been obtained in this way are sum-
marized in two review articl. es' and in a recent
book. Qther developments that have heightened
interest in the field have been the derivation of the
rigorous exponent inequalities, the predictions of

scaling theory, ' and, more recently, the attempts
to deduce equations of state that reflect al.l the
critical. properties. 5

However, while many expansions have proved
amenabl. e to accurate estimation of the critical.
parameters using the current analysis techniques,
others subjected to the same analysis have yielded
results which are too uncertain to reach definite
conclusions regarding, for exampl. e, the validity
of scaling theory for a particular model. . In many
cases, the series expansions are not long enough
to make accurate predictions; in other cases, the
series would appear to be long enough, but the
structure of the function seems to be too compli-
cated for current methods to treat accurately.
This is especially true of the low-temperature
series for the three-dimensionalIsing model. , where
there are known to be other singularities in the
functions closer to the origin than the one corre-
sponding to the physical. transition. On the other
hand, there has not been any rigorouswayto assess
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the reliabil. ity of the results obtained in the analysis
of the series expansions.

If for a function f(x),

f(x) -A(l —yx) " as x-y ',
then y defines the critical (singular) point, y is the
critical exponent, and A is the amplitude. The
many methods and variations which have been used
to estimate these parameters for one or more sin-
gularities in a function for which only a finite num-

ber of terms in the Taylor series is known may,
broadly speaking, be considered in three groups.
The ratio method was first used successfully to
estimate both critical points and exponents by Domb
and Sykes. The use of Pads approximants was
demonstrated by Baker, ~ who verified earlier ratio
predictions and obtained new results as wel. l. The
third group we describe as being based on gen-
eral. ized Polya theorems and are due to Parks and

Thompson, Guttmann, and Ninham. The method
of critical-point renormalization' '" yields results
by what is essentially the ratio method and will be
discussed under that heading, but Pads approxi-
mants may also be used to study the renormalized
series.

The purpose of this paper is threefold: to review
these methods that are currently avail. able, to con-
sider the assessment of the rel. iability of the re-
sults obtained using the methods, and to numerical. ly
investigate their effectiveness on known functions
whose form is different from the simple form
usually considered. In a subsequent publ. ication'~

we will introduce some new procedures for analyz-
ing series that are particularly suited to studying

special, forms of the function.
In Sec. II we review the three groups of methods.

Guttmann's" ' Eq. (4) suggests that their procedure
is capable of treating a very general form of the
function. However, the low order of approximation
upon which subsequent analysis is based means, as
he points out, that the form reduces to the usual
simple product of factors of the form of the right-
hand member of (1.1). We show that this third
group is mathematically equivalent to certain com-
monly used Pads-approximant procedures. Be-
cause of this equivalence, we do not consider the
third group in the numerical studies of Sec. IV.

In assessing the reliability of estimates of the
critical. parameters, it is important to consider
their interdependence. For example, one must be
careful to distinguish between estimates for one
critical parameter which are independent of any
assumed value for another parameter (unbiased
estimates) and those which do assume a value for
another parameter (biased estimates). In Sec. II
we are careful. to distinguish between biased and

unbiased procedures,
In Sec. III we consider three topics rel.evant to

assessing the reliability of results. Kith regard
to the interdependence of the parameters, we argue
that uncertainties in estimates of the critical point,
critical exponent, and ymplitude, in that order, are
roughly in the proportion 1:J:JlnJ, where J is
the order of the last coefficient used. Further,
we consider the questionof fixing these uncertainties
on an absolute scale for different methods. The
other two points pertain to the use of Padd approxi-
mants and indicate that caution is sometimes re-
quired in interpreting Pade results that are appar-
ently quite well converged. Approximants which
contain a nearly coincident zero-pole pair (with
small residue) closer to the origin than the singu-
larity of interest are l.ikely to be anomalously simi-
lar to the approximant of degree 1 less in the nu-
merator and denominator in al, l other respects,
and hence should not be considered in examining
the Padd table for convergence. In addition, we
show that the difference between contiguous Pads
approximants for sufficiently small values of the
argument behaves as some high power of the argu-
ment, but that at some distance from the origin,
this regular behavior breaks down and the differ-
ence remains rel.atively constant. Thus, if the
point of interest is outside the wel. l-behaved region,
the variation between contiguous approximants,
and hence the uncertainty assigned to estimates
Qased on these approximants, should be greater
than it appears to be.

In deducing the form of the function and the values
of the critical. parameters using the various tech-
niques we describe, it is desirable to know some-
thing about their effectiveness for different forms,
and the rate at which the estimates they provide
converge toward the true values. Applying these
techniques to the expansions of known functions is
valuable in making such assessments. For the
two-dimensional Ising model in zero appl. ied f ield,
the free energy, specific heat, and spontaneous
magnetization are known exactly, and the asymptotic
form of the magnetic susceptibil. ity is known al-
most rigorously. Appl. ication of the series-analy-
sis techniques to these series has justified their
application in related problems, and has provided
a valuable yardstick for comparison with the analy-
sis of other series. However, the examination of
other forms than are represented by the two-di-
mentional Ising functions is necessary.

In Sec. IV we apply the ratio and Pads techniques
to 11 test functions which, in addition to the domi-
nant branch point closest to the origin, have other
additive singularities distributed in different ways
in the complex plane. We feel that such an additive
form is an obvious one to investigate for applica-
tion to the low-temperature Ising-model. series. In
this case, Pads approximants have not resolved the
parameters associated with the various singulari-
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ties as well as one wouM expect if the functions
were l.ittle different from a simple product of singu-
lar factors. For several. of our test series we
find that our best estimates have errors of a few
percent. This is the order of the error one finds
in estimates of the critical. point from low-tempera-
ture Ising series. In addition, to illustrate the
treachery of logarithmic factors which might mul-
tiply the usual singular factor (1.1), we include a
test function of that form. We present details of
the analysis for four of the functions so that the
problems encountered in assessing a ratio sequence
or Pade table are clear. We illustrate the points
raised in Sec. III with actual examples using the
test functions. The results for all. the functions are
summarized in a way that facilitates comparisons
between the methods and il.lustrates the degree and
rate of convergence of the estimates to the known

values of the parameter. The rate and manner in
which these estimates tend toward the true value
of the parameter, as asymptotical. ly they must, is
best studied using test functions, but the exampl. es
we give indicate that the considerations of Sec. III
will be valuable in assessing reliability in real
situations where the asymptotic values are not
knomn.

II ~ METHODS OF ESTIMATING CRITICAL PARAMETERS

A. Ratio Method and Its Variants

The ratio method may be used to study onl.y that
singularity which determines the radius of conver-
gence of the series expansion. However, we mill
also consider the case where the singul. arity of in-
terest is not originally the closest one to the origin,
but where an Euler transformation may be used to
map it closer than any other singularity. The
effectiveness of the ratio method is affected by the
proximity of other singularities to the circle of
convergence; ways of compensating for the effects
of other singularities will. be considered also.

If the function f(x) has the expansion

been estimated. Using (2. 2), we can write the
ratio x„of successive coefficients as

r„= a„/a„, -[1+(y —I)/n]y . (2. 4)

Equation (2. 4) is the basis of the ratio method. The
limit of the sequence (y„} is y and one attempts to
estimate that limit given a finite number of terms
in the sequence. The point at question usually is
whether the sequence is long enough to indicate its
asymptotic behavior. Often, as few as six terms,
and occasionally more than 35 terms are available.
The irony is that sometimes a short sequence might
give more clues to its asymptotic behavior than
might a much longer sequence for a different func-
tion. Plotting the ratios against 1/n gives a curve
that will have intercept y and limiting slope (y-1)y.
One may obtain an unbiased estimate of y from
graphical extrapolation to the intercept, and a
biased estimate of y from the slope (biased because
it depends upon the value chosen for the intercept).
In many problems, the potential precision of the
method surpasses the accuracy attainable using
graphical methods, so one may use more accurate
numerical extrapolations of the sequence (r„}.
Linear extrapolants

y„= nx„—(n —1)x„, (2. 6)

= nJ' g —n+1 (2. 6)

In this form the estimates y„are necessarily bi-
ased, but one coul.d use the unbiased sequence

are most commonly used although higher-order
extrapolants in the form of a Neville table" are
often valuable. If y is known, the modified ratio
sequence

P„= na„/(n+ y- 1)a„,
proposed by Domb and Sykes'+' will approach the
limit y mith zero slope, making possible a more
precise extrapolation.

To estimate y one forms the associated sequence
$y„'"'}from (r„},where

f(x) = Q a„x"
n=o

(2. 1)
y„'"' = n~„y„'-n+1, (2. 7)

and the singularity cl.osest to the origin in the com-
plex x plane has the form (l. 1), then asymptotically
the contribution of this singul. arity will dominate
all other contributions to the coefficients a„, re-
gardless of whether the singularity (1.1) is a fac-
tor of f(x). We may write

(2. 2)

where the (z) are binomial coefficients and the
amplitude A is defined by

where y„ from (2. 5) replaces the best estimate of
the limit y in going from (2. 6) to (2. 7). The se-
quence y„'"' must converge to the correct l.imit,
since y„converges to y, but the convergence is
slower than for y„"'.

A possible variation" is to consider the l.ogarith-
mic derivative of the series f (x) [this transforma-
tion is frequently used with the Pads-approximant
analysis of f(x); see Sec. IIB1,

A= limf(x)(1 —yx)'" as x-y ' (2. 2)
d

lnf(x) =Q a„*x"- (2. 6)

and may be estimated from (2. 2) once y and y have from which it is obvious that the new series coef-
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ficients behave as
n+1 (2. 9)

then the coefficients have the form

~ = A("'."~ ') y",[1+O(yl/yl)] . (2. 11)

For y2 not on the circle of convergence, the correc-
tions rapidly tend to zero and x„[Eq. (2.4)] should
be nearly linear in 1/n, even for relatively small
values of e. We note that if y, is on the positive
real axis and y2 is at or near —y, , then the cor-
rections alternate in sign and the ratios will have
a regular oscillation of period 2 in e. This type
of oscillation occurs in the high-temperature
series for loose-packed lattices where y3 = —y,
corresponds to the antif erromagnetic singularity.
If the singularity in f(x) is a factor

The ratios of the transformed coefficients again
form a sequence of estimates for y, and this time
biased estimates for y are obtained directly from
the coefficients by dividing by y"".

Let us consider corrections to (2. 4) which would

arise for different forms of f (x). First, if f (x)
has two strong additive singularities ty& I &ly2l,

f (x) = A, (l —y, x) "' + Aq(1 —ysx) "3, (2. 10)

a = (a./a. -a)'"
and extrapolating Q] either consecutively or al-
ternately to study series with a less pronounced
oscillation. Any one of (2. 16) or either of the
suggested linear extrapolants of (2. 17) could be
substituted into (2. 7) in place of y„ to obtain unbi-
ased estimates of y suitable for series with an
oscillation.

A common assumption for a more general form
of singularity than (1.1) is

(2. 17)

f(x)-(i-yx)
~

in(i-yx) ~"; (2. 18)

in fact, the two-dimensional Ising-model specific
heat in zero field is known exactly to behave as
(2. 18) with y=O, A=i. Moore'~ has considered
the effect of such an additional factor on the ratio
estimates for the critical index. Asymptotically
our previous discussion is still valid, but signifi-
cant corrections for small n slow the convergence
to the asymptotic value. Moore finds that the ef-
fective value of y seen for finite n is given by

powers of v only are certainly the extreme in series
with oscillations. That they are readily analyzable
in terms of the variable x = v suggests the possi-
bility of defining

f(x) = (1 —yx) 'g(x), (2. i2) 'yegg —y + X/ln(cn) (2. 19)

where g(x) is analytic at x= y ', then the coeffi-
cients will have the form

a„= ("~ ')y" [A+ O(1/n)+ ~ ~ ~ ] . (2. iS)

There would be additional corrections of O(y~/y", )
if g(x) were singular at x= yz', but as we saw, this
effect falls off rapidly when Iy~) &Iy, ). Substitution
of (2. 13) into (2.4) gives

r„=- [1+ (y —1)/n+ O(1/n )]y, (2. 14)

which in turn implies

y„= nx„y ' —n+ 1 = y+ O(1/n) + ~ ~ ~ . (2. 1 5)

This suggests that 1/n plots might also be useful
in extrapolating the sequence Q„).

Since oscillations frequently arise in the se-
quences (x„]and (y„] when dealing with high-tem-
perature series (the most common application of
the ratio method), we will discuss possible varia-
tions one might use when oscillations are present.
The most obvious course is to take linear extrapo-
lants of alternate ratios; either graphically taking
the envelope of the ratio plot or numerically using

f~(x) = Q a2„x"-A~(1 -yx) "2,
(2. 2O)

then the generating function

6:(x, y, , y, ) = Z c„x"- (1 —x)~~'"3 ', (2. 21)

where

cn = ann/amp ~ (2. 22)

Using a different asymptotic form of (2. 2), we can
write

where c is an undetermined constant. Even for
large c the corrections can be substantial when,
as is usual, A, and y are of order unity.

If series expansions in the same variable for
two different functions known to be singular at the
same point are available, then the method of crit-
ical-point renormalization' '" enables one to ob-
tain an unbiased estimate for the difference be-
tween the critical exponents of the two functions.
If we have

f, (x) = Q a,„x"-A,(i-yx) '~,

y&" = —,
' [n~„- (n - 2)~„.,] (2. 16) a - n~& y" a - n~2 'y" . (2. 23)

instead of (2. 5). However, another alternative is
also suggested. In many model situations in zero
field, the partition function is an even function in
the interaction J and hence in the usual expansion
variable v =tanh(J'/kT). These expansions in even

It follows from (2. 22) and (2. 23) that c„-n'~ "a and
this in turn implies the asymptotic relationship in
(2. 21). The critical point of the generating function
has been renormalized to unity and the ratio meth-
od (2. 6) applied to the coefficients c„gives esti-
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mates of y, —
yz that are no longer biased by an

assumed value for y. Moore et a/. "'"point out
that better results are possible if one considers
the logarithmic derivative of the generating func-
tion, since the amplitudes of certain types of com-
peting singularities a.re reduced. From (2. 8) and
(2. 21) we see that the coefficients themselves in
the new series form a sequence of estimates for
yi —yz+ 1. The critical-point renormalization pro-
cedure is particularly suitable for estimating the

gap exponents b, and b ' and the correlation-length
exponents v and v' given series for the derivatives
of the free energy with respect to external field
and the spherical moments, respectively.

We have discussed the use of linear extrapola-
tions of sequences of estimates for y and y. The
Nevill, e-tabl. e method'~ is one of nonlinear polyno-
mial (Lagrange) interpolation which, when applied
to sequences which apparently behave as 1/n, can
be used to extrapolate to 1/n = 0.

In that case, the Nevill. e-tabl, e method enables
one to form higher-order nonlinear extrapolants
by making successive linear extrapolations. In
general, given a sequence {f„}of va, lues of a func-
tion at the points x= {a„},the jth-order interpola-
tion polynomial through the points (a„,f„),. . . ,
(a„&,f„&) is defined in terms of lower-order poly-
nomials by

f(+I +-J i +-i+» i +-&)
~-~ —a.), (2. 24)

where the linear interpolation polynomials are

fn-1 + 4"(
f(~la-( a)= det

tl

(2. 26)
We can specialize to the case a„= 1/n and then ex-
trapolate to x=a =0. The sequence of jth-order
extrapolants is then given by

=f 0, , — = —. det) 1 1 1
Ã-j ' 's

[nf, ('-(&
(n j) 11 (J-&&]

(2. 26)
If we define S„(o' =f„, then the r—ecurrence relation
(2. 26) is almost trivial to apply and provides ex-
trapolants that may be carried to as high an order
as the length of the series permits. As we can see
from the 1/n dependence in (2. 4) and (2. 16), both

{x„}and {y„}are readily extrapolated using (2. 26).
In theory, for an ideal sequence the accuracy of

the extrapolation increases with the order of the ex-
trapolant. However, the sequences we are con-
cerned with approach the 1/n form only asymptoti-
cally; they will inevitably have "noise" in the
early terms due to contributions which are not ex-
pandable in 1/n. The noise in the early termsprop-
agates forward as the order of the extrapolants
increases, so that for finite sequences for suffi-
ciently large j the apparent convergence of the
Neville table breaks down. For series with an os-
cillation due to a nearby singularity on the negative
real axis (exponential behavior in n), this break-
down occurs immediately —for the linear extrapo-
lants. As before, we could circumvent this by ex-

zo= (1+a)z/(I+ az), (2. 26)

where a is a real constant. We do not consider the
more general bilinear transformation

w = (6+ cz)/(I+ az), (2. 29)

trapolating subsequenees of alternate ratios. Mak-
ing the appropriate modifications to (2. 26), we get
instead

X(~' = (1/2j) [nf,""—(n-2j)f" "] (2. 27)

Equation (2. 27) is readily generalizable to account
for oscillations in {f„}of different periods.

Another variation which has been used extensive-
ly, especially in conjunction with the ratio method
when nonphysical singularities lie closer to the
origin than the physically interesting one, is to
first apply an Euler transformation to the series.
The transformation is chosen so that in the complex
plane of the transformed variable the interfering
singularities lie beyond the circle defined by the
singularity being studied. The method was first
used by Danielian Bnd Stevens to study the anti-
ferromagnetic singularity by transforming away
the ferromagnetic one. Baker et al. " considered
ihe effect of such Euler tr3nsformations and showed
that they left certain Pade approximants invariant.
Since then, that type of transformation has been
used by others in a variety of contexts se

If there is only one interfering singularity, it is
possibl. e to transform it to infinity, but even if
there is more than one, it is possible to find an
optimal Euler transformation for our present pur-
poses (in the past, the transformations used in the
latter case were chosen rather haphaza. rdly). We
will consider the Euler transformation defined by
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(a)

Wi

„Wo

Zo

Wc=I

Wo

z)

FIG. 1. (a) Complex g plane showing gc=1, the physically interesting singularity, and a pair go, z() of interfering
singularities. The shaded region in the g plane is mapped into itself by the transformation (2. 28) if @&—1. (b) The
complex g plane for a case where there are three pairs of interfering singularities in the g plane. (c) The complex u
plane showing that the optimal transformation for case {b) is the one which maximizes lcoo I even though )zo f& )g~ )& )g2 I.
The straight line Re(~) =1 is the transform of the circle shown in {b).

since the transformation may be applied success-
fully to a truncated series only if ~0 = 0 in the ex-
pansion

yields

(2.ss)

(2. so)

i s (1+aP soso*

(1+a@0)(I+as)) '

The condition

(2. 31)

(2. 32)

i. e. , only if b = 0 in (2. 29). Equation (2, 28) implies
that the origin i.s a fixed point in the transforma-
tion, and we choose to make the physical singulari-
ty (for convenience located at s = 1) the other fixed
point. Thus (2. 29) reduces to (2. 28) for the case
we will consider. The circular region of radius
—,
' through @=0 and s= 1 [shaded region in Fig. 1(a)j
is mapped into itself by (2. 28) when g& —1; so it
must be assumed free of interfering singularities
or we will. not be able to find a satisfactory trans-
formation. Let us assume, however, that there is
a complex s&ngular&ty at 80= xo+ $/0 ~ )80 I & 1. Since
the series coefficients are real, so* is also a singu-
lar point. If (2. 28) maps s~ into coo, then we define
the optimum transformation as the one which max-
imizes

from which we see that

~0 = I+f([Xo—&0(I &0)l/Xe (2. 34)

Hence, the optimal transformation which leaves the
physical transition unchanged maps the circle
through the points 1, zo, so* into the straight line
Re(so) = 1. If there is more than one complex-con-
jugate pair of interfering singularities, then it is
not immediately obvious what the optimal trans-
formation will be. Figure l(b) illustrates a case
where there are three pairs of singularities closer
to the origin than s, . The optimal transformation
in this case is the one which maximizes Iwoi de-
spite the fact that z~ and s2 both lie closer to the
origin than so. Figure 1(c) shows that after such
a transformation )m&t and (mat, although not maxi-
mized, are much greater than )tool.

B. Fade-Approximant Methods

Pade approximants were first applied to this
problem by Baker and have been used extensively
by many workers since. Comprehensive reviews
of the theory and applications of Pads approximants
have been given by Baker. ' We shall outline
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some of the procedures which have been used suc-cessfullyy.

The [N/D] Pads approximant to the function f(x)
is the rational polynomial expression

p„(x) po+ p,x+ ~ ~ ~ +pox
D y

Qn(x) 1+q,x+ . . +qnx
(2. 35)

where the coefficients po, . . . , p» q» . . . , qD are
chosen to make the first N+D+ 1 terms of the ex-
pansion of (2. 35) agree with the corresponding
terms in the Taylor expansion of f(x) about x &0.
It is immediately obvious that the Pade approximant
will represent all the singularities of f(x) as sim-
ple poles, and that therefore it will most accurate-
ly represent a singularity if it is a simple pole.
Therefore, it.is customary to form Pade approxi-
mants to

E(x) = lnf(x) =Z b„x" . (2. 36)

If f(x) has the form (2. 12), then E(x) has a simple
pole at x=y ', with residue —y. We obtain an es-
timate of y and y from the corresponding pole and

residue of the Pade approximant.
For a series whose coefficients are known to

order M, we can form a table of Pade approximants
[N/D] for all N, D such that 0&N+D& M. The
convergence properties of Pade approximants are
not fully understood (see Baker for currently
known convergence properties). We will mention
only the Pads conjecture' which, although unproven
in general, probably does not even give the com-
plete range of convergence. It says that there is
at least an infinite subseiluence of [N/N] Pads ap-
proximants which converge uniformly to the func-
tion E(x) provided E(x) is regular for lx l &ft except
for a finite number of poles within this circle, and

possibly for one point on the circle )x I =B at which
continuity is assumed only when the point is ap-
proached from points interior to the circle; the
domain of uniform convergence is lx I &8 with the
interiors of small circles centered at the poles re-
moved. Experience with estimating the critical
parameters from Pade approximants shows that
usually many more than the diagonal (N =D) ap-
proximants apparently are converging, and that
one might well consider not the whole table but a
smaller triangular wedge symmetric about the
main diagonal. Frequently one may find that esti-
mates based on the [n/d] and [n+ 1/d+ 1] approxi-
mants are anomalously close together. Such irreg-
ularities in the apparent convergence are related
to the existence of so called defects and are dis-
cussed in detail in Sec. III. Sometimes one may
be tempted to believe that the Pade table is very
well converged when in fact many of the highest-
order approximants contain defects and the appar-

ent convergence should be discounted entirely.
The following are the procedures involving Pade

approximants which have been used extensively in
obtaining estimates of the critical parameters y, y,
and A, if f(x) is given asymptotically by

f(x) -A (1 —yx)" as x -y

(i) Form Pads approximants to

:yE,(x) = —lnf(x)-dx X —y

(2. 37)

(2. 38)

E2(x) = (y —x) lnf(x)-y1 d
dx

(2. 39)

assuming some value for y, and obtain biased es-
timates of y by evaluating the Pade approximants
3tx=y '.

(iii) Form Pads approximants to

E (x) =f(x)""-A""/(1 yx)- (2. 40)

assuming a value for y, and obtain biased esti-
mates for y and A from the roots and residues of
the approximants as in (i).

(iv) Form Pads approximants to

E (x) = (1 —yx) f(x)-A (2. 41)

assuming values for y and y, and obtain biased
estimates for A by evaluating the approximants at
x=y

(v) Form Pads approximants to

d d 1E,-(x) = —lr. f(x) —lnf—(x)- 1 + — (2. 42)
Qx dx dx y

and evaluate atx=y (assumed). This procedure
was proposed by Baker et al. because it is quite
insensitive to the choice of y; technically, however,
it must be considered a biased procedure. Qne
drawback is that for large y, the quantity calcula-
ted is relatively insensitive to y as well t

(vi) In addition to (i)-(v), one may use Pads ap-
pl oxlments in conjunction with critical-point re-
normalization. Forming Pade approximants to

d
E2(x) = (1 —x) d—ln5:(x, yf Y2) Yi Y2+ 11

(2. 43)
where 0 is the generating function (2. 21), and

evaluating at x = 1 gives unbiased estimates for the
difference between the two critical indices y& and

yp r

and obtain unbiased estimates of y and y by choosing
the appropriate zero of the denominator and calcu-
lating the residue at that point, respectively, The

y estimate is unbiased in the sense that no assumed
value of x, is used. However, it is biased in the
sense that if the pole is a poor approximation for
y ', then the residue is an even poorer approxima-
tion for y.

(ii) Form Pads approximants to
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Procedures (i)-(vi) are all based on asymptotic
relations which prevail as one approaches the sin-
gularity of interest; we emphasize that this need
not be the singularity closest to the origin. If the
Pads conjecture holds, then we are assured that
as N ~, a subsequence of the [N/N j approximants
converges to E(x) arbitrarily close to the poles
[thereby reflecting the asymptotic behavior of F(x)]
provided we are in a region where the only singu-
larities in F(x) are poles. However, approxi-
mants are usually available for only relatively
small N and we may not necessarily obtain good
estimates for the parameters of interest using
these procedures. For example, if we are study-
ing the ith singularity from the origin in F(x), the
order of the denominator of the approximant must
be at least of order i before there is hope of that
singularity being reasonably represented in the
approximant. Usually one would require denomi-
nators of even higher order, particularly if there
are more than i singularities in F(x) altogether.
An exception to this would be the case

f(x) = a(l —x/x, )"i. . . (1—x/x„) "n, (2. 44)

where the functions F,(x) and F2(x) would be exact-
ly representable by [n —I/n] and [n —I/n —1]-order
Pads approximants, respectively. If (2. 44) were
multiplied by a nonvanishing analytic function g(x),
then the above and higher-order approximants
would represent the function well, although not
exactly. If g(x) were allowed to vanish at a finite
number of points, then we would need a higher-
order denominator in the approximant to repre-
sent the singularities introduced by the d Ing(x)/dx
terms in F,(x) and F2(x).

As another extreme, we consider the form

(2. 45)

estimates from Pads approximants. Final esti-
mates for the relevant parameters based on a table
of Pade approximants therefore depend to some
extent upon the opinion and experience of the per-
son examining the table.

C. Methods Based on Generalized Polya Theorems

In this section we will discuss the methods pro-
posed by Park' and by Thompson et a). ,

' " the lat-
ter generalized by Guttmann. '~' We will indicate
that the two methods are essentially equivalent,
although Thompson et al. give arguments to justify
using the approach for a much broader class of
functions and, in addition, adapt the method to give
biased index estimates given the location of the
physical singularity. Whereas Park was able to
solve the nonlinear equations by hand only for the
case of two singularities, Guttmann, using compu-
ters, was able to solve them for many more singu-
larities. However, even more important, we will
show that these methods are essentially equivalent
to the basic Pads-approximant procedures (i) and
(ii).

Park begins by considering functions of the form

(2. 47)

whereas Guttmann first considers
N x .-yz

f (x) = x Q n, + A;(x) 1—,(2. 48)
xf

where m is the order of the first nonzero coeffi-
cient in the expansion which f2(x) is to approximate.
The above functions differ from those in the orig-
inal papers in the convention regarding the sign
of the y~'s. Thompson et al. show that to leading
order in n the coefficients b„ in

where Z(x) is analytic at x =y, ' but may be singular
elsewhere. For this case

ln[x f2(x)j = Z b„xdx m0

and the coefficients in

(2. 49)

F&(x) = rs(1 yx) '-ry-(1-yx)" 'g(x)+ ~ ~ ~ .
(2. 46)

The Pade approximant is not able to represent the
behavior of F(x) at x=y ' nearly so well in this
case, particularly if y & 1. Although approximants
to E~ should still converge to y, the rate of con-
vergence will be slowed considerably by the pres-
ence of the second term if y& 1. Higher-order
terms in (2. 46) would include ones proportional to
(1-yx)"" ' which will slow the convergence even
further if y is very close to 0. The Ising-model
specific-heat index above the critical point is &

and the usual Pade-approximation procedures are
extremely slow in converging to x, and y.

Whereas the sequences (rJ and (y„] for the ratio
method converged to their limits as 1/u, we have
no such prior knowledge for the convergence of

lnf, (x) = Z „',q x"
dx n=0

(2. 50)

N

Z
xg

n=j —2N+1, . . . , j (2. 51)

where the a„are the coefficients of the logarithmic-
derivative series being studied and we assume the
a„are determined to order M ~. When we. apply
this procedure to a series, we are approximating

are equal, in other words, that it might not be un-
reasonable to apply to a series estimation techniques
which assume the form (2. 47), when in fact the
function which the series represents has the more
general form (2. 48).

Both methods reduce to finding solutions x&

and y,' ' to the nonlinear equations
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its logarithmic derivative by a function of the form
N (¹J)

E(x) = ln[x f(x)]=
dx f g xf x (2. 52)

This is just the partial-fraction expansion of the
rational function

PU) (x) N y(¹j)
q (j) (x) x (Nej) (2. 53)

where the subscripts denote the order of the poly-
nomials P(x) and q(x). The solutions to (2. 51)
using the first 2N coefficients (corresponding to

j = 2N- 1) make the first 2N coefficients in the pow-
er-series expansion of (2. 53) agree with the corre-
sponding terms in the expansion of F(x): therefore,
by the uniqueness theorem, the approximant (2. 53)
is equal to the [N- 1/N] Pads approximant to the

logarithmic derivative E(x). The correspondence
with Pade approximants goes through for higher
values of j since, using (2. 51) and (2. 53), the ex-
pansion of

j 2N PN 1 (x) (p j N(x)
0+ 1 + ''' + j 2N + q(j)(x) q (x)

(2. 54)
where

g(x)- (1+x/x,)'.
Then for n & —1 —~ the function

(2. 58)

The Pade-approximant formulation of the esti-
mation procedure would seem to be preferable since
the equations to be solved are linear. However,
the nonlinear equations (2. 51) may be linearizedk(')

as one would expect seeing the equivalence of the

approaches, but this constitutes an additional step.
Park's work, coming as it did in 1956 before either
the ratio or Pade methods were proposed, is a
considerable achievement. It went largely unrecog-
nized because, without the use of a computer, he

was unable to carry it to its full potential.
In concluding this section, we will make refer-

ence to two procedures which do not properly come
under any of the three subheadings in this section.
The method of Guttmann et al. ,

~ which we shall
refer to as the contour method, is of limited ap-
plicability —namely, to a few functions such as the
zero-field Ising susceptibility above T, which ap-
pear to be very closely of the form

f (x) = (1 —x/x, ) "g(x),

where g(x) is analytic for (x/x, ( & 1, except for
x = -x„where g(x) may behave as

N (N2 j)
Yg

k k + I (N j))k+1 g„(x)=- (1+x/x, )" (1 —x/x, ) "f(x) (2. 59)

d(x„-x) ln[x f(x)] . (2. 56)

An argument similar to that preceding (2. 54) indi-
cates that yN¹ ', j=2N-2, . . . , M, corresponds
to the [j—N+ 1/N 1] Padh approxima-nts to (2. 56)
evaluated at x» while x~' ' ' and yq"'~', i =1, . . . ,
N- 1, are the poles and residues of those approxi-
mants. All of Guttmann's results could have been
obtained from the Pade analysis of logarithmic
derivatives.

will agree with the expansion of E(x) to order j.
Hence the solutions x,'"'j' and y,

'"'j' to Eqs. (2. 51),
j=2N —1, . . . , M ~, correspond exactly to the

poles and residues of the [j—N/N] Pads approxi-
mants to the logarithmic derivative of f(x).

Thompson et al. did not propose using the method
in this form. Rather, they assumed that the loca-
tion of one of the singularities —say, xN—was known.

Equations (2. 51) need now be solved for 2N 1 un-—
knowns, n taking the values j —2N+2, . . . , j. If
we consider approximants to (x„-x)E(x) of the form

N-1 x-x
(x x)F(x)~ y(Nk ~ j) p (Nkt j) N N 1( )+ y( x(N j) x q(j) (x)

(2. 55)
then dividing (2. 55) by x„-xwould result in an ap-
proximation to F(x) of the form (2. 53) except that
x„ is now specified. For j= 2N —2, Eq. (2. 55) be-
comes the [N 1/N —1] Pad-e approximant to

will have an expansion in x/x, whose coefficients
alternate in sign and decrease in magnitude for
high enough powers m. As n increases, one must

go to higher and higher orders m ~M(n) to see
this behavior. The procedure is to find the range
of values for x, andy for which, for given n and

M(n), this behavior is detectable in the available
finite series for g„(x). The extremes of the ranges
for given n form a contour in the (x, y) plane. The
size of the contour shrinks rapidly as n increases,
but the cutoff in n for finite series of typical length
is at about n= 2 or 3. If one of the parameters is
known to high precision, then very accurate biased
estimates of the other parameter can be obtained.

We also mention the procedure of Alexanian and
Wortman. ~~ As used by them for problems of
statistical mechanics, their method seems to us
to be equivalent to the integration of (dp/dT) I,
from T =~, where the pressure p as a series ex-
pansion in the density p is known exactly to the
desired value of T. In this integration (dp/dT) (,
is expressed as a function of T and p by elimin-
ating p in favor of p. The resultant p series is
truncated at some fixed order in p. Any such ap-
proximation must, because of the analytic nature
of the finite number of coefficients, lead to a com-
pressibility which diverges as (1 —T/T, ) j, where

j is an integer, probably unity, at the critical
point. Inasmuch as the complete low-density ex-
pansion (information equivalent to the high-field
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expansion in the magnetic case) is required for
this method, and it is clearly of the truncated
Taylor-series type, we see little reason to employ
it for the problems at hand and will not consider
it further here.

A(1 —Yx) o, (3 1)

in which we are particularly interested. The ap-
proximate solution we have,

a(1-yx) ', (3. 2)

will represent, together with the rest of our ap-
proximation scheme, the coefficients of the func-
tion used in the approximate summation, so that
we have the equations

a( f)y~=A( o&) Y~(1+&;), j=J, J'+1, J+2 .
(3.3)

The g& are thought of as small percentage errors
caused by some combination of other aspects of
the function being approximated and the method
of approximation. The reason for selecting per-
centage errors is that, if Z is very different from
unity, the magnitude of the terms (3.3) can vary
rapidly with j. If we now expand

a=A+ED, g=Q+AC, y =F+rhY (3.4)

we can, substituting to leading order in (3.3), ob-
tain the equations

jhow
-' bQ-=—+ + =p), j=J J+1,J+2 .

AO +
(3

These equations can easily be solved to yield

bY/F = (2G+2J+1)rj~„—(G+J+1)g~,2 —(G+J)r/~,

EG = (G + J') (g~„—qq —b F/ Y),
(3. 6)

From (3. 6) we see that, relative to the size of the
g's, hY/Y is of order J. We consider J to be large
(10 or more)because frequently this number of
power-series terms of the function to be approxi-
mated is available. If the variation of q with j
is smooth in the sense of a polynomial in j ', then
the etluation for hY/Y will reduce the magnitude
of hY/Y to order J 3 relative to the magnitude of
p by cancellation. We would expect this situation
to arise when the only significant contribution to
the p's is a confluent singularity and there is no
other significant structure to the function. If the
g's are caused by other singularities, then their
behavior would be relatively geometric and then

III. VARIABILITY OF SERIES-SUMMATION METHODS

Let us suppose that we are trying to approxi-
mate the sum of a series which represents a func-
tion with a singularity

[N+j/N] (x) =Pg"'(x)/@NO'(x), (3. V)

where we will normalize

qlv'(0)=1 o, (3 6)

which differs from the convention of Baker'~ where
he used

QP'( )0=D(l+ ,jN—1) . (3.9)

We use the notation

cancellation would not disturb the estimate that
the relative magnitude of b, Y/Y to the magnitude
of the q's is of order J. It then follows that the
magnitude of hG is J times that of b, Y/Y' or Jm

times that of the g's. It is this connection be-
tween the relative variation in the exponent and
the location of the singularity which explains the
widely observed phenomenon that the exponent is
determined much less accurately than the location
of the singular point. The variation in the multi-
plicative constant A, at least for Jvalues which
we have seen used in applications, is of roughly
the order as that for bG. The sum in (3. 6) is of
order ln(G+ J), so that the bA is of the order of
J~ln(G +J') times the magnitude of the g's.

Obtaining an accurate estimate of the magnitude
of the g's is extremely difficult, except in special
cases. For example, when using the ratio method
and a clear even-odd effect is evident, the g's will
be of the order of the difference between the odd
and even ratio interpolations for the same coef-
ficients. Generally, the principle we will use in
estimating the magnitude of the q's is to use the
summation method to predict an additional series
coefficient and determine the magnitude of the
p's from the accuracy of these predictions. We
will now apply this principle to the Padb-approxi-
mant method. Empirically, one of the most re-
liable methods of assessing the error of f (xo) has
been to compare the results for successive Pad0
approximants, and to notice that the difference
behaves, at lea, st for small x, like a high power
of x. At some distance from the origin, this law
breaks down and the magnitude of the fluctuation
remains relatively constant beyond that point. A
relatively conservative guide has been to simply
extrapolate the small-x error law to xo, the point
of interest. Frequently, a much higher degree of
consistency has been exhibited in the location of
a singularity and the exponent value than would be
warranted under the above guide. The temptation
has been irresistible to quote much smaller purely
ad hoc errors.

We will now consider the relation of the differ-
ence of successive Pads approximants to the mag-
nitude of the g's. Let us denote
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D(m, n) = det

f f.i

f i f 2

f-
fm+tle1

f~n fm+~i '
fm+an

(3. 10)
where the function being approximated has the ex-
pansion

(3.11)

Now it follows directly from the definition of the
Pade approximants that

PN (x) Pw '(x)
( pÃ+g)

Qe"(x) Qk' "(x)

Thus by cross multiplication we have

(3. 12)

Pg'(x)QJ-"(x) -Qg'(x)PP-"(x) = O(x~") .
(3. 13)

But the left-hand side is a polynomial of degree
2K+j. From the determinantal solution for the
Pade approximants, we find directly that

P~"'(x) Pk' "(x) D(f, N)x'"'
Q]t"(x) g "(x) D(j, N- I)Qg"(x)Q]t' "(x) '

(3. 14)
The expansion on the right-hand side gives the
difference in the higher coefficients implied by the
two successive Pade approximants. In particular,
since the coefficient of x~'~ is exact in the [N+j/N]
Pade approximant, the error in it made by the

[N+j —1/N] is

Rn,» y = D (j,N)/D(j, N —1) . (3.15)

It is to be noted that the denominator (3. 15) is the
(N+ 1, N+ 1) minor of the numerator determinant.
Equation (3. 15) is, in addition to the product of the
coefficients of the highest power of x in PP'(x) and

Qp "(x), the last diagonal element in the triangu. -
larization of the matrix corresponding to D(j, N),
as can be easily seen from the fact that in forrq, -
ing an upper triangular matrix, every operation
leaves the determinant unchanged. Equation (3. 15)
is perhaps computationally most simply given as
the (2N+ j)th coefficient in f (x)Qz'~ "(x). If the
matrix corresponding to D(j, N) is positive defi-
nite, then it canbe proved that R&„,&&1.

The principles underlying the table-comparison
method of error assessment become clear from
(3. 14). As long as we are away from roots of
QP '(x) and Qz'~ "(x) and x is small compared to

[D(j,N —1)/D(j, N)]'~'~'~ ' the difference between
successive approximants is small. Once this dif-
ference has been made small, the difference be-
tween these approximants (the sum of an infinite
series of differences) and the function value will
likewise be small. The justification is to be found

bG = (G +8+ 1) (g +J) (2t)~„—tt~ —t)~,~),

bY/Y= —bG(G +J) '+1)g, ~
—t)~, (3. 16)

Now for this analysis, G =g = 1.0 or AG = 0; thus
bY/Y is of order tt and bA/A is of the order of
J times g. Since A plays the role of the exponent
in the singularity, this ratio of errors confirms
that found immediately following (3. 6). We would

estimate

q~„, ~=A 'Y ~D(j, N)/D(j, N —1)

here, since A.Ã~"'~ is the coefficient in the singu-
larity expansion.

Following the procedures given here leads to a
relatively objective procedure of error assess-
ment. It should have the same general strength
and weaknesses as usual procedures for assess-
ing the accuracy of the sum of a power series
thought to be within its radius of convergence.

The above-described methods assume that
one has reached such an order of approximation
that the above-mentioned asymptotic convergence
thoerems hold. Prima facie evidence that that
assumption is false would be the appearance of a
pole in a previously converging region of the com-
plex plane where there is no singularity of the ap-
proximated function. As a practical matter, one
frequently observes such poles, howbeit with very
small residue. We call such a pair of one pole
and one nearby zero a defect. For most problems
so far encountered in the theory of critical pheno-
mena, the residue of poles of physical interest is
in the range 0. 1-10. We have adopted an arbi-
trary, but serviceable, definition that a pole is a
defect if it has a residue of absolute value less
than 0.003 and lies in a circle centered approxi-
mately at the origin whose radius is geared to
(usually equal to) the distance to the physically
intere sting singularity.

It will be helpful to examine the origin of these

(3. 17)

in the theorems of de Montessus de Balliore~7 and
Wilson~' on the convergence of horizontal rows in
the Pade table. The presumption is that when the
successive differences are small and getting
smaller, then we are in the convergent region de-
scribed by their theorems which are valid for a
wide class of functions, and convergence is then
obtained in a manner analogous to the convergence
of a Taylor series within its radius of convergence.

If we are analyzing a singularity by computing
the Pade approximants to the logarithmic deriva-
tive of a function, then we can use a different re-
duction of (3. 5) to estimate the relative errors in
A and Y together with (3. 15) to estimate the mag-
nitude of the ti's. In place of (3. 6), we write



ME THODS OF SE RIES ANALYSIS: COMPARISON OF. . . I. . . 3351

defects. First, the Pade approximants are de-
termined by the solution of a set of linear equa-
tions. Suppose the determinant of the system of
Pade equations vanishes. Then we know from the
theory of linear simultaneous equations that the
equations are either inconsistent, as, for example,
are

x+y = 2, 2x+ 2y = 5, (3.18)

or have an infinite number of solutions, as, for
example, have

x+y= 2, 2x+2y=4 . (3. 19)

In the case of the Pade approximants, if the pre-
vious (N and D each 1 smaller) approximant had a.

nonzero determinant and the case where there are
an infinite number of solutions holds, then it is
easy to verify that

[N/D] = [N —1/D —1] (1+ryx)/(1+ nx), (3.20)

where 0. is arbitrary, is the infinite family of so
lutions. In the case where the determinant is not

zero, but in some sense very small, a particular
value of ~ will be selected. The z in the numer-
ator will differ by very little from that in the de-
nominator, provided the determinant is small
enough. An examination of which D(m, n) is im-
plied small reveals that the Rz, n, of (3. 15) is
necessarily very small compared to the coefficient

fD,„,. Thus, the relevant q's will be very small
and the results of the [N —1/D] and the [N/D —1]
will be very close to those for the [N —1/D —1].
By this line of reasoning, we will also expect that
the poles of the [N/D] will only be perturbed ver-
sions of those of the [N —1/D —1]. However, the
appearance of a defect shows that the projection
of f„,n from [N —I/~ —1], [N-1/D], or [N/D —1]
is not so good or, put another way, that the error
in fz,n, projected from [N —1/D —1] was abnor-
mally small. It can, of course, happen that sev-
eral successive coefficients will be projected with
abnormally small error. Then we expect the ap-
pearance of structures analogous to Pade's blocks
in the Pade table which he found in his investiga-
tions of normality. 2~ Put succinctly, if the [N/D]
projects with abnormally small errors in the co-
efficients f~,D,&, j=1, . . . , J, then we will have a
block in the Pads table with corners at [N/D],
[N+Z/Dj, [N/D+ J'], and [N+ J/D+ J'j. In this
block, all the approximants [N+k/D+I] with k,
I & twill be very 'closely equal to [N/D] and those
with 0+l & J should have one or more defects.
However, at most min(k, I) defects can occur any-
where in the block. Pads's results on block
structure follow from his consideration of which
determinants are necessarily zero (or nearly zero
in our case).

The recognition of this structure in the Pade

table is very important to the correct interpre-
tation of the results. Instead of the theorems of
de Montessus de Balliore and Wilson, we may
base our analysis on Theorem 4 of Baker, ' which
leads to roughly geometric convergence for a
bounded subsequence of the Pads approximants.
By "bounded" we mean bounded over an area sur-
rounding the origin and extending almost to the
singularity of interest which is free of singulari-
ties in the approximated function. This subse-
quence is necessarily free of defects as a function
is unbounded at a pole, no matter how small the
residue. Thus, the procedure would be to com-
pute the Pade table and examine it for either val-
ues at go or the location of the relevant singular-
ity as required. In addition, the appearance of
defects should be noted. The table should next be
decomposed into blocks as described above. The
q's, computed according to (3.17), should be dis-
regarded in the upper left half of all blocks. That
is to say, if the [N/D] projects an abnormally
small error in the fN, n,&, j = 1, . . ., J, then the

g&,»„for 0&k+l & J, 0&&, 0&l, should not be
used in the assessment of the run of magnitude of
the error in the coefficient projection. After this
run of magnitude has been established, (3.16) is
used to compute the variation in b,Y/Y (the same
as the g's) and ~/A (a factor of the number of
coefficients greater).

If the Pads approximants have reached the stage
where they are yielding a reasonably stable result
which is in accord with the known physical struc-
ture of the function involved in the problem at
hand, then these procedures are expected to yield
sensible estimates of the remaining variation in
the sought parameters.

IV. NUMERI(". AL RESULTS ON TEST SERIES

In this section we present the analysis of several
test functions using the techniques described in
Secs. IIA and IIB. These functions have been
chosen to represent different functional forms than
are usually considered. The Pade approximant,
when applied to the logarithmic derivative of a
function, is capable of exactly representing the
situation where the original function is a simple
product of branch-point singularities. Few physi-
cal series other than the two-dimensional Ising
spontaneous magnetization are known to have that
simple form for a small number of singularities.
Most of our test functions have been chosen to
illustrate a form that is effectively a sum of branch-
point singularities. In all cases, the dominant
singularity is at x=x, = 1 and has a critical expo-
nent y, =1.5. The test functions illustrate cases
where we add varying numbers of additional sin-
gularities situated on the negative real axis, along
a circle centered close to the origin, and along
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v
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FIG. 2. Singular points in the test functions A-I: the
singularity of interest (0), additive singularities at which
the functions become infinite (~), and singularities which
multiply the singularity of interest and at which the func-
tions remain finite (&&). The functions G, H, andI gach
have two more additive divergent singularities at x=1
+ 4.3816i which are not shown in the figure.

at x = 1, thereby obtaining critical-point estimates
and unbiased and biased exponent estimates using
Pade approximants.

To present details of the analysis using all these
procedures for all 12 series would seem unneces-
sarily tedious. Rather, we have chosen to present
details for just four of the series, selected so that
most of the interesting features are illustrated.
We then summarize the results for all the series
in tabular form in a way that illustrates the im-
provement in the estimates as the number of terms
used increases.

The functions we have chosen for close exam-
ination are C, G, X, and L. For C the ratio method
with Neville extrapolation gives better results;
for G and K the Pade method is most useful. The
sequences for G are sufficiently irregular that
Neville extrapolation is not indicated, but consider-
able improvement in the ratio results for the other
series is obtained with Neville extrapolation. For
C and K we find that the p„variation of the ratio
method is preferable. L is included to illustrate
the universally poor results for y when the loga-
rithmic factor is present. Our discussion will be
centered on the first three functions.

In Table II we present the ratio analysis for
these four functions. Columns 2-5 show the se-
quences for the ratios z„and for y„, unbiased y„,
and biased y „using (2.4), (2. 5), (2. 7), and (2. 6),
respectively. Columns 6-9 are similar but (2. 17)
for p„replaces z„ throughout, and linear extrap-
olation of p„'s following (2. 16) replaces y„. For
E, the oscillation in the ratios due to the strong

the line Re(x) = l. In addition, we consider adding
an entire function to the dominant singularity, and

multiplying it by a function which is analytic at
x = 1 but singular at one other point in the complex
x plane. In Table I we list test functions we have
considered. The singularities in the complex
plane are plotted for each of these functions in
Fig. 2.

We have expanded these functions in a Taylor
series to 20 terms. We have analyzed each one
using the ratio method and the two variants sug-
gested as appropriate if any oscillation is present
in the ratios. For the ratio sequences and the
biased and unbiased sequences for y, we have
formed the Neville extrapolants through sixth or-
der; we have also formed Neville extrapolants
using only alternate elements in the sequences.
Finally we have formed complete tables of Pade
approximants to the logarithmic derivatives of
the series, . examined the roots and residues, and
also formed Pads approximants to 1-x multiplied
by the logarithmic derivative and evaluated them

TABLE I. Functions A-I. which we have used to study
relative merits of current methods of series analysis.
The functions A-K contain a dominant singularity at x = 1
and additive terms which may have other singularities
in various patterns in the complex plane, Function L is
singular only at x= 1 and is included only to show the ef-
fect of the logarithmic factor.

(1-x)-1.5+ e-"

(1 /)-ie5(1+ 1/)1 5+ eM

1 5(1 1 )15+

~)-1~ 5~ (1+ 1 2)«1.25~ (1~ 15 1 2)-1.25~X 4X

(1 &) 1,5(1+ l~)1~ 5+ (1+~12)«1~ 25+ O + 15 ~ 1~2)-1~ 25

@) 1~ 5(1 1~)1 5+ (1+ 1~2)-1,25+ (1 ~ 15 ~ 1~2) 1~ 25

G (1-x) ~'~+ {2(l-x) (2 -x)~/[(2 -x) ~ -x ]j '

H (1—x) ~' (1+—x) + {2(1-x)(2 —x) /[(2 -x) -x']j '

(i -x) ' (& - 2x)"+ {2(&—x)(2 —x) /[(2 -x)7 —x7]P "
(1 -x)-' ~ '+ (1+ '~)-"'

)-1.5+ (1+ 4 )-1,25+ -2(,

I —(1 —x) ln(I- g)
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TABLE II. Ratio analysis of (a) C, (b) G, (c) E, and (d) L. Columns 3-5 show the sequences y„, y„(unbiased), and y„
(biased) calculated using the ratios z„, while columns 7-9 show similar sequences calculated using p„= (~g'Fy f)

1
2
3
4
5
6
7
8
9

10

11
12
13
14
15
16
17
18
19

2
3
4
5
6
7
8
9

10

11
12
13
14
15
16
17
18
19

1
2
3
4

6

8
9

10

11
12
13
14
15
16

+n

0.1250
-5.3750

0.5678
1.3773
1.0232
l. 0741
l. 0559
1.0518
1.0468
l. 0429

1.0396
1.0367
1.0342
1.0320
1.0301
1.0284
1.0269
1.0255
1.0243

0.4375
1.8304
1.2957
1.1664
1.1143
1.0881
1.0760
1.0681
1.0596
1.0504

1.0424
1.0365
1.0330
1.0313
1.0305
1.0302
l. 0299
1.0293
1.0284

—0. 1667
—6. 5500

O. 3789
2. 5512
0. 6766
1.5866
0. 8114
1.3258
0.8926
1.1995

0.9436
1.1297
0.9750
1.0887
0.9938
1.0636

-10.6250
12.4535
3.8059

—0.3936
1.3287
0.9470
1.0228
1.0072
1.0075

1.0060
1.0051
1.0044
1.0038
1.0033
1.0029
1.0026
1.0023
1.0020

3.2232
0.2265
0.7784
O. 9061
0.9569
1.0037
1.0131
0.9912
0.9679

0.9616
0.9722
0. 9908
1.0085
1.0204
1.0255
1.0248
1.0197
1.0118

—12.9333
14.2366
9.0681

—6.8219
6.1366

—3.8394
4. 9265

—2.5732
3.9615

-1.6151
3.1769

—0.8822
2.5675

—0.3355
2.1108

0. 0118
-1.8632
-1.5524

—16.9981
-0.1496

1.8051
1.2264
1.3539
1.3510

1.3663
l. 3767
1.3859
1.3939
l. 4008
1.4069
1.4123
1.4171
1.4214

0.1357
15.1635
2.9939
2. 1491
1.8224
1.5047
1.4350
1.6216
1.8531

1.9243
1.7935
l. 5532
1.3157
l. 1486
1.0730
1.0847
1.1702
1.3118

0. 0129
—1.9202
-1.8747
—4.4959
-3.4487
—7.4794
-4.847O

—11.1219
—5.9722

—16.4265
—6.7328

-26.3674
—7.0634

—58.4357
—6.9380

5)
Vn

(a) Test series C

—0.1250
—11.7500
—0.2965

2.5094
1.1158
1.4445
1.3915
1.4143
1.4215
1.4291

1.4351
1.4403
1.4446
1.4484
l.4517
1.4546
1.4572
1.4595
1.4616

(b) Test series G

0.4375
2. 6607
1.8872
1.6656
1.5717
1.5286
1.5323
1.5454
1.5365
l.5044

1.4660
1.4382
1.4290
1.4375
1.4580
l.4835
1,5083
1.5280
1.5398

(c) Test series E
—0.1667

—14.1000
—0.8634

7.2048
—0.6171

4.5195
—O. 3199

3.6065
0.0333
2. 9949

0.3797
2. 5567
0.6745
2.2420
0.9065
2. 0173

Pn

0. 8197

0.8844
1.1871
1.0483
1.0650
1.0539
1.0493
1.0449

1.0412
1.0381
l.0354
1.0331
1.0311
1.0293
1.0277
1.0262
l. 0249

0.8949
1.5400
1.2294
1.1401
1.1011
1.0821
1.0721
1.0639
1.0550

1.0464
1.0394
1.0348
l. 0321
1.0309
1.0304
1.0301
1.0296
1.0289

1.0448

0. 9832
1.3138
1.0361
l. 1346
1.0372
1.0878
1.0347

1.0639
1.0325
1.0495
l.0303
1.0402
1.0281

0.9490

1.3762
0.7596
1.0705
0.9945
1.0089

1.0049
l. oo44
1.0036
1.0031
1.0027
1.0023
1.0020
1.0018
1.0016

l.5639
0.5401
0.8447
0.9370
0.9850
1.0003
0.9867

0.9677
0.9615
0.9708
O. 9883
1.0058
1.0181
1.0238
1.0235
l. 0188

0.9214

1.1419
1.6867
1.0406
0.9241
1.0248

0.9560
l.0213
O. S703
1.0170
0.9795
1.0128

0.7274

—O. 4296
3.8144
0.8757
1.4958
1.3561

1.3979
1.4031
l. 4122
1.4191
1.4251
1.4303
1.4349
1.4388
1.4423

0.1444
6.5533
2. 8216
2. 0835
l.7076
1.5722
1.6925

1.8948
1.9724
1.8569
1.6210
1.3748
1.1928
1.1037
1.1067
1.1883

1.2677

0. 4439
5.5655
0. 9736
2. 5950
1.0972

2.2409
1.1318
2. 0603
1.1828
1.9294
1.2417

0.5375
1.9356
1.2899
1.4547
1.4308
1.4438
1.4487

1.4535
1.4575
1.4608
1.4636
1.4661
1.4682
1.4701
1.4718
1.4733

1.9175
1.7003
1.6069
l.5744
1.5768
1.5750
1.5502

1.5103
1.4732
1.4519
1.4498
1.4634
1.4860
1.5110
1.5331
1.5486

0.9326
2.5690
1.2164
1.9425
1.2977
1.7906
1.3472

1.7027
1.3898
1.6434
1.4237
1.6023
1.4493
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TABLE II. (Continued)

Vn Pn
5)

Vn

1
2
3

5
6
7
8
9

10

11
12
13
14
15
16
17
18
19

1.0047
1.0477
1.0109

2.0000
1.4792
1.3099
1.2270
l. 1782
1.1462
l. 1237
1.1070
l. 0941

1.0839
l. 0757
l. 0689
1.0632
l. 0583
1.0541
1.0504
1.0472
l. 0444

0.0634
1.7775
0.3493

0.4375
0.8019
0.8956
0. 9343
0. 9541
0.9658
0.9734
0.9785

0.9822
0. 9850
0. 9871
0.9887
0.9901
0.9912
0.9921
0.9928
0.9935

253. 4510
—6.3909
36.9860

8. 1429
3.5335
2. 8499
2. 5668
2.4091
2. 3072
2. 2353
2. 1815

2. 1394
2. 1054
2. 0773
2. 0536
2. 0333
2. 0156
2. 0001
l. 9863
-1.9740

(c) Test series E

1.0807
1.8582
1.2076

(d) Test series L

3.0000
2.4375
2.2394
2. 1351
2. 0693
2. 0235
1.9893
1.9627
l. 9412

1.9234
1.9084
1.8955
1.8842
1.8743
1.8655
l. 8575
1.8504
1.8439

1.0337
1.0260
1.0291

1.7200
l.3919
1.2678
1.2024
l. 1621
1.1349
l. 1153
1.1005

1.0890
1.0798
1.0723
l. 0660
1.0607
1.0562
1.0523
l. 0488
l. 0458

0.9857
1.0092
0.9900

0.5894
0.8232
0.8980
0.9324
0.9514
0.9631

0.9708
0.9763
0.9802
0.9832
0.9855
0.9874
0.9889
0. 9901
0.9911

l. 8292
1.2986
1.7517

6. 7541
3.7633
3.0590
2. 7371
2. 5502
2. 4270

2. 3391
2. 2728
2. 2209
2. 1789
2. 1442
2. 1149
2. 0899
2. 0681
2.0491

1.5737
1.4678
1.5536

2. 5678
2. 3388
2.2142
2. 1348
2.0791
2. 0376
2. 0052

1.9792
l. 9578
1.9397
1.9242
1.9108
1.8990
1.8885
1.8792
l.8707

singularity on the negative axis is pronounced and
the results using p„are obviously much more ac-
curate. Also, there is a slight advantage to using
the p„option for C, due to the alternating signs in
the expansion of e ". There is no reason to sus-
pect any advantage to using p„ in analyzing G and
this is borne out by the sequences in Table II(b).
There are six additional singularities in G and we
note that a long-wavelength oscillation is evident
in the ratio sequences.

Tables III and IV contain the first- through sixth-
order Neville extrapolations of the sequences in
Table II. The three blocks of sequences for each
series in Table III are the extrapolants formed
from columns 2 (r„), 4 (y„'"'), and 6 (y„'") of Table
II for the corresponding series, using (2. 26). We
have omitted the extrapolants for K because the
oscillation in x„ is too great for any of the extrap-
olants to be meaningful. Table IV includes the
extrapolants of alternate terms, using (2. 27), of
columns 6, 8, and 9 from Table II. The for'ward
propagation of the "noise" in early terms of the
seri.es is evident in the Neville tables. For C, G,
and K, which contain other singularities, extrap-
olants of order higher than 6 are of no value if only
20 terms are available. I. has only one singular
point and the indication is that higher-order extrap-
olants would continue the smooth, but extremely
slow, convergence to the known values. For C

we use the fourth-order extrapolants of sequences
based on x„; for G the higher-order extrapolants
are all poor; for K we use the sixth-order extrap-
olant of the p„sequences only; and for L we use
the sixth-order extrapolants of all three x„-based
sequences. Blanks in the ratio and Neville tables
indicate that (i) the quantity is not defined or (ii)
the value is not real and finite.

Tables V-VII are Pade tables of roots of Pade
approximants to the logarithmic derivatives of the
test functions (Table V), residues of the corre-
sponding roots of the same Pade approximants
(Table VI), and evaluations at x= 1 of Pade approxi-
mants to 1-x times the logarithmic derivatives of
the test functions (Table VII). These are tables
of estimates fory 'and y, both unbiased and biased,
respectively. The Pade approximants do not, in
general, give estimates for parameters of this
type, which vary smoothly toward a limiting val-
ue. Rather, the Pads approximants have already
extracted almost all of the evident trend so that
an extrapolation of them is rarely profitable. In
general, the approximants closest to the diagonal
seem to be more reliable than those of the same
order but removed from the diagonal. An excep-
tion to this would be the case where the function
only has a finite number of simple-pole singular-
ities; here all Pade approximants with denomin-
ators of order equal to or exceeding the number of
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singularities should be reliable. One chooses a
value as representative of the Pade results, but
the considerations of Sec. III should be taken into

account as well as any apparent trend in the Pade
table, before assigning confidence limits.

Superscripts in the Pads tables indicate the

TABLE III. Neville extrapolants of first through sixth order using consecutive terms in the xn sequences for yn, yn
(unbiased), and yn (biased) for the series (a) C, (b) |", and (c) I. The sequences for the series Z have such a marked os-
cillation that Neville extrapolants of this form are useless in analyzing the series.

6
7
8
9

10
11

12
13
14
15
16
17
18
19

4
5

7
8
9

10
11

12
13
14
15
16
17
18
19

3.8059
-0.3936

1.3287
0.9470
1.0228
1.0072
1.0075
1.0061

1.0051
1.0044
1.0038
1.0033
1.0029
1.0026
1.0023
1.0021

—0.6200
—78.7808

84. 0927
13.5340
-2.8248

2.3736
1.3246
1.5199

1.4915
1.4968
1.4972
1.4979
1.4983
1.4986
1.4989
1.4991

—4. 8417
—6.6928

4.7731
-0.0072

1.2504
0.9526
1.0088
0.9994

1.0005
1.0003
1.0002
1.0002
1.0001
1.0001
1.0001
l. 0001

4.3732
—196.0221

409. 8397
—162.8627
-51.9014

20. 5684
-2.8714

2.3953

1.3527
1.5259
1.4995
1.5022
1.5014
1.5011
1.5009
1.5007

8.4747
—329. 6190
1015.7015

—926. 4658
133.0341
165.5078

—57.5643
16.4398

—1.7750
2. 1033
1.4028
1.5129
1.4978
1.4998
1.4997
1.4998

n Vn

) (3)

(a)

—14.4532
—7.9269
16.2390

—6.3809
3.3462
0.3571
1.1399
0. 9742

1.0040
0. 9994
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

) (4)
n

—6.2953
28. 3220

—23.3458
13.0733

—3.3794
2. 3142
0.6841

1.0636
0.9891
1.0016
0.9998
1.0000
1.0000
1.0000
1.0000

—414.1424
1688.3617

—2383.0913
1192.5340
206. 1000

—392.1725
145.9470

—38.2046
10.8295

—0.3485
1.8157
1.4525
1.5063
1.4993
1.5001

35.2455
—44. 0129

34. 9248
—16.5415

8.0078
—1.2720

1.5948
0.8699
1.0242
0.9961
1.0006
0.9999
1.0000
1.0000

2108.8625
—4011.6725

3337.9093
—583.0472
—990.4450

791.6903

—296.0167
89.2841

—20.4689
6.1440
0.6537
1.6352
1.4811
1.5025

—57.2226
61.2374

—42. 2747
24. 3740

—9.0052

4.4616
0.0242
1.2299
0.9540
1.0080
0.9988
1..0002
1.0000

—5031.7617
5787.7699

—2543. 5254
—1262.0436

2276. 8031

—1383.7238
538.8017

—166.8062
46. 0653

—8.4969
3.4347
1.1730
1.5488

5
6
7
8
9

10
11

12
13
14
15
16
17
18
19

10.9271
-4.4585

3.0877
1.0734
l. 5742
1.4794
1.4970
1.4957

1.4967
1.4973
1.4977
1.4980
1.4983
1.4985
1.4987
1.4988

-0.7563
-27.5369

18.1802
—3.9624

3.0764
1.1476
1.5674
1.4900

1.5019
1.5001
1..5003.
1.5002
1.5001
1.5001
1.5001
1.5001

—16.2095
—45. 3907

63.8974
—33.4858

14.8075
—2. 7099

2. 5470
1.2835

1.5378
1.4941
1.5007
1.4998
1.5000
1.5000
1.5000
1.5000

—52. 6859
118.5414

—106.5232
63.1009

—24. 6067
10.4324
-0.9276

2. 0463
1.3959
1.5170
1.4975
1.5003
1.5000
1.5000
1.5000

152.7868
—196.5490

164.8753
—94.7728

45. 4715
—14.5597

6.2099
0.3553
l.7349
l.4586,
1.5064
1.4992
1.5001
1.5000

—254. 7716
285. 3501-224. 5969
138.9678

—64. 5857

26. 9796
—6.4751

3.5744
1.0442
1.5860
1.4859
1.5020
1.4997
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TABLE III. (Continued)

)0)
n ) (2)

n ) (3)
n ) (4)

n ) (5)
n

) (0)
n +n

5
6
7
8
9

10
11

12
13
14
15
16
17
18
19

0.7783
0.9060
0.9569
1.0037
1.0131
0.9912
0.9679
0. 9616

0. 9722
0. 9908
1.0085
1.0204
1.0255
1.0248
1.0197
1.0118

1.3383
1.0976
1.0586
1.1205
1.0413
0.9144
0.8747
0.9332

1.0256
1.0932
1.1145
1.0978
1.0614
1.0192
0.9789
0.9448

2. 1977
0.9425
1.0196
1.2030
0.9093
0.6606
0.7821
1.0891

1.3026
1.3187
l. 1928
1.0310
0. 9033
0. 8227
0.7769
0.7631

0.6288
1.0581
1.3406
0.6156
0.3497
0.9644
1.6263

1.7297
1.3548
0.8780
0.5860
0.5203
0.5608
0.6165
0.7113

1.1440
l.4536
0. 1805
0. 1370
l. 5792
2. 4206

l. 8744
0.7549
0.0199
0.0021
0.3757
0.6580
0.7612
0. 9767

1.5052
—0.2438

0. 1153
2. 5406
3.1218

1.3282
—0.5512
—0. 9601
—0.0245

0.9983
1.1754
0.9678
1.4436

i (0) (M)
Vn

5
6
7
8
9

10
11

12
13
14
15
16
17
18
19

—33.5149
—l.2299

0. 1888
—0.4014

0.9472
3.1146
3.9366
2. 6359

0.3546
—l. 3304
—l.7715
—l. 1904
-0.0608

1.2703
2. 6241
3.8605

—112.2487
47. 1975
3.0264-l.8769
4.9928

10.7008
7.2245

-3.2171

—11.0520
—10.5980
—4.4184

2.5869
7.8463

11.2539
13.4544
14.3700

—172.3958
153.4950

—41.1447
—8.4146
16.4423
22. 1167

—0.8868
—31.0613

—34. 5566
—9.0849
18.2403
30.6082
30.6371
27. 1559
24. 4568
19.2535

234. 9677
—138.4646

16.1330
41.2991
29.2097

—35.3921
—83.8666

—41.5471
48.2262
86.5535
64. 6199
30.7236
15.8422
15.0097

—0.2586

—213.1511
77. 9720
56. 3988
19.5382

—99.9940
—142.0360

17.7002
191.8636
155.5425
20. 7529

—43.8482
—19.8732

12.8453
—43. 0100

126.4926
49.2077
l. 1079

—179.6821
—177.0711

177.4365
395.0541
107.1143

—181.4314
—151.5168

24. 0810
78.2822

—164.0296

&(b&. ~(oi 5&
n ='Yn

5
6
7
8
9

10
11

12
13
14
15
16
17
18
19

l. 0008
l. 1961
1.3133
1.5543
1.6370
1.4658
1.2152
1.0816

1.1327
1.3191
l. 5482
1.7438
1.8665
1.9050
l.8628
l. 7523

l.6614
1.4890
1.5478
2.1569
1.8848
0.8666
0.2130
0.4803

1.3882
2.3443
2.9226
3.0156
2.7256
2.1938
1.5244
0.8137

2. 8591
1.3741
1.6066
2. 9690
1.4313

—1.1699
—1.3121

l. 1932

4. 1120
5.5311
5.0432
3.3875
1.4688

—0.2880
—1.8221
—2. 9770

1.0029
1.7229
3.9908

—0. 1064
—4. 4213
—1.5255

5.5775

9.9496
8.7241
3.8235

—1.1659
—4.2874
—5.9975
—7.1914
—7.3079

1.8669
4. 8980

—2. 5648
—7.8732

1.3703
14.1012

16.0705
6.7633

—4. 9976
—11.1445
—11.1547
—10.1020
—10.2955
—7.6339

5.4032
—5. 0524

—10.5274
7.5326

24. 7103

18.0399
—4. 0952

-20.6788
—20. 3649
—ll. 1715
—8.1721

—10.6825
—l.8670
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TABLE III ' (Continue@

) (i)
n ) (2)

n ) (3)
n

(c)
y. lo)

) (4)

5
6
7
8
9

10
11

0.8019
0.8956
0.9343
0.9541
0.9658
0.9734
0.9785
0.9822

1.1664
1.0362
1.0115
1.0039
1.0009
0.999V
0.9991
0.9988

0.9494
0.9868
0.9937
0.9961
0.9971
0.9978
0.9982

l.0054
0.9989
0.9984
0.9985
0.9987
0.9989

0.9963
0.9981
0.9986
0. 9989
0.9990

0.9987
0.9988
0.9990
0.9992

12
13
14
15
16
17
18
19

0.9850
0.9871
0.9887
0.9901
0.9912
0.9921
0.9928
0.9935

0.9987
0.9987
0.9987
0.9988
0.9988
0.9989
0.9989
0.9990

0.9984
0.9986
0.9988
0.9989
0.9990
0.9991
0.9992
0.9993

4). ) (0) (u)
n =Vn

0.9990
0.9991
0.9992
0.9993
0.9993
0.9994
0.9994
0.9995

0.9992
0.9993
0.9994
0.9994
0.9995
0.9995
0.9996
0.9996

0.9993
0.9994
0.9995
0.9995
0.9996
0.9996
0.9996
0.9997

6
7
8
9

10
11

—10.2947
0.1156
1.1512
1.4627
1.5943
1.6603
l. 6969
l.V1S5

-47.0179
15.7311
3.2223
2.2415
1.9890
1.8912
1.8433
1.8159

57. 5637
—9.2865

0. 9338
1.5680
1.6955
1.7317
1,7429

-42.7115
8.5991
2. 2022
1.8549
1.7860
1.7626

29. 1233
—1.6359

1.5769
1.7171
1.7346

—11.8889
3.1834
1.8106
1.7491

12
13
14
15
16
17
18
19

l.7318
1.V402
1.7454
l.7487
1.7506
l.7515
1.7519
l.7518

1.7984
1.7861
1.7769
1.7697
1.7638
1.7589
1.7546
1.7509

l.7457
l.7452
1.7433
l.7409
1.7383
1.7358
1.7333
1.7309

l. 7512
1.7440
1.7386
l.7343
1.7307
1.7274
1.7246
1.7219

l. 7352
1.7324
l.7291
l.7257
l.7226
1.7197
1.7170
1.7145

1.7357
l. 7292
1.7246
1.7207
1.7174
1.7144
1.7117
l.7092

5). ) (0) 5)
n Vn

5
6
7
8

10
11

1.6452
l.7177
l.7406
1.7484
1.7503
1.7496
1.7478
1.7455

1.9780
1.8263
1.7866
1.7677
1.7559
1.7473
1.7406
1.7351

1.7251
1.7469
1.7426
1.7362
1.7302
l. 7250
l. 7204

1.7578
1.7393
1.7298
1.7228
1.7171
1.7123

l.7319
1.7241
1.7172
1.7114
1.7066

1.7215
1.7137
1.7076
1.7026

12
13
14
15
16
17
18
19

1.7430
1.7404
1.7379
1.7354
1.7331
1.7308
1.7287
1,7266

1.V304
1.7263
1.7227
1.7195
1.7166
1.7139
1.7115
1.7093

1.7163
l.7127
1.7095
1.7066
1.7040
1.7015
1.6993
1.6973

1.7082
1.7047
l.7015
l. 6986
1.6960
l.6937
1.6915
1.6895

1.7025
1.6989
1.6957
1.6929
1.6904
l.6880
1.6859
1.0840

l.6984
l.6947
l.6915
1.6887
l.6861
1.6838
l.6817
1.6798
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number of defects in a particular approximant.
Asterisks indicate that the approximant contains
a pole on the real axis between the origin and the

pole of interest, whose residue is large enough
that it is not classed as a defect. Unless one ex-
pects a pole in that position, such approximants

TABLE IV. Neville extrapolants of first through sixth order using alternate terms in the p„sequence for y„, y„(unbiased)
and &„(biased) for the series (a) C, (b) G, (c) E, and (d) L.

5
6

8
9

10
11

12
13
14
15
16
17
18
19

4
5
6
7
8
9

10
11

12
13
14
15
16
17
18
19

E(1)
n

0.9491

l. 3762
0.7596
I.0705
0.9945
l. 0089
l. 0049

1.0044
l. 0036
1.0031
I.0027
l. 0023
l.0020
l. 0018
l. 0016

0.4548

—2.7434

4. 7916
—6.6195

3.2777
0. 9575

l. 6380
1.4905
I.5152
l. 5096
l.5089
1.5078
1.5069
1.5061

0.4355

E
(2)

n

1.5898

0.7648
l.2882
0.9166
l.0230

0.9953
1.0008
0.9998
1.0000
l. 0000
1.0000
1.0000
l. 0000

-4.3425

1.0068
14.2174

—I.6415
2.6097
1.2884
1.5623
1.4900
1.5017
1.4997
1.4998

(a)
g(0) p

0.4897

1.0179
0.8020

1.0739
O. 9749
l.0060
0.9988
l. 0002
1.0000
l.0000
1.0000

(g). ) (Op (u)
n

—17.883k

-6.5398

—4.2898
—10.7593

5.0083
—0.1288
l.9593
1.3908
l.5192
l.4957

5),
E

(0) 5)
n Vn

E
(4)

n

1.1499

1.1019
1.0830
0.9550
1.0196
0.9944
1.0013
0.9998
1.0000

—12.6456

-3.1647

ll. 9818
9.1728

-1.0896
3.1004
0.9690
l.6399

1.0923

0.8962
0.9879
1.0180
0.9885
1.0041
0.9989

—1.2685

18.0404

—8.9324
—I.1503

2.6158
0.3254

0.8635

1.0586
0.9887
0.9971
1.0050

21.2585

—17.9233

8.3899
1.1862

6
7

9
10
11

12
13
14
15
16
17
18
29

2.7947
0.2526
l. 8537
I.4054
l.5202
1.4975

1.5013
1.5O07
1.5007
1,5007
1.5005
1.5005
1.5004
1.5004

0.9127
2. 8465
1.0200
l.6585

l. 4635
l. 5079
l. 4992
1.5oo4
1.5001
l. 5001
1.5001
1.5000

—O. 1078

1.0915
0.6684

1.9070
1 ~ 3322
1.5468
I.4892
1.5018
1.4995
1.4999
1.4999

l. 3913

2.3147
1.7471
1.2766
1.6265
1.4567
l.5112
I.4977
1.5004

2.4994

0.8614
l.5661
1.5648
1.4306
l.5304
1.4907

0.5884

1.7993
1.3741
l. 5132
1.5258
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TABLE IV. (Continued)
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) (2)
n ) (3)

n ) (4)
n ) (5)

n ) (6)
n

5
6
7
8

10
11

0.9215

1.1419
0.6867
1.0406
0.9241
1.0248
0.9560

1.2521

0.9394
1.2207
1.0009
1.0120

) (0)

0.8351

l.0419
0.8380

1.0936

12
13
14
15

17
18
19

1.0213
0.9703
1.0170
0.9795
1.0128
0. 9857
1.0092
0.9900

l.0143
1.0025
1.0063
1.0046
1.0002
1.0058
0.9969
1.0061

1.0277
0.9915
0.9956
1.0076
0.9900
1.0081
0.9903
1.0067

1.0205
1.0875
0.9715
1.0217
0.9844
l.0087
0.9907
1.0048

1.0059

0.9519
0.9888
0.9921
0.9996
0.9958
1.0013

0.9430

1.0055
1.0042
0.9977
1.0023

( ).
~

(0)
n 'Yu

5
6
7
8
9

10
11

1.5354

—1.2037

2. 5628
-7.8015

1.5919
0. 6468

-2.5732

6.3292

0. 1355
15.4314

9.2966

—3.9936 —V. 3161

12
13
14
15
16
17
18
19

1.3042
1.0677
1.4894
1.0779
1.6538
1.0776
1.7533
1.0929

0.7289
2.0147
1.9522
1.1061
2.1470
1.0766
2. 1015
1.1501

1.3223
-13.6381

3.5833
—0.2568

2.4717
1.0225
2.0105
1.3095

3.9802

5.2791
11.4518
1.3601
2.4616
1.4340
1.7041

6.2395

5.7986

—0.9913
—3.8315

l.4931
1.0223

5.7252

—3.2546

2.7353
3.8537

(b), i (0) 5)
n 'Yn

5
6
7
8
9

10
11

0.7756

1.7841
0. 3762
1.5416
1.2592
1.5453
1.3070

2.2883

1.2992
2.3629
1.5508
1.3909

0.9695

1.7186
0.5809

1.9058

12
13
14
15
16
17
18
19

1.6024
1.3172
1.6276
1.3354
1.6282
1.3587
1.6158
1.3832

1.7168
l.3400
1.6904
1,3856
1.6303
1.4344
1.5722
1.4748

1,8827
1.2807
1.6551
1.4541
1.5302
1.5238
1.4561
1.5624

1.9648
1.7181
1.4844
1.6058
1.4053
1.6023
1.3634
1.6155

1.9766

1.2922
1.5497
1.3578
l. 5999
l.3299
l.6275

1.1782

1.3796
1.6208
1.3160
1.6436
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TA BLE IV. (Continued)

5
6
7
8
9

10
11

1.5639
0. 5401
0. 8447
0. 9370
0. 9850
l. 0003
0. 9867
0.9678

) (2)
n

0.4851
1.2347
1.1253
1.0794
0. 9893
0. 9106

) (3)
n

(~)
E(0)

'

p

1.3386
1.0017
0.8986
0.7700

g
(4)

0.7886
0.6831

12
13
14
15
16
17
18
19

0.9615
0.9708
0.9883
1.0058
l.0181
1.0238
1.0235
l.0188

0.9112
0. 9777
l. 0552
l. 1020
l. 1076
l. 0825
1.0426
0.9999

0.8331
1.0560
1.2473
1.2884
1.1948
1.0467
0.9127
0.8209

0. 8003
1.2348
l. 5579
l.4918
1.1424
0.7747
0.5599
0.5105

0.8027
l.4003
1.8609
l.6203
0.8931
0.2728
0.0940
0.2726

2.0372
1.6752
0.5705

—0.2887
—0.3056

0.2725

4).
g

(0) (M)
n ='Yn

4,

5
6
7
8
9

10
11

—0.7111
16.3832
8. 1758

-9.0911
—1.6341
—0.2171

1.6321
3.3464

12.6193
-28. 1968
—ll. 4441

10.8754
6.5315
9.5826

-I9.4653
30.4114
18.5152
8.5054

28. 0104
0.2906

12
13
14
15
16
17
18
19

3.3720
1.6487

-0.4873
—l.7593
—1.8049
—0.9294

0.4180
1.9074

6.8517
—2. 1714

—10.1353
11 y 1312

—5.7576
l. 7679
8.1980

12.5454

7.1718
—15.8844
—32.7845
—24. 5709

1.5384
25.4163
36.1094
35.8966

l. 5001
—31.1280
—62. 7518

32 0 1717
35.8613
81.6520
79.3231
50.3069

—3.8019
—40. 5535
—88.4526
—32.6935

95.0292
161.3286
114.0925
22. 0962

—102.5611
-30.7286
156.1899
242. 1712
123.6241

—59.1227

5). ~(0) a)
n 'Vn

5
6
7

9
10
ll

3.0452
0.3208
0. 9856
1.2595
1.4867
1.5770
l. 4437
1.2194

—0.0441
l.9635
l.9877
l. 9738
1.3792
0. 5936

2.6649
l. 9789
0.9736

—0.5565
0. 5507

—1.5072

12
13
14
15
16
17
18
19

1.0884
l. 1303
1.3092
1.5383
1.7395
l. 8682
1.9098
l. 8677

0. 3778
0. 9298
1.8613
2. 6603
3.0302
2. 9405
2. 5062
1.8659

—0.6236
1.3219
3.8394
5.2562
4. 9784
3.4540
1.4580

—0, 4624

—1.4222
2. 4959
7.1866
8.6987
6.1175
l. 4266

-2. 9426
—5. 8474

—l.8168
3.6968

10.6302
11.8001
5.4760

—3.6639
—10.1907
—12.3939

12.7046
13.8259
3.7580

—10.1072
—18.0240
—17.4864
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TABLE IV. (Continued) .
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) (1)
n ) (2)

n , (3)
n

(d)

E
(0)

) (4)
n

&(6)
n

5
6
7
8
9

10
11

12
13
14
15
16
17
18
19

0.5894
0.8232
0.8980
0.9324
0.9514
0.9631
0.9708

0.9763
0.9802
0.9832
0.9855
0.9874
0.9889
0.9901
0.9911

1.1294
1.0416
1.0182
1.0091
1.0048

1.0026
1.0014
l.0006
1.0002
0.9999
0.9997
0.9996
0.9995

0.9626
0.9874
0.9937

0.9961
0.9973
0.9979
0.9983
0.9986
0.9988
0.9990
0.9991

~(M). )(0) ~4)
n Yn

1.0054

l.0005
0.9995
0.9993
0.9993
0.9993
0.9993
0.9994
0.9994

0.9978
0.9988
0.9991
0.9993
0.9994
0.9994
0.9995

0.9994
0.9994
0.9994
0.9995
0.9995

5

7
8
9

10
11

12
13
14
15
16
17
18
19

16.8852

-6.1787
—0.3413

0.7696
1.1866
1.3889

1.5018
1.5707
1.6154
1.6458
1.6671
1.6825
1.6938
1.7022

—23.4766

9.4549
3.4785
2.4727

2.1320
1.9797
1.8996
1.8524
1.8223
1.8018
1.7871
1.7761

25. 9206

-3.3458

0.7856
1.4046
1.5896
1.6615
1.6936
1.7091
1.7167
l.7203

~(b). ) I) ~@)
n Yn

—14.3207

4.3736
2.1925
1.8863
1.7977
1.7626
1.7455
1.7358

9.9820

0.6426
1.5608
1.6760
1.7038
1.7116

-1.6923

2.1067
1.7753
1.7323

5
6
7
8
9

10
11

12
13
14
15
16
17
18
19

1.1071
1.5072
1.6246
1.6736
I.6974
1.7100
l.7168

1.7204
1.7222
1.7229
1.7228
1.7223
1.7216
1.7206
1.7195

2. 0128
1.8400
1.7884
1.7645
l.7507

1.7413
1.7344
1.7290
1.7245
1.7207
1.7174
1.7145
1.7118

1.6762
1.7142
l.7192

1.7181
l.7155
1.7126
1.7097
1.7069
l.7044
1.7020
1.6998

1.7354

1.7200
1.7132
1.7084
1.7046
1.7013
1.6984
l.6958
1.6934

1.7066
1.7038
1.7003
1.6970
1.6941
1.6914
1.6890

1.6987
l.6947
1.6915
1.6886
1.6860

should also be disregarded. Blanks in the Pade
tables indicate that no positive real pole exists
for that approximant; this usually only happens
when there are too few terms in either the numer-

ator or denominator. Our assessment of these
Pads tables is included in the summary (Table VIII).

In order to summarize the analysis of all 12
functions in such a way as to facilitate comparison
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TABLE VIII. Summary of analysis for all series using ratio (R), Neville extrapolation of ratio results (N), and Pads
approximants (P). The parameter ~ = —log~o(dp„/p, „~t), where p„=y„, y„, y„, is tabulatedfor n=10, 15, 20. For a
particular series and a particular method, bp„ is the amount by which the best estimate for the critical parameter p us-
ing n terms of the series differs from p~~t.

Test
series

No. of terms
used

10
15
20

10
15
20

10
15
20

10
15
20

10
15
20

10
15
20

10
15
20

10
15
20

10
15
20

10
15
20

10
15
20

10
15
20

3 ~ 2
8.1

13.9
2. 3
2.8
3.1
2.3
2.5
2.9

1.7
2.6
3.6
1.6
2, 4
3.0

1.5
2.8
3.0

1.4
1.6
1.9
1.6
2.0
2.2

1.0
1.2
1.5
1.1
1.7
2.0

1.1
1.7
2.0

1.6
1.9
2.2

2.4
3.8
5.4

4.1
5.7

1.5
2.2
2.8

2.2
2.6

2. 9
3.3
3.5

2.7
4.0
4. 8

2.7
3.9
5.1

2. 5
3.4
4.0

1.9
2.2
3.5
1.3
2.5
3.7
1.1
1.4
2.7

1.3
1.3
2. 7

1.7
1.8
2.4

0.9
1.4
2, 2

2.2
3.5
4.4

0.7
3.0
3.9

2.7
3.2
3.6

2. 4
7.1

12.8

1.3
1.6
1.7
1.0
1.3
1.4
0. 8
1.4
2. 0

0.7
1.3
1.7
0.8
1.1
1.5
0.6
0.6
0.9

0.7
0.9
1.3
0. 1
0. 1
0, 4

0, 2
0. 5
0. 8

0. 1
0.5
0. 8

0.3
0.4
0.5

y (unbiased)

2. 3
3.4

2.7
3.7

0.8
0.9

1.7
2. 6
3.0

1.7
2. 5
3.3

1.2
2. 2
2.4

0.7
1.0
1.9
0.4
1,4
2.2

0.3
0.3
1.2
0.4
0.4
1.3
0.7
0. 9
1.3

—0.4
2. 3
1.3
1.4
2.2
2.7

0.1
1.7
2. 3

0.7
0.8
0. 8

4.1
9

15.4

1.7
1.9
2. 0

1.3
1.5
1.6
1.5
2.6
3.7
1.6
1.8
2.0

0.8
1.3
1.6
1.3
1.4
1.5
1.5
1.6
1.6
0.8
0. 8
1.2
0.7
1.2
1.4
0.7
1.2
1.4
0.5
0.6
0.7

y(biased)

2. 5
3.8
5.8

1.8
3.6
5

2. 8

1.8

0.8
0.9
0. 9

2.4
3.0
3.6

2.7
3.3
3.7
1.7
2.4
3.1
1.0
1.9
2.3

1.3
1.8
2.4

0
1.2
1.8
0.8
1.1
2.0

0.9
1.2
1.7
0.6
0.8
1.7
1.7
2.7
3.2

1.4
2. 0
2.5

0.8
0.9
0.9

of the results for different methods, and to illus-
trate the improvement as the number of terms used
in the analysis increases, we define the following
parameter:

&a = —&oKio(~ P~Pexac~) i

where b, .p„ is the amount by which an estimate of
the parameter p (either y or y) using n terms of
the series differs from the exact value p,„«,.
is effectively a measure of the number of significant
figures in an estimate of a critical parameter p.

In Table VIII we summarize all our numerical re-
sults by tabulating E„, for n=10, 15, 20, for the
ratio method (8), Neville extrapolation of ratio
results (N), and Pade-approximant method (P).
Entries are made in the columns headed N only if
Neville extrapolation improves the ratio results.

The first nine test functions divide naturally
into groups of three according to the pattern of
additive divergent singularities in the complex
plane. The members of each group differ in the
factor which multiplies the dominant singularity:
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1, (1+—,'x)"', and (1- ~i x)"'. The convergent
singularity in the second factor is three times
further from the dominant singularity than is the
convergent singularity in the third factor. First,
for the group A, B, and C, where the additive term
is an entire function, we note that the ratio method
with Neville extrapolation is clearly better than
the Pade approximant in predicting the critical
parameters. The very rapid convergence of the
ratio method for A is merely due to the nature of
the entire function we have chosen. The coeffi-
cients in the expansion of e " are proportional to
1/n I; so in the absence of other singularities ratio
convergence is rapid. In addition, there is evi-
dence that the ratio method is much less affected
by the position of the convergent singularity rela-
tive to the circle of convergence than are the Pads
procedures. The Pade results for A and B are
quite similar, indicating that when that singularity
is far away, it does not affect the position of the
dominant singularity; while the results for C are
significantly poorer, indicating that the proximity
of the two singularities is important. This ob-
servation is also substantiated by the results for
D, E, and F. That it is not so noticeable in |",
II, and I we attribute to the strong influence of the
other divergent singularities, some of which are
closer than the convergent singularity.

For D, F., and E, the ratio method (with Neville
extrapolation in some instances) is just slightly
better than the Pads-approximant method. Here
the additive singularities lie on a circle centered
just to the right of the origin. The radius of this
circle is about double the radius of convergence
and the distance from x = 1 to the closest of these
singularities is 1.29. The contribution of the ad-
ditive terms to the coefficients falls off approxi-
mately as 2 ". The success of the ratio method is
not surprising.

For 6, H, and I, the additive singularities lie on
the line Re(x) = 1 and tend to pinch the dominant
singularity. None of the methods of analysis is
dramatically successful, but the Pade method
clearly has the edge. The closest pair of additive
singularities lies only 0.45 away from the domi-
nant singularity, thereby exerting a strong influ-
ence on the Pade results, but the pair lies even
closer to the circle of convergence, so the ratio
method is more affected.

J and E form a separate group and differ only
by the addition of an entire function. There is one
strong additional singularity close to the circle of
convergence but opposite the dominant singularity.
As we would expect, the Pade results are much
better: nearly two orders of magnitude for J and
over one order for X. As we saw in A. , the pres-
ence of the term e " has negligible effect on the
ratio analysis, but is noticeable in the Pade re-

y = 1.001 788, y = 1.438 846, (4. 2)

which we obtained using all but the last term. We
expand this, choosing the amplitude so that the co-
efficient of x" matches that in the expansion of
.C, and then compare the coefficient of x' pre-
dicted in this way with the actual coefficient. We
find

g= 0. 0006, (4. 3)

TABLE IX. Comparison of two Pad6 approximants.

0.8
0.9
1.0
1.1
1.2
1.3

[10/7] {x)—[11/7] {x)

0.000 002 4
0.000 040 9
0.000 855 5
0.0916018
0.217 268 0
0.143 409 2

suits.
I. has no relationship to the forms of the other

functions we have considered. This form of singu-
larity is not readily amenable to analysis to de-
termine y. The estimates of y, are all of reason-
able accuracy but convergence of the y sequences
is very slow. For the ratio method, (2. 19) pre-
dicts the observed y to be (lncn) ' larger than the
true values; (ln19) '= 0. 34, so with c set equal to
1, the value y,'9' = 1.84 is in line with our expec-
tations. Close examination of Tables II-VII will
show that there is no apparent convergence to
these higher effective y's. Rather, the sequences
are all smoothly decreasing to a considerably
lower value.

We have not had to rely on the error-assess-
ment procedures described in Sec. ID because our
aim was to make a comparison with known results.
However, we will conclude by illustrating their
effectiveness for our test functions. First we
compare the values of & for unbiased y estimates
with E for corresponding estimates of x, in Table
VHI. For n = 20, we expect them to differ by an
amount approximately equal to log, 019 (= 1.3).
There is a variation from series to series, but
generally the two values of & differ by 1.0-1.6, a
range centered at the predicted value. At worst,
the relationship between the relative errors iny
and x„readily determinable for these test func-
tions, differ by about a factor of 2 from the order-
of- magnitude estimate.

We have illustrated that (hy/y) (dy/y) '- J'; to
estimate the error hy/y, we expand (1-yaox) ~»,
where y,o and g20 are estimates based on 20 terms,
and compare the coefficient of x' with the similar
coefficient in the expansion of f(x). For example,
for the function C we take the ratio estimates
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from which we note that

—-6 JYf, —-4Zg, = J ging, (4. 4)

illustrating the reliability of this guide to error
assessment.

Finally, to briefly illustrate the "table-com-
parison" procedure for error assessment of Padb
estimates, we will consider the [10/7] and [11/7]
Pade approximants to 1-x times the logarithmic
derivative of E. We have evaluated the approxi-

mants for values of x from 0. 1 to 2. 0 in steps of
0. 1. The difference we find for some values of
x are given in Table IX. For x&1.0 the differ-
ence may roughly be approximated by Ax for
m~ 20, but for x& 1.0 this obviously breaks down.
This indicates that the small-x error law holds
all the way out to x= 1.0, the point at which we
wish to estimate the error. We could on the basis
of this evidence alone conclude that the error in
the evaluation of the [11/7] Pads approximant,
1.5014, is of the order of the difference tabulated
above, i. e. , -10
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