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A set of kinetic equations describing the time evolution of the two-spin correlation functions
(S {q~, t)8"{q2, t)) and (S'{qg, t)S'{q2, t) ) is derived. The derivation is based upon a cluster
expansion of the equations of motion and an intuitively plausible renormaL. ization. The resul-
tant equations may be interpreted graphically, and the derivation of the kinetic equations taken
to be a partial justification of the summation of a particular set of graphs in the moment ex-
pansion for the spectral density. The kinetic equations have the property that they conserve
the total spin $(S(q, t) ~ S(-q, t)) and the total energyg, V(q) (S(q, t) '5(-q, t)). The second

'and fourth moments of the spectral density for Quctuations in the magnetization predicted by
these equations are correct to lowest order in 1/c, where c is the number of spins in the range
of the interaction. Numerical calculations of the spectral density, based upon an approximate
solution of the kinetic equations that is valid outside of the critical region, are compared with
the neutron-scattering data for a wide range of temperatures and wave vectors and found to be
in good agreement. The temperature dependence of the diffusion coefficient in the high-tem-
perature region is calculated and compared with experiment.

INTRODUCTION

The problem of calculating the dynamical re-
sponse of the Heisenberg paramagnet to external
fields is not susceptible to standard methods of
calculation. The fluctuations in the system do not
take place in well-defined modes, but exist instead
as heavily damped excitations which interact
strongly with each other, thus precluding any stan-
dard perturbation analysis. There is, furthermore,
no small parameter in the problem which might
allow an asymptotic solution, although some im-
portant simplifications are achieved by assuming
the parameter I/c, where c is the effective num-
ber of spins in the range of the exchange interac-
tion, is small. Progress has been made in recent
years by using a treatment which regards the
fluctuation modes as being independent of each
other, and corresponds to the first term in a re-
normalized perturbation theory' which is ordered
in terms of the number of interactions the modes
are assumed to undergo. Such a treatment is un-
able, in the first approximation, to account for the
details of the spectral density in the paramagnet.
Although it gives results that have qualitative va-
lidity, it gives incorrect values for the fourth mo-
ment of the spectral density, and does not include
some important physical constraints on the dy-
namics, such as the conservation of energy and
total spin. This work presents an alternative
treatment of the dynamics, based upon a set of
kinetic equations that incorporate these con-
straints, and which lead to values of the second
and fourth moments that are correct to lowest or-

der in I/c. The equations will be derived from a
decoupling of the equations of motion by means of
a cluster expansion and a subsequent renormaliza-
tion, but may be shown a posteriori to correspond
to a particular prescription for the resummation
of diagrams for the spectral function Z(q, s) intro-
duced in a previous paper' (hereafter referred to
as I). The basic object of the theory is not Z(q, s),
however, but I'(qt, qs, s), which describes the de-
cay of a fluctuation of wave vector q= qz+ qz into
two fluctuations of wave vectors q& and q~. As a
result, it is possible to treat multiple interactions
between the modes, and it is the inclusion of these
interactions that leads to the conservation of total
spin and energy. These processes are most im-
portant for the short wavelength modes, which can-
cannot be adequately described by the independent-
mode approximation. It will be shown that the
spectral densities that are predicted by these equa-
tions agree very well with the experimental re-
sults on RbMnFs s at short wavelengths outside of
the critical region.

The result of the analysis, in addition to equa-
tions for I" and Z, is a set of kinetic equations for
the two-spin correlation functions (S (qt)S'(qs); f)
and (S"(q&)S (qs); t) . These may be used to inter-
pret experiments that depend upon multiple- spin
correlations, such as ultrasonic absorbtion, light
scattering, s and EPR-linewidth measurements,
and can be used to determine the thermal conduc-
tivity. These equations are in some respects
analogous to the Boltzmann equation for a gas.
They differ most significantly in that there is no
separation of time scales for the "internal" relaxa-
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tion processes and the time scale for the modes
of interest. They may, in fact, be used to describe
the details of the internal relaxation processes.

In Sec. I we give the derivation of the kinetic
equations; for Sec. II we demonstrate that the
equations conserve the energy and total spin. In
Sec. III an approximate solution of the equations is
found using a constant-relaxation-time approxima-
tion for the vertex function as a, first approxima-
tion, and then iterating the equations of motion to
obtain improved values for the spectral density.
These are compared with the neutron scattering
data on RbMnF3. The diffusion coefficient at in-
finite temperatures and its behavior at high tem-
peratures is also calculated and compared with ex-
periments. In Sec. IV we compare our results
with other theoretical calculations.

I. DERIVATION OF THE KINETIC EQUATIONS

A kinetic theory provides closed equations of
motion for some set of correlation functions. The
equations are supposed to hold for arbitrary initial
values of these correlation functions, and then de-
termine the behavior of these functions for all
times thereafter.

In I we developed a diagrammatic expansion for
Z(q, z), which gives the response of the magnetiza-
tion to an initial disturbance introduced isothermal-
ly by a unit magnetic field of wave vector q. Z(q, z)
is defined as

Z(q, z) = f "e'"&8'(q, 0)
I

S'(q, f)) dt,
where

&a Ia) =((f e'"x'e '"ad~))

and &( )) denotes a thermal average. Z(q, z) may
be written from (1. 1) as

Z(q, z)=i&8 (q) [z-&]' 8'(q)),
where Z is the Liouville operator for the system.
Z(q, z) is related to the dynamical susceptibility
of the system, defined as

X(q, z) = i f & ( [8 (q, i), S*(-q, 0)])) e'" dt,

Imz &0 (1.2)

I

by the relation

Z(q, z) = [X(q, z) -X(q, 0)]/iz, (1.3)

so that

ReZ(q, ~+i) =X "(q, (u)/~, (1.4)

x
I
(I —P)$8'(q))/x(q, 0) . (1 6)

To calculate q (q, z), one must be able to calculate
the time of evolution of (S (q )S'(q —q )). We are
using the single bracket & ) to denote an average
over an arbitrary nonequilibrium density matrix.
It is understood that the averages are time depen-
dent, but for simplicity of notation we shall not,
in most cases, indicate this explicitly. If it is nec-
essary, we will use the notation (; f), since all
operators appearing in the product will be evalu-
ated at the same time. The Laplace transform of
an average will be denoted by (;z).

Since Z(q, e) can be regarded in the linear re-
sponse of the magnetization to a particular initial
condition, one might hope to relate (S (q )S"(q —q ))
and (S (q)) through a system of kinetic equations.

Although a meaningful set of kinetic equations
does not exist if one limits consideration only to
these quantities, the attempt to derive such an
equation will indicate clearly the relationship be-
tween the decoupling scheme that we will use and
the expansion of the moments in powers of 1/c de-
scribed in I, as well as the limitations of the de-
coupling scheme.

The equations of motion for (S (q)) and (8 (q&)
xS'(q~)) are

where X (q, &u) is the imaginary part of the suscep-
tibility. By introducing a projection operator P
onto the subspace of the Hilbert space of all linear
operators on the spin-state space consisting of all
linear combinations of the operator f80), it can be
shown that

Z(q, z) = iX(q, 0)[z - y(q z)]

where y(q, z) is defined as

q'(q z) =&(I-P)&8*(q)
I
[z -(I- P)Z(f P) ] '-

i -- &8'(q)) =-,'N '~'Z [V(q —q ) —V(q )](S (q')S'(q-q )),
ql

i &8 (q, )S'(qa)) =N ' Z [V(q& —qs) —V(qz)]&8 (q~ —q~)8'(qs)8'(q~))

~ [V(q2 qs) —V(qs) 1 &8 (qi)8' (qs)8'(q2 —&7s))
03

(1.8)

We observe that the initial density matrix, if it is
to describe a physically realizable situation, will

have the cluster property. That is, if two groups
of spins are separated by a large distance, they
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j~j ~Q . (1.9)

Such an approximation neglects only those corre-
lations which are nonvanishing when all of the spins
involved in the average are "close" to one another.
The range of these "short-range" correlations will
depend in general upon the number and components
of the spins involved in the averages, and the ini-
tial conditions. It may, in fact, not be possible to
define a range for these correlations in any mean-
ingful way, For instance, in the ordered phase of
the ferromagnet, the quantity E,ar((sas,")) di-
verges as N approaches infinity, and it is not pos-
sible to regard these correlations as being negli-
gible when the distance between the two lattice sites
exceeds some characteristic length. In general,
we can define a range for a cumulant correlation
function involving n spins if the quantity one ob-
tains by fixing a particular site and summing over
all the possible sites for the remaining n —1 spins
is finite in the limit of an infinite crystal. If this
is not the case, then the cumulant correlation func-
tion will be said to show long-range order.

In the absence of long-range order for the cumu-
lant average (S, S, S~), , which we define as the dif-
ference between the left- and right-hand sides of

Eq. (1.9), the approximation (1.9) can be viewed as
leading to asymptotically correct expressions for
the time derivatives of the correlation functions
in the limit of long-range exchange forces.

To see this, consider a particular term con-
tributing to —8 (S,') / sta:

Q Q V;a Vaa. (Si Sa Stt ) . (1.10)

We will assume that V;, = Vfor ir,. —r, i&A, and
vanishes otherwise. If the range of the exchange

will behave independently. Hence we expect that
for any physical density matrix

(S;SJ S') - (S,S') (S,')
when the site j is sufficiently far from the sites i
and k. Furthermore, we expect that the cluster
property will hold for all times, so that it forms
the basis for a rational means of decoupling the
equations of motion for the magnetization and the
various correlation functions. The general pro-
cedure for the decoupling at a particular level of
approximation is to replace a correlation function
involving n spins on different sites by the sum of
all the cumulant averages involving less than g
spins. In the present case, the equations of motion
for the nonequilibrium averages corresponding to
(l.7) and (1.8) can be closed by means of the ap-
proximation

( S S~ S ~ ) = (S ) (S~ S ) + (S ) ( S~ S )

+(S)') (S,. Sa, ) —2(S,.) (Sa.) (S„),

interaction is much larger than the range of the
three-spin cumulant correlation functions, then
(S, S,*s,'. ), will contribute to only a fixed number of
terms in the sum, whereas the terms kept in the
approximation (1.9) can contribute to all of them.
If the number of spins in the interaction range is
c, then the contribution to the sum (1.4) from the
cumulant term will be smaller by a factor of at
least c ' than the contribution from the terms in
(1.9). In a three-dimensional crystal where c has
a value on the order of 10, results valid in the
Weiss limit can have quantitative validity for real-
istic systems.

As far as the interpretation in terms of an ex-
pansion in 1/c is concerned, terms in a three-spin
correlation function involving spins on the same
site are not important, and can be handled cava.-
lierly. Thus for the case of S= 2, itdoesnotmat-
ter whether we factor a term such as (S, S,'S;), or
treat it exactly as —,'(S, St).

The equations of motion one obtains with the ap-
proximation (1.9) are nonlinear and couple (S')
and (S ). When equations similar to (1. I) and
(1.8) are written for the time behavior of S', , and
the approximation analogous to (l. 9) is made, one
obtains a closed set of coupled nonlinear equations.
These have a stationary solution if the magnetiza-
tion and correlation functions satisfy the relations

(S,.) =X, (S';) =0,

i 5(s (q&)s'(qa)) =N' y (q&, qa)5(s'(q&+qa)),
(1.11)

where 6( ) indicates the deviation from equilib-
rium, and

y(q~, qa) y'(q1+qa) [+(ql) +(qa)]

+ &(q k(q ) —l'(q )n(ql) (1 12)

n(q, ) =((S (q,)S'(-q, ))) .

The bracket (( )) indicates an average over the
equilibrium density matrix. These equations are
supposed to hold for arbitrary initial conditions.
In particular, if we choose the initial density ma-

(s, s,')=(s,'s, )=n(i-j), (s', s,*.&=m(i-j).
The parameter A. and the functions m, ~ can be
arbitrary, in the sense that any choice will lead to
to a stationary solution of the equations. We
will choose them to be the values appropriate to
thermal equlibrium, and will linearize the non-
linear equations obtained from the cluster approxi-
mation about this stationary solution. We then ob-
tain a set of linear equations that describe the be-
havior in time of small disturbances from equilib-
rium. We find, in the paramagnetic regime,
where X= 0 and n(i j)= 2m(i ——j), that the two-spin
correlation function satisfies
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trix to be

p=p„+[f e S ( q-)e dv]p„5h(q), (1.13)

then 5(S (q); i) = 5h(q)Z(q, f). The parameter 6h(q)
is irrelevant, since the equations have been linear-
ized, and can be taken to be 1. The kinetic equa-
tions (1. I) and (1.11) with particular initial con-
ditions thus provide a concrete approximation for
Z(q, i). If we Laplace transfor'm these equations,
we find

aZ(a, a)=iy(q, 0)+ ,'N i-5 [V(q —q ) —V(q )]5

x(S (a )S'(a —a ); z), (1.14a,)

by considering the case for which @=0. Equation
(1.11) then predicts that s(s (q )S'(-q ))/St=0.
This is clearly false, since a disturbance of the
two-spin correlation function, produced by a tem-
perature gradient perhaps, would not persist in
time, but would decay until the correlation func-
tions reached their equilibrium values. The pro-
cesses that produce the decay are completely ne-
glected in (1.11). If we add a term —v(s (q )S'
x (q —q )) to the right-hand side of (1.5), to simu-
late these decay processes, which we shall call
internal relaxation processes, in a phenomeno-
logical way, then we find for Z(q, a) the expression
(1.16),

a5(S (a)S'(q-q); a)

=i[s (q')s'(a-a'), s'(-a)]
z(q, z)=ix(a 0) (i. is)

+N ~
y (q, q —q )Z(q, a), (1.14b)

where the bracket (A, B) is defined as ((fo e' Ae
xBdw)). Solving for Z(q, a), we obtain

q'(a, a) = ~'(a)/a (1.15a)

Z (q, a) = iy (a, 0)— (1.15b)

We have used the fact that (S (q), Zs (-q)) =0 to
obtain (1.15) from (1.12) and (l. 14). The quantity
~ (q) is explicitly

~ (q) = -'N ~ [ V(q —q ) —V(q )]y (q , q q )—

(1.15c)
If (1.15) were taken literally, one would conclude

that there were poles on the real axis at the fre-
quency ~=a [~ (q)]', corresponding to well-de-
fined normal modes for each wave vector q.

In fact, we expect, although we cannot prove,
that y(q, z) is analytic in s near a = 0, and has the
form (see Appendix)

q (q, (a+ is)= —iDq'+ n&uq'+ O(q')+ O((u'q'),

which would lead to diffusive behavior for small
q. We conclude, therefore, that (1.11) can only
hold for small times.

We have observed that the cumulants that we
have neglected contribute terms in the expression
for 8'(S,)/st' that are smaller by a factor of 1/c
than those that we have kept. However, after a
time i- c ~2, the effect of these terms on (S;; i)
can be as large as the effect of the terms we have
kept. Since the frequencies [~ (q)] i are at most
proportional to c ', our equations of motion are
reliable for at most one period of oscillation, even
in the limit that c-~.

A further difficulty with the equations can be seen

This expression does have the proper behavior for
small z. Furthermore, the details of the internal
relaxation processes can be important. A more
sophisticated phenomenological treatment of the
internal relaxation processes, which would account
for the fact that there will be some characteristic
time that the system requires in order to respond
to a disturbance of the internal structure, can be
had by including a term such as

fl' f —e ""'"(S(q, )S'(q,); t') dt'

on the right-hand side of (l. 11). This leads to a
spectral density of the form

Z(q ~)=iX(q 0)

(l. 1V)

If &u(q) «0, this is equivalent to l. 10 with
v = 0 v, . If (a&(q)~, » 1, i. e. , the external dis-
turbance has a characteristic frequency much
greater than the internal relaxation frequency, the
spectral density will reflect the details of the in-
ternal relaxation. In fact if the conditions 07, »1
and &u (q)» Q are also met, the spectral density
will show a peak at ~ = 0, of width I/~„ that cor-
responds precisely to the relaxation of (S (q, )S'
x (qa)). In the paramagnet, at high temperatures,
we expect that the short-wavelength fluctuations
will have frequencies comparable to those of the
internal relaxation processes, while as the system
approaches the critical point, the internal pro-
cesses will slow down, and the situation can be
similar to that just described. In either case, a
detailed treatment of the decay of the correlation
function (S (q~)s'(q2)) due to the internal relaxa-
tion processes is essential for understanding the
dynamics of the spin fluctuations.
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In order to develop such a treatment, we intro-
duce the function 1"(q„qa, t}, defined by

r(q„q„ t) = —s &S-(qi)S'(qa)
I

xe ' ' ~&s'(qi+qa)&/X(qa+qa) ~

where 2 is defined as (I —P)2(f -P), with 2 the
Liouville operator defined in I, and P the projection
operator onto the set of states containing a single
spin fluctuation. 2 describes the propagation of
spin fluctuations in the absence of any external
fluctuation. I' gives the rate of decay of a fluctua-
tion of wave vector q&+qz at time t=0 into two
fluctuations of wave vector qz and qz at time t. In
terms of its Laplace transform I"(qs, qa, a), y(q, a)
is given. by

q(q, a)=-,'N '"Z[V(q-q') —V(q')]r(q', q-q', a),
at

(1.18)
so that knowledge of I' suffices to determine y. If
one compares (1.18) with (l. 15a) and (1.15c), one
sees that the approximation that leads to (1.9) can
be succinctly summarized as

r(q~, qa, a) =N '~'r'(qg, qa)/a -=r'(qg, qa, a} .
(1.19)

(1.19) asserts that 1"(q„qat) is a constant, indepen-
dent of the time since the fluctuation was introduced
into the lattice, and that this constant is given by
the value obtained from the cluster expansion,
—iy (qq, qa}. The assertion that the decay rate is a
constant corresponds to the neglect of the internal
relaxation processes, i.e. , the decay of (S (qf)s'
X (q,)).

To describe the decay processes neglected in
making the approximation (1.19), we must be able
to predict the behavior of the correlation functions
in the absence of any perturbation in the magnetiza-
tion. We will therefore consider the equations of
motion for the case that the initial density matrix
is chosen so that (S'(q); t = 0) = 0. In calculating
the subsequent behavior, we shall assume that the
time dependence is determined by the modified
Liouville operator 2, and hence the magnetization
will be zero for all subsequent times. Clearly, the
approximation (1.9) is useless in this case, as the
time dependence of the two-spin correlation func-
tion is determined entirely by the three-spin cor-
relation function. The kinetic equations must
therefore relate (S (q~)s'(qa) & and (S (q~)s (qa)S'(qs)).
The equation of motion for the three-spin correla-
tion function is

(S (q&)S'(qa)S'(q )& = -N 5 [V(q4) —V(q~ -q4)]&S (qi -q4)S*(q4)S'*(qa)S'(qs)&
a4

——,'N K[V(q4) —V(cia —cl4)](S (q&)s (q4)s (qa -q~)s (qs))

+N"'5 [V(q4) —V(qs —q4)1 &S-(q,)S'(q,)S (q,)S'(q, —q, ) & . (1.20}

We shall assume that the initial density matrix is
rotationally invariant about the z axis, so that
&S,'S&& = (S';) = 0. If we make a cluster approxima-
tion for the four-spin correlation functions, we will
will have

(s (qi) s'(qs)s'(qa)s'(a4)&

=&S'(qa)S*(qs)) (S (q&)s'(q4)&, (1.21a)

&S (qi) S (qa)s'(qs)s'(q4)&

=- (s (q )s'(q )) &s (q )s'(q ))

+&S (qi)s'(q4)& (S (qa)s'(qs)& . (1.21b}

The equations of motion couple terms such as
&S&s&& with terms such as &S&*s&). Hence, in addi-
tion to Eqs. (1.8) and (1.20), and the approxi-
mation (1.21), we will require an equation of mo-
tion for &S'(q&)s'(qa) &:

i (S*(q,)s'(qa)) = ,'N + [V(q—&—qs) —V(qs) ](S (qs)s'(qa)s'(q, —qs))
a3

+,'N-«a+ [V(qa qs) V(qs) ]&S-(qs) S'(qc) S'(qa qs)) . (1.22)
a3

From (1.20) and (1.21) we obtain a nonlinear equation for the rate of change of the three-spin correlation
function, (1.23) [in obtaining (1.23) we have used the fact that (S'(q)) = 0]:

s
——

&S (q~) S (qa}S'(qs))=-N Z[V(q4) —V(qg —q4) ](S (qg -q4) S'(qs)) &S*(q )S'(qa))
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'N — Q[U(q4) —V(qa —q4) ](S (qi)S'(qa —q, )) (S (q4)S'(qa))

+N Z [V(q4) —V(qa —q, )](S (q, )S'(qa-q4))(S'(qa)S'(q4)) . (1.23)

Since we are interested only in the linear response,
we will linearize this equation about equilibrium.
For this procedure to be successful, the equilib-
rium values of (S (q, ) S'(qa)) and (S*(qa)S*(qa)) must
be such as to make the time derivative of the three-
spin correlation function vanish. Observing that
as a result of translational invariance and isotro-
py~

(S (ql)S'(qa)
l
~S'(q)& =N "'r(ql qa)x(qi+qa, o)

Making use of the identity (A I Z I B)= (( [B,A'])),
we have

«[S'(q, + qa), S'(q~)S (qa)]

=N "'r(qi, qa)X(qi+qa, o)

(S (qs)S"(qa)) = 5(q& + qa)n(q&) = 2 ( S"(q&)S"(qa)),

we find, setting the right-hand side of (1.23) to
zero,

[V(qa) —V(qa) ]~(qa)n(qa)

or

+ ('qa) —s(qi) = r(q i, qa)X (q1+ q~a

Iv(q~l + qa) Is (q i) —s(qa) ] + V(qa)&(qa)

—V(qi)s (qi))X(qi+qa, o) (1.26)

+ [V(qa) —V(ii) ]s(&7i)»(qa)

+ [V(q, ) —V(q, ) ]n(q&)n(qa) = 0, (1.24)

where q&+ qz+ q3 = 0.
Equation (1.M) is precisely the condition that

was derived diagrammatically in I. It is a neces-
sary restriction on the equilibrium correlation
functions if they are to be stationary when the Liou-
ville operator is evaluated to lowest order in 1/c,
and has a straightforward physical interpretation
in terms of the picture of the dynamics that was
introduced in I. If (1.24) is divided by [n(q&)n(qa)
&&n(qa) ]', each term in (1.24) corresponds to the
analytic expression for the matrix element giving
the rate of decay of one mode into two others (see
Fig. 12 of I). (1.18) is therefore a rate balance
equation, and the restriction on the equilibrium
correlation functions implied by (1.M) is a con-
sequence of the requirement of detailed balance.
It may be expressed graphically as in Fig. 1. The
analogy here with the Boltzmann equation is par-
ticularly strong.

A sufficient condition that (1.M) is satisfied is
that n(q) be given by the spherical model. This may
be shown to be a necessary condition by comparing
the exact value of I'(q„qa, a) with the approximate
expression (1.19). If one expands I"(q&, qa, a) for
large g, one finds that

I'(q~ qa a) = (S (q~)S"(qa)
l

ZS'(q) ) /X (q, 0)~+ O(1/~ ).
(1.26)

Comparing (1.25) with (1.19) we see that the cluster
approximation which gives the initial rate of
change of (S (q, )S'(qa)) correct to lowest order in

1/c leads to an explicit approximation for the ma-
trix element of 2,

One can now show that n(q) is of necessity the

spherical-model value. The approximate equation
(1.26) is a difference equation for n(q) If. we let

qa= q —q', and take the limit of (1.26) as
q-o, we obtain (1.27):

q v, , ((1+x(0, o) [v(o) —v(q')]Q(q )) = o.

Hence

~(q) = n(0)//I+ x [v(0) —v(q)]),

(1.27)

where X = X(0, 0).
Since n(0) = 2X/S, we find that n(q) must be given

by the spherical-model expression

2

~[I/x v(o) —v(q)]
(1, 28)

q —-
q +

q

q--
---q ~ = q =0

q

FIG. 1. Diagrammatic representation of rate balance
equation.

This is to be expected, since the quantity n (q )
—n (q —q ) is O(l/c), and the right-hand side of
(l. 26) is correct to terms that are O(l/c), the er-
rors being of order (1/c) . n(q) can therefore be de-
termined correctly to order 1/c.

Although the behavior of the spherical-model
susceptibility, if it is determined from the sum
rule g,n(q) = —,'S (S+ 1), is known to be incorrect in
the region of the critical point, it is a good approxi-
mation for temperatures outside of the range
[(T —T,)

~ /Tc] & 1/c The model gives the Orn, -
stein-Zernike behavior for the correlation func-
tions at long wavelength, in the region of the crit-
ical point. We shall use it for all explicit calcula-
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tions.
If we linearize (1.23) about a correlation function

I

satisfying (l. 18), we obtain the equation of motion
(1.23),

i
&&

5 (S (q, )S'(qz)S'(&4)} = —lN '" r(qi, q2)~(ql+ qs)

,'N —y(qz,qs)n(qq, qz+@) +N y(qt, q3)m(qs+qs qa) . (1.29)

y (qs, qz) is the quantity defined by (1.8), n(q„qz)
=5 (S (qq)S'(qz)), and m(qi, qz) = 5(S'(qi)S'(qa))i
i.e. , they are the deviations from equilibrium.

Equation (1.29) has a straightforward interpre-
tation. If one has two-spin fluctuations in the lat-
tice, as indicated by a nonzero value of n(qq, qz)
or m(q„qz), the rate at which one generatesthree-
spin fluctuations is equal to the sum of the. rates
at which one of those fluctuations decays into two.

t

This rate for fluctuations of wave vector (q, +qz),
in the present approximation, is simply y (q„qz).

Equation (1.29} has the same limitation that Eq.
(1.11) had. It does not include the internal relaxa-
tion processes in the vertex function I'(q&, qz, f).
We shall therefore modify (1.29}to include these
processes. If we Laplace transform (1.29), and
assume that the initial value of 5 (S (q&)S'(qz).
&&S '(q~)) = 0 we will obtain

S(S-(q,)S'(q, )S"(q, ) „z&
= ——,'r'(qi, q„z )

=(q, +q„q„z)--,I' (qz, q3; z)N((4, qz+q3; z)+I' (q„q3; z)m(q, +@,q„z) . (1.30)

The neglect of the initial three-spin correlations
is equivalent to neglecting the possibility of a fluc-
tuation decaying simultaneously into three fluctua-
tions, since the initial value, if kept, would enter
the equations of motion that will be derived sub-
sequently for I' (q„qz, z) in the form (S (q&)S'(qz)
xS'(q ) IZ IS'(q)}. This matrix element is smaller,
by a factor of I/c, than the terms that we have
kept. ' To include the internal relaxation process-
es, we will replace I" (q„q2; z) in (1.30) by the
exact vertex function I'(q„qz, z). This approxima-
tion neglects many features of the decay of (S (qf)
&& S'(qz)S'(q~)), but it is the simplest approximation
one can make that incorporates the relaxation of
the two-spin correlation function in a self-consis-
tent manner.

The approximation may be interpreted graphical-
ly. We will represent the response of the three-
spin correlation function to a perturbation in the
two-spin function by the vertex shown in Fig. 2(a).
If we define an irreducible vertex by the condition

that it contains no intermediate two-spin fluctua-
tion states, then the vertex of Fig. 2(a) can be
written as in Fig. 2(b), where the crosshatching
indicates the irreducibility. The approximation is
shown in Fig. 3(c). We see that it neglects virtual
decays of the fluctuations not involved in the vertex
as well as multiple scattering of this fluctuation
with others. Essentially, the approximation states
that once a fluctuation has decayed into two others,
the resultant two-spin correlation function decays
much faster than does a single-spin correlation
function. Clearly this will not be a good approxi-
mation when the isolated fluctuation is of short
wavelength and both of the modes in the vertex are
of long wavelength, but the phase space where this
occurs is small compared to the remainder, at
least in three dimensions. Upon substituting (1.30)
with this modification into the Laplace transformed
version of (1.8) and (1.22) we obtain the kinetic
equations (1.31a) and (1.31b):

z + (ql qz, z) = i~(q i, qz, & = o) + [q (qi, z ) + q (qz, z) ]~(qi, qz, z)

--.'N '"+ [V(q&-q ) —V(q ) ]I'(qi, qz-q, z)~(q -q, z)
qt

,'N '~'Z [V(q, —q ) ——V(q) ]I"(q„q, —q, z)n(q, q —q, z)
ql

—N" 4 [V(q&-q') —V(q'}]I'(qi, qz-q', z)m(q-q, q, z)

N2 [V(qq-—q ) —V(q~)]I'(qz, q&
-q, z)m(q -q~, q', z), (1.31a)
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zm(q&, qz, z)= i'(qi, qi, i=0)+ [q(q&, ~)+p(q&, ~) ]m(qi, qi, ~)

[V(ql q') —V(q )l&(qi, q -q', ~) [ii(q, q -q, ~)+ii(q —q, q' ~)]

——,X [ V(q, —q ) —V(q ) ]1 (q„q, —q, s) [n(q, q —q, z)+n(q —q, q, z) ]. (1.3lb)

Equations (1.3la) and (l. 31b) are a set of linear
equations that determine the two-spin correlation
function in terms of its initial values. They are
not a closed set, since the quantity 1'(q&, qz, z) re-
mains to be determined. But it is clear from the
definition of 1 that I'(q„qi, f) is simply (S (q, )
xS'(qi); f) for a particular initial condition, i.e. ,

(S (q, )S'(qz); f = 0) = iT(q&, qz, 0)

=(S (qi) S'(qi)
I
~S'(q))/X(q, 0)

1'(qi, qa, ~)=-f'(qi, qi ~) (l. 33)

Thus, from (1.31b), nz(q&, qz) and n(q&, qi) are
uncoupled, and since m(q„q„ f = 0) = (S'(q, )S'(qi)
ISS'(q)) =0, m(q»q»z)=0. Hence, 1" satisfies
the nonlinear equation (1.34):

=N [n(q&)-n(q&)]/y(q, 0) . (1.32)

The equation for I" can be simplified by using the
fact, which follows from the rotational symmetry,
that

i)a n(qa) -~(qi)~r(q„q„~)=X-,
0)

+ [q (q„~)+y(q„~) ]r (q„qi, ~)
X(qg+ qp ~ 0

- l & ' '&([V(q& -q ) —V(q') ]1(qi, q& -q', ~) - [V(qi-q') —V(q') ]&(qi, qi -q', ~)]

~r(q, +q~-q', q', z) . (1.34)

Equations (1.31a), (l. 31b), and (l. 34) form a
closed set of equations from which most of the dy-
namical properties of the Heisenberg paramagnet
can be calculated. Equations of motion for two-
spin correlation functions of the form (S (qi)
&S (qz); f) may be needed to describe some experi-
ments, such as EPR, but equations of motion for
these correlation functions may be obtained, in
terms of I', in a manner analogous to that which

we have described. We shall not present these
here, however, as we shall not use them in this
paper.

(o)

(b)

(c)
q(--q

q~
2 q2

q(~
q 2

(b)
q(

+' ---q
q

I

q=

(c)

FIG. 2. Diagrammatic representation of fundamental
approximation for the time dependence of the three-spin
correlation function.

I

q
xq

FIG. 3. Diagrammatic representation of vertex func-
tion (a), y(q, z)/z (b), and equation of motion for the
vertex function (c).
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N ' 2 (S(q) ' S(-q); f) = 0,
a

N '2 v(a)(s(q) s(-a); i}=0.

(2. la)

(2. lb)

Actually, we have, in the Heisenberg model, N
constraints of the form 8,(i} 8, (i) = S(S+1). How-

ever, since the stationary correlation functions are
calculated from the spherical model, where there
is only the single constraint N 'LS, (t) S,(i)
=S(S+1), we can only expect the dynamics to con-
serve this latter weaker property of the stationary
solutions of the equations of motion. Equations
(2. la) and (2. lb) can be derived from (l. 25a),

II. PROPERTIES OF THE KINETIC EQUATIONS

A kinetic equation should satisfy whatever phys-
ical constraints exist in the form of conservation
laws, In the present case, in addition to the triv-
ially satisfied constraint that (S'(0)) be a constant,
we have the conservation of the total spin and en-
ergy

(l. 25b), and the antisymmetry of I".
Let us note first of all that

(S'(ai)S-(az); i}
(S (qa)S (al) i}+N (S (al+qz) }

= n(qz, q„ i) + 2N '~z (S '(a, + q,); i ) .

Hence, since we can take (S*(0); i) = 0,
(s(a) s(-a); i}

= {-,'S&q)S'(- q)+ —,'S'(q}S-(-q)+S'(q)S'(-q))

=n(a, -a; i)+n(-q, q; i)+m(a, -a; i) . (2. 2)

The kinetic equations were derived for the case
that the time development operator was Z, while
the time development operator in (2. la) and (2. lb)
should be taken to be Z. However, the distinction
is not material if qz+q~= 0, since we require in
deriving (1.25), only that (S'(q, +qz)) vanish for all
time if it vanishes initially. This is true for both

and Z.
From (1.25) and (2. 2) we have (2. 3):

z(S(a) ~ S(-a); z} =i(S(a) S(-q); t=0}+[q&(q, z)+y(-q, z}(S(q) S(-a); z)

-N ' 'Z [V(q - q') —V(q') ]I'(- q, q -q~; z) (S(a') 8(- q~); z)

-N ' zQ [V(-q —q, ) —V(q ) ]I'(q, —q-a; z)(S(q~)'S(-q ) z) (2. 3)

If (2. 3) is summed over q, the last term on the
right-hand side of (2. 3) becomes

-N-'"ZZ[v(-q -q') —v(a )]

xI'(a, —q —q'; z)(S(q') S(-a'); z) . (2.4)

Since I' is antisymmetric,

5 I"(q, —q —a ) = 0

and the summation over q in (2.4) reduces to

—N 'i Q V(-a —q')I"(a, —q —q', z)

= —-',N Z V(-q —q )[I'(q, -q-q, z)

-I'(-q-q', q; z)]

= —-N ~ 5 [V(- q —q ) —V(q)]1"(q, —q —q; z )

~/=-v(-a, z) .

Hence (2. 4) is equal to

-Z q(-q', z)(s(q') s(-q'); z&,

summed over q.
A similar cancellation occurs between the sec-

ond and fourth terms, with the result that

z N Q(S(q) ' 8(- a); z }

=iN Z(S(q)'8(-q); i=0) =iS(S+1),

which is the Laplace transform of the conservation
law (2. la).

To derive (2. lb), multiply (2. 3) by V(q) and sum
on q. The last term on the right-hand side of (2. 3)
becomes

-N "'+~ [V(q)V(-a-q )- V(q)V(q)]

x I'(a, —a —q'; z)(S(q') S(-q~); z} .
The first term in the square brackets vanishes
upon interchanging the order of summations and

performing the sum over q. The second term be-
comes

Z V(a)N ' ~V(a)1(a, -a-a, z)(S(a)S(-a)' z)

which cancels the result one obtains from the third
term on the right-hand side of (2. 3), when it is

= -& V(q')q (-q', z)(8(a'); z& .
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Again this term cancels the result one obtains
from the third term on the right of (2. 3). Similar
cancellation of the remaining termleads to the con-
servation law (2. lb):

zZ U(q)(S(q) S(-q); z) =a(I6; t =O) .
The kinetic equations allow one to calculate, in

principle, any dynamical property that depends up-
on the time development of the two-spin correla-
tion function. Since the equations conserve energy,
it is also reasonable to use them to calculate the
thermal conductivity, which depends upon the time
development of a three-spin correlation function if
calculated using a Kubo formula. This can be ac-
complished in much the same way that the Boltz-
mann equation is used to calculate the thermal con-

I

ductivity of a gas, and will be presented elsewhere.
The conservation laws place constraints on the

long-time behavior of the system. The method we
have used to derive the equations of motion ensures
that the short-time behavior will not be too seri-
ously in error, since the terms neglected in making
a cluster expansion of correlation functions appear-
ing in the expression for the time derivative of
(S (qq)S'(qa)S"(qa)) will be smaller by a factor of 1/c
than the terms that are kept. In particular, the
second and fourth moments of the spectral density
will be correct to order 1/c. This should be clear
from the discussion in Sec. I, but can easily be
checked explicitly. If we divide (1.28) by z and
iterate it once, we obtain the first two terms in the
expansion of 1 (qa, q a, z) as a power series in 1/z:

F(qi, q., z) = '(qi, qa) + [~ (q1)+ ~'(qa)]F'(q1 q~a)/z

—lN ' '~ ([V(qa - q') —V(q')]F'(q„qa - q') —[V(q& -q')- U(q')]F'(qa, qi - q')]

If we substitute (2. 5) into (1. 12), and compare with Eq.

x Fa(q, + qa —q' q')/z+ O(1/z') . (2. 5)

(1.18) of I, we find (2. 6):

~'(q) = lN '& [V(q - q ) —U(q')] [n(q - q') -n(q')]/X(q, o), (2. Ga)

0'(q)=N '+ [V(q-q ) —U(q )]~ (q )[n(q-q ) -n(q~)]/y(q, 0)

,'N Z [V-(q--q~) —V(q )][U(q-q -q, ) —V(q )][n(q-q —q )-n(q )]

x [n(q ') -n(q —q") ]/x(q —q ",O)/x(q, o).

Since

[n(qa) —n(qi)]/X(qi+ qa O)

= —S(S+1)[V(qa) —V(qs)]P (qa)P(qi) P(qs+qa)

with p(q) defined as n(q)/g, n(q), the expressions
for the moment given by (2. 6a) and (2. 6b) agree
with Eqs. (3. 24) and (3.25) of I, respectively, and
hence are correct to order 1/c.

The approximate equation (1.28) maybe written
graphically using the notation of I, and it may be
interpreted as providing a particular prescription
for the summation of an infinite subset of the dia-
grams for the spectral density. If we renormalize
at finite temperatures only the right-hand vertex
in the diagrams of I, and associate a factor of 1/z
with each vertex, as discussed in Sec. lV of I, we
can represent the quantity —,'[—,'S(S+1)] '

F(q&, qa, z)
by the symbol shown in Fig. 3(a). The cross-
hatching indicates that all possible diagrams are
included. The quantity y(q, z )/z is represented,
according to (1.12) and the rules for calculating

the moments given in I, by the diagram shown in
Fig. 3(b). The approximate equation (1.28) is then
given by the graphical equation shown in Fig. 3(c).
Comparison of the results one obtains by iterating
(1.28), obtained by eliminating the crosshatching
in Fig. 3(c) with the diagrammatic expressions for
the second and fourth moments shown in Fig. 3 of
I, should make clear the result just shown analyt-
ically concerning the second and fourth moments.
Similar equations could be written for (1.25). Fig-
ure 3(c) should make clear the interpretation of
the various terms appearing in (1.28). The rate
of change of the vertex function is determined by
two effects, the decay of the individual excitations
involved, described by the second and third term
on the right of (1.28), and the scattering of these
excitations from one another by means of their
interaction with a third mode, described by the
last two terms in the equation. The cancellation
of the rate of change of the energy and total spin
produced by these two mechanisms results in the
conservation laws,



SPIN FLUCTUATIONS IN HEISENBERG PARAMAGNETS. II. . .

A final property of the kinetic equations is that
they lead to the dynamical scaling laws at the
critical point. This will be discussed in a subse-
quent paper.

III. APPROXIMATE HIGH-TEMPERATURE SOLUTION

Although the kinetic equations are capable of
interpreting a wide range of experiments, the most
direct test of the validity of the theory is provided
by the neutron scattering results on RbMnF3. This
material is a simple cubic antiferromagnet with

spin —,', and is well described by the Heisenberg
Hamiltonian with nearest-neighbor interactions.
%e have, therefore, applied the results of the pre-
ceding analysis to a calculation of the spectral den-
sity in this material.

An accurate numerical solution of (l. 28) has not
yet been carried out. However, a good analytic ap-
proximation to the spectral density predicted by
(l. 28) can be obtained on the basis of a simple
physically motivated approximation for the vertex
function I (q„qz, z) at high temperatures.

The approximation that we shall make is given
by (3.1):

F(qi, qz; z):—(fq ~z ,'S(S+ 1)-

"[p(qz) p(qi—)]/p(qi+'q2) ]/v(z} (3 I)

The function v(z) is to be determined. Observe
that the quantity in curly brackets is simply
iT(qi, qz; t = 0), so that the content of the approxi-
mation (3. 1) is the statement that the relaxation of
the vertex function is independent of q& and q~. At
first sight this may seem a drastic approximation,
since if q& and qz are boih small, the relaxation
time of the vertex function will be much longer than
if either q& or q2 is near a zone boundary. The
success of the approximation depends upon the ob-
servation that at high temperatures, fluctuations
of any wave vector will decay primarily into short-
wavelength fluctuations, since the phase space
available for such decays is large. Since the re-
laxation time for short-wavelength fluctuations is
roughly constant, the relaxation of the vertex func-
tion is nearly independent of wave vector over much
of the zone. Furthermore, the contribution of the
short-wavelength region to y(q, z) dominates that
of the long-wavelength region and hence the result-
ing values for y can be reasonably accurate, The
exception to this statement occurs at the critical
point, where the relative probability of decay into
the critical modes increases to the point that the
contribution to y from the decay into wave vectors
in the critical region of phase space dominates.
The approximation (3. 1) is one that breaks down
near the critical temperature and, indeed, its
breakdown can be used to define the boundaries of

the critical region,
The function v(z) is determined by the condition

that it be such as to maintain the correct values of
the second and fourth moments as predicted by
(1.28). This can be accomplished by inserting
(3. 1) in (1.28), dividing by z, and using the re-
sultant expression to evaluate y(q, z). We have

then that

q (q, z) = ~'(q)/z+ &'(q)/z v(z )' . (3. 2)

Since for large values of z, v(z) = z [compare (3.1)
with (1.18) of I], (3. 2) does guarantee that the ap-
proximate expression for y(q, z) will have the cor-
rect second and fourth moments. Comparing (3.2)
with the value of y(q, z) obtained directly from
(3. 1),

q (q, z) = (u'(q)/v(z), (3. 3)

we find that v(z) must satisfy

z v(z)(o'(q) = v(z)'~'(q)+ II'(q)

or

v( ) = l 4z+ [z' -4~1'(q)/ '(q)]'" ]'")

(3.4)

(3.5)

The positive sign in (3. 5) is dictated by the re-
quirement that v(z)- z for large z. We note that
v(z) is real for z on the real axis as long as
~ & 2 [&'(q )/sP(q)]'~, and is equal to

v(&d+ if).= i (8 +i[II (q)/QP(q) —

ibad]

(3.6)

when (u & 2[0'(q)/(u'(q)]'~'.
There is, of course, an inconsistency in (3.6)

in that we have assumed that v(z) was independent
of wave vector, which is not true unless Q'(q)/&z(q)
is. From (2. 6) of I we have, at infinite tempera-
tures in the gneiss limit,

II'(q)/~ (q)=-', S(S+1)(2V (0)+-,'[V (0) —V (q)]] .
(3.7)

Thus I v(0) I only varies by about 20% throughout
the zone, which gives some a posteriori justifica-
tion to the approximation. At higher frequencies,
the variation is less, and our approximation will
be more accurate. From the physical argument
we used to justify the approximation (3. 1), one
can infer that (3. 1) should be most accurate at
short wavelengths. This is suggested also by the
observation that at T=~, and for wave vector q„
q& such that q&+qa=Ko, where Ko corresponds to
the —,

'
—,'-', point in the reciprocal lattice, (3.1) pro-

vides a self-consistent solution of (1.28). For this
wave vector, we have

v(q+ A, ) = —v(q) . (3.8)

Substituting (3. 1), evaluated at infinite tempera-
ture, into (1.28) and using (3.8), we have
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V(qt)]/ (z )= [V(qz) —V(q ) ]+ 'S(s 1)2vz(,v o)[v(q,)- v(q, )]/ (,)2

——,'S(S+ 1)iV'-'~~ +[V(q —q ) —v(q ) ][v(q, —q') —v(q )]2V( ')/ ( )8

—ks(s+ 1)N "'Q [v( -q ) - v(q )][V(qi-q')- V(q2)]2V(q )/p(z)8 (3 9

Since Z, V(q') 2V(q q') Q V(qa —q ) V(q ) = p
for the simple cubic lattice, (3. 9) r d„

z [V(qz) —V(q, )]/v(z)

= [v(q, ) —v(q, )]

+ 2S(s+ 1)V'2(p)

"[v(q ) —v(q )]/ ( )'. (3. 1o)

For this wave vector, v(z) is given by

v(z) =-,'(z+ i[2S(s+ 1)V (0) —z']'~' t
t

and since

z v(z) = v(z ) + 2S(S+ 1)V '(0),
(3. 10) is an identity for all values of
that q +q =K .

qq, q2 such
1+q2 0'

Even thou h &3. 1&~g & . &~provides a self-consistent
solution for =K it 'q= 0, i is not, of course exact eve
for this wa

even

for =K
wave vector, since the value of tho e vertex

01 q = K 0 depends on that for q 4 K N thq 0 . evertheless,
by continuity, one expects (3.1) to be a good a-
proximationion for a range of wave vectors about

o e a good ap-

1 1

T=~
x& 2& & and a range of temperatureres e ow

p c» density may be calculated directl
from (3.3) and (3. 5 If we define a shape factor,

cree y

x = ~'(q)'/&'(q)

and a dimensionless frequency,

we will have

x"(q, t)/t =x(q o) x'i 1+$ (1/x —1) '

t'2 ~ 2/x . (3. 11)

The normalized spectral d 't f
ues of

ense y, or various val-
the parameter x is shown in Fi . 4

value of x = —' c
in zg. . The

x 3 cor re sponds to the simp le cubic lat-
tice, at T=~ and As the wave vector
decreases x e, x decreases, and is proportional to
for small vaall values of q. Reference to (3. 11) indi-

iona o q

cates that the shape of the spectral density be-
comes that of a Lorentzian 'th d, wx evia. tions from

2.0

CV

I.O 2.0
LU'/ ~~)

FIG. 4. aha ep s of spectral densities resulti fng rom constant--re axatzon-bme approximation.
0 ~
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FIG. 5. Variation of relaxation frequency with tem-
perature and wave vector in the simple cubic ferromag-
net with nearest-neighbor interactions.

that shape appearing only far out in the wings.
Thus the theory predicts a diffusion process at
long wavelengths, in agreement with the discussion
in the Appendix. The value of the diffusion coef-
ficient is given by

D = lim q (u (q)[n'(q)/(u (q)J
'~

0

=0. 408 [1/SS(8+1)] ~ Va (S. 13)

where V is the interaction constant between nearest
neighbors and g the lattice spacing.

The spectral density predicted by (3.11) has been
compared with the neutron scattering data of
Windsor on RbMnF3 in an earlier work. The
agreement is generally good, but the inaccuracies

of the data, in particular, the asymmetry between
positive and negative frequencies after the detailed
balance factor has been corrected for, are com-
parable to the discrepancy between theory and ex-
periment, so that no firm conclusion about the ac-
curacy of the theory can be drawn from that com-
parison.

To apply (S.11), one must know ~ (q) and 0'(q).
The second moments can be evaluated analytical:-

ly, using (3.26) of I. The fourth moments were
evaluated by a Monte Carlo method, since they in-
volve six-dimensional integrals. This proved to
be quite satisfactory at high temperatures, but the
convergence was poor near the critical point, since
the integrands take values over a very large range.
We have therefore indicated with error bars the
numerical uncertainty in the result. The results
are expressed in terms of the spin-independent
quantity I v(0) I

* = [0'(q)/(u'(q)-', S(8+1)]'+. The
temperature is given in terms of the dimensionless
variable 8;= PV(0)-,'S(8+ 1). The results are dis-
played in Figs. 5 and 6.

As long as (S. 1) is a good approximation,
I v*(0) I can be interpreted as the effective relaxa-
tion frequency of the two-spin correlation func-
tion. It must be nearly constant over the zone if
the approximation (3.1) is to be successful. From
Fig. 5, we see that this condition fails badly in the
ferromagnet as the temperature is lowered from

ln the antiferromagnet (Fig. 6) I v*(0)I is
nearly constant at 8 = 0. 8. [This does not imply
that the approximation is exact at 8 = 0. 8, since
the vertex function need not satisfy (S.1) even if

I v*(0) I is a constant. ]
In order to obtain better values for the spectral

density, and to obtain an estimate of the discrep-
ancy between the spectral density calculated using
the approximation (3.1) and the value that would
result from an exact numerical solution of (1.38),
we have used the result of the approximation (3.1)
as the first step in an iterative solution of (1.38),
which we write in the form (3.13):

r(q„q„z)=N ' ', '
0') [z —q(q„z) —y(qz, z)j '

ghqy+%2p 0

—[z —y(q„z) —y(q„z)] 'N ' 'K( [V(qz —q') —V(q')]I'(q„q, -q', z)

q ) V(q ) Jf (q q —q z))1(q +q —q q, z) ~ (3.13)

If we substitute the approximation (S. 1) and the
value of y(q, z) obtained from it, (3.3), into the
right-hand side of (S.13), we will obtain a second
approximation for I" and, indeed, we could pre-
sumably use (3.13}to obtain the exact solution by
lte ration.

If we consider only the first term on the right
of (S.12), we see immediately that the app". oxima-
tion (3. 1}must fail completely whenever z, q„and
q& all approach zero. However, even when q&+q~
=q =0, and z=0, the contributions to q(q, z) arising
from the region of phase space in which q& and q3
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are large dominate, for temperatures outside the
critical region, and the corrections to p(q, s)
arising from the second approximation are small,
We denote by p'(q, s) the expression e (q)/v(q, s),

where v(q, z) is given by the right-hand side of
(3. 6). Then the first iteration of (3. 13) yields
(3. 14):

q'(q, ~)= lS(S+1)& '& [l'(q-q') —l'(q')]'[s -q'(q', s) —q'(q-q', s)] ' p(q')p(q-q') (q)
'

+2[lS(S+1)]'& '&~ [&(q -q') —«q')][s-q'(q' s) -q'(q-q' ~)] '
r~

x [v(q") —v(q —q' —q")][v(q'+ q") —v(q —q' —q")]

&& [V(q") —V(q')]v(q'+q", z) '
v(q, s) 'p(q")p(q-q' —q")p(q) ' . (3.14)

We shall refer to the solution for p given by 3.14
as the first-iteration solution of the kinetic equa-
tions. It should be noted that this solution partially
includes the effect of the long relaxation time for
the long-wavelength vertices but, because this is
not done in a self-consistent fashion, the result is
still not applicable in the critical region.

In order to compare the predictions of our theo-

ry with experiment, we have made calculations of
the spectral density based upon (3. 14) for a range
of wave vectors and temperatures. To evaluate
the multiple integrals appearing in (3. 14) we have

used a Monte Carlo procedure, as in. the evaluation
of the moments, with the same sample of points in
phase space being used for all values of the fre-
quency. The rms error introduced by the method
was made less than 3% of the value of the spectral
density at zero frequency by choosing a sufficiently
large sample size. The uncertainty at finite fre-
quencies was considerably less, being on the order
of 1% for frequencies corresponding to half inten-

sity. The calculations at finite temperatures could
not be made directly from (3. 14) as expressions
for 0'(q) at temperatures for which the linear ex-
pansion (3. 16) becomes dubious are not available.
We chose, therefore, to replace the q-dependent
quantity v(q, s) appearing in the integrals by its
value at a particular valise of q, for each tempera-
ture. Of course, at 6)=0. 8, this would not be an
additional approximation. We note that if we had

not made this additional approximation. , the sharp
cutoff feature of the first approximate solution
would disappear upon iteration, but that this feature
is retained in the present approximation. We did
not attempt to fit the parameter v(q, 0), but chose
its value so that for each wave vector, the cutoff
remained invariant in going from the first to the
second approximation. Thus, if we are evaluating
the spectral density for q = (&, &, 4), the value of

v(q, 0) used in calculating the integrals was taken
to be the constant appropriate to that value of q.
We shall refer to the solution (3. 14) with this ad-

The detailed balance factor has been incorporated
into the data, so that the readings in counts per
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FIG. 6. Variation of effective relaxation frequency
with temperature and wave vector in the simple cubic
antiferromagnet with nearest-neighbor interaction.

ditional approximation as the improved first ap-
P~oximation. From the prior discussion, the im-
proved first approximation agrees with the first
approximation at q= (2, 2, ~) and T = ~.

A comparison. of the calculations based upon the
improved first approximation with the experimental
data obtained by neutron scattering from BbMnF3
is shown in Figs. 7(a)-7(i). The experimentally
measured cross section is actually proportional to

S(q, ro)-=(lj2m) f ((S'(q, t)S'(-q, 0)))e' 'dt,

which is related to )t"(q, ~) by

~-'X"(q, (u) = (1-e ') (I(uP)-'S(q, ~).
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minute are proportional to X "(q, &u)/~. The abso-
lute intensities are normalized to the experimental
value of the static susceptibility rather than the
spherical-model values, so that the comparison is
a test only of the line shape. Since there is sig-

nificant instrumental resolution in the frequency
variable, the theoretical curves shown are the re-
sult of convoluting the improved-first-approxima-
tion line shapes with the experimentally known in-
strumental resolution function. The value of 8
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FIG. 8. Comparison of theoretical spectral densities based upon constant-relaxation-time approximation and its im-

provements for infinite temperatures.

No conclusion can be drawn about whether this
would be true of the other points in the zone, where
the temperature corrections in the data are more
significant than the differences between the two ap-
proximations.

The shape of the spectral function at long wave. ™
lengths will be a Lorentzian, for either the first
approximation or the improved first approxima-
tion, with only slight differences between the two
appearing in the wings of the line, where they would

be unobservable by neutron scattering. Further-
more the linewidth will be proportional to q in
either case, and hence may be characterized by a
diffusion constant. Hence it suffices to compare
the theoretical and experimental values for the dif-
fusion coefficient in order to obtain a comparison
of the spectral densities. The diffusion coefficient
calculated from (3. 14) is given by (S. 15), where
D*=D/[ ',S(S+1)]i:—

2g4 / 1/2-p[ ( )]
p(q) fl (q)
p (0) 2(u (q') i

x (,), &,(0+ (-„)- p(q') p(q' —q")p(Q")/p(0) ~ (S. 15)

In calculating D*, we would again need to know the
fourth moments at finite temperatures. We have,
therefore, made the same approximation as in
calculating the spectral densities of Fig. 7, and
replaced [0 (q)/uP(q )]'+ by its value at q =0 in the
integrals, which can be taken from Fig. 6. In ad-
dition, the expressions for the second and fourth

moments have been evaluated to first order in 8,
making possible the calculation of the linear term
in the diffusion coefficient as a function of 8, either
from (3. 15) for from (S.12). The moments in
terms of the reduced quantities &u (q)* and Q~(q)*
are given by (S. 16) (the positive sign corresponds
to the antiferromagnet):
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l.5
PPROXIMATION

l.0-
X"(q,~)-

~X (q, o)

Q5-

FIG. 9. Comparison of
theoretical spectral densi-
ties based upon constant-
relaxation-time approxima-
tion and its improvements
with the results of the in-
dependent mode approxima-
tion.

0.2 Q 4 Q.6 0.8 I.O l.2 I.6 I.8 2.0

~'(q)8 =2[V'(o) —V'(q)][1-«(q)/~ V(0) ~+o(e')],

fi'(q), = tl'(q),*,[l —8 V(q)/ I V(0) I + 0(e')]+ 8 ( fs V(0)'[ V'(0) —V'(q) ]

—V(0) $8 [sin(-,'q„a) + sin( —,'q, a) + sin( —,'q, a)')

(3. 16a)

—V(0) ~& [sin( —,'q„a) sin( —,'q,, a) +sin(-,'q„a) sin(2q, a) +sin( —,'q, a) sin(-,'q, a) ]] . (3.16b)

In Fig. 3.1 we have compared the experimental val-
ues of the diffusion coefficient, obtained by Tuc-
ciarone, Hastings, and Corliss, ' with the theoreti
cal results obtained from the improved first ap-
proximation [Eq. (3. 15) with the substitution just
mentioned] and the full first-iteration solution [Eq.
(3. 15) using (3. 16)]. In both cases, we find that the
theoretical results are consistently smaller, and
that the discrepancies are larger (20-30%) than the
corresponding discrepancies in the zero-frequency
spectral density at short wavelengths. This is un-
derstandable, in that the constant-relaxation-time
approximation is expected to be worse for long
wavelengths. The improvement in the agreement
with experiment in going from the first approxima-
tion to the full first-iteration solution suggests that
further iterations would improve the agreement.

Collins' recently has calculated the linear term
in the fourth moment exactly by a series expansion
method. His results are, of course, spin depen-
dent For S= —'„. we obtain the result from (3. 16),
for the ratio 0 (0)g/0 (0)z o of 1+4.12 pV(0), in the
antiferromagnet. We obtain for the ratio Q(ko)e/

0 (ko)f 0 the value of 1 —2. 92PV(0), while Windsor
obtains 1 —3.49P V(0).

IV. COMPARISON WITH OTHER THEORETICAL WORK

Previous theoretical calculations of the spectral
density fall into three categories. They have been
either numerical computer calculations'6 or phe-
nomenological calculations, or have been based
upon a particular decoupling approximation for the
two-spin time-dependent correlation function, i.e. ,

(s (qt, t)s'(qa, t), s (A, o)s'(q„o))
= 6(q~+ q4)5(q~+ qs) p '(s (q~, t), s'(- q, o))

x(S (q, t), S'(-q, o)) . (4. 1)

The semiempirical work attempts to character-
ize the spectral density in terms of the second and
fourth moments, which requires some sort of ad
hoc assumption about the line shape itself or the
function p(q, +). De Gennes, ' who did the earliest
calculation of this kind assumed that the line shape
could be approximated by a cutoff Lorentzian, in
order to calculate the diffusion coefficient. Mori



SPIN FLUC TUA TIONS IN HEISENBERG PARAMAGNETS. II. ~ ~ 3343

I I I I I I I I I I I I I I I I I

q(q, s)=- 3
'

s
z t' D(q, (u)

7 8 -(d (4. 2)

~~

3200 -~',
Y; i&4 i,~ I]4 T 35T

~ 2400
E

1600
C3

BLUME 8 HUBBARD

800-
REITER

0'~)

F 0 ' F 0 '0 I I I I I I I I I I I I I t I t ~ ~

0 2 4 6 8 I0 I2 14 I6 I8

ENERGY TRANSFER co(meV)

and Kawasaki, in calculating the diffusion coef-
ficient, assumed that the function p(q, z) was pro-
portional to e ""' ' . Martin and Bennett defined
a "diffusivity function" D(q, &u) which is related to
p(q, z) by means of (8. 2),

PIG. 10, Comparison of theoretical spectral densities
calculated from full first-iteration solution with neutron
scattering results (dotted line) and results of calculations
of Blume and Hubbard using the independent-mode approxi-
mation (dashed line), Both theoretical curves have been
folded with the instrumental resolution function. The cal-
culations are based upon the infinite-temperatures results.

2 2
and assumed that it was proportional to 8 ""' "
again in order to calculate the diffusion coefficient.

The diffusion coefficient calculated in this way,
either from Mori and Kawasaki or Bennett and

Martin is
1/8 -2( )3/2

D=llm 3 2 4()g/2q-0
(4. 3)

which differs by a numerical factor from the re-
sult of our first approximation (3. 12). The value
of D calculated from (4. 3) using Windsor's values
for the moments is shown in Fig. 11, and gives the
best fit to the data in the high-temperature region
of the alternatives we have considered, This meth-
od has been shown by Tahir-Kheli and McFadden
to yield results that are in fair agreement with nu-
merical calculations in one, two, and three dimen-
sions. This approach does not yield much insight
into the dynamics, however, and is incapable of
treating the critical region, where the moments
have no direct connection with the characteristic
relaxation time (in three dimensions).

The approximation (4. 1), or a closely related
approximation, appears in the work of Bennett and
Martin, Kawasaki, Resibois and DeLeneer, Weg-
ner, and Blume and Hubbard, although the motiva-
tion and the extent to which the calculations have
been carried differ. Since q(q, z) is given in
terms of Z(q, z) by means of this approximation,
one can calculate Z(q, z) self-consistently (see
I). Blume and Hubbard have calculated Z in this
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1.4 g l.6

FIG. 11. Diffusion
constant as a function
of temperature. Wind-
sor's results are ob-
tained using the expres-
sion for the diffusion
coefficient in terms of
moments given by Eq.
(4.2), Hubbard's re-
sults by reversing the
sign of the coefficient
of 8 in his calculation
for the ferromagnet.
The temperature depen-
dence of the moments
in the first-iteration
solution is obtained from
Eq. (3 ~ 16). The ex-
perimental results are
due to Tucciarone,
Hastings, and Corliss.
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approximation at infinite temperature, and Hub-
bard has calculated Z for the ferromagnet at all
temperatures. We have shown in Fig. 11 the val-
ue for the diffusion coefficient in the antiferromag-
net obtained from Hubbard's calculation by revers-
ing the sign of the coefficient of 8.

The most significant difference between spectral
densities based upon (4. 1) and the present theory, at
infinite temperatures, shows up at short wavelengths.
In Fig. 9 we have compared our results with Blume
and Hubbard's calculation for q= Eo(—,', ~, —,'). The
Blume and Hubbard results show a sharp shoulder,
indicating that the mode is just overdamped,
whereas our calculations show considerably more
damping, with no evidence of a shoulder. We be-
lieve the discrepancy is due to the omission of the
scattering processes between the modes appearing
in the self-energy y, which is implicit in the ap-
proximation (4. 1), and which leads to additional
damping of the Ko mode. An immediate conse-
quence of this omission is that the fourth moment
calculated from the self-consistent equation based
upon (4; 1) will be smaller than the correct value,
yielding a value for the ratio ( uF) /(( &u') —(~ ) )
of 1 rather than —,'. If the incorrect fourth moment
is used in the approximate expression (3. 11), we

see from Fig. 4 that the spectral density shows an
increased lifetime for the excitation, similar to
the results of Blume and Hubbard.

A further difficulty of the approximation is that
it does not predict the correct shape of the scaling
function at the critical point in the antiferromagnet,
where the experimental results" show a distinct
three-peaked structure. Our equations have not

yet been solved at the critical point, but the argu-
ment of Sec. I would indicate that the scattering
processes, which were lumped into a phenomeno-
logical relaxation time in Eq. (1.11), will be re-
sponsible for that structure, and are an essential
part of the dynamics.

There is also no possibility of incorporating the
conservation laws into the dynamics within an ap-
proximation such as (4. 1) or the extension that can
be obtained by keeping higher-order terms in the
renormalized expansion for cp(q, z), so that a treat-
ment of energy transport is, in principle, inac-
cessible to such approximations.

CONCLUSION

It is evident that the kinetic equations provide a
basis for detailed, semiquantitative calculations of
a wide range of dynamical properties of the Heisen-
berg paramagnet. The discrepancies that exist be-
tween the theoretical calculations and the numerical
and experimental results for the spectral density
are comparable to the uncertainties introduced by
using analytic approximations to the exact solution
of the equations, and hence a detailed analysis of

the limits of accuracy of the equations can be made
only after obtaining accurate numerical solutions.

In any case, it is clear that the constant-relaxa-
tion-time approximation provides a useful de-
scription of the dynamics, insofar as it is reflected
in the spectral density, at high temperatures. The
kinetic equations have fundamental limitations near
the critical point, as the decay processes made
possible by including the effect of higher-order
cumulant terms cannot be readily taken into account.
It does give a description of the dynamical spherical
model near the critical point, however, and as such
remains interesting even if the deviations from the
behavior of the Heisenberg model proves to be
large. The implications of the equations near the
critical point will be discussed in a subsequent
paper.

ACKNOWLEDGMENTS

I would like to thank Aldo Tucciarone, Julius
Hastings, and Lester Corliss for making their re-
sults for the diffusion coefficient available to me
prior to publication.

APPENDIX: HYDRODYNAMK LIMIT

We expect that the function y(q, z) can be ex-
panded, for small e and q, as

cp(q, &v i+a)= —iDq +ntdq +O(q )+O(&u q ) (Al)

and we should like in this appendix to reduce the
assumptions needed to give (A1) to a minimum.
(Al) implies that the behavior of the long-wavelength
modes is diffusive. To be precise, given any real
quantity p, for all &u & pDq, if (Al) holds, then we
find a value of q sufficiently small so that

Z(q, ++i&)=iX(q, 0) .D z [1+O(q )].
(d + zDq

(A2)

(I P) xL„=L„— (A3a)

Thus, for a range of frequencies up to any arbitrary
multiple of the decay frequency Dq, the decay of
fluctuations of wave vector q can be described by a
diffusion equation, plus a correction that can be
made arbitrarily small by allowing q to become
small.

A formal expression for D, and a justification of
the form (A1) can be obtained by a consideration of
the spectrum of the operator 2' = (I —P)Z(I P). -
We observe, first of all, that 8' is a Hermitian
operator on V, since both 8 and I' are. Thus the
spectrum of 8' is real. If X is in the spectrum of
', then so is —X. If I., is the operator correspond-
ing to the eigenvalue A. , then I & corresponds to the
eigenvalue —X. To see this, observe that

2'II, ,) = (1/0) (I —P) x[(I—P) xL„,Z]= XII.,)

implies that
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(1/5) [L), , K] = yL~ —Q n, S'(q), (ASb)

where n, is a complex number, equal to (S'(q) IXI

x L,)/" (q, 0). Equation (A3a) implies that (S'(q) l L~)
=0. From the definition of the'inner product, it is
easy to see that (" I 8)*= (A I B ), so that (S*(p)IL&)
= 0 for every q. Therefore

(I —P)xI ~-- I)„. (A4)

Taking the adjoint of (ASb) we obtain

(1/@) [L",&]= —~"-&&,S'(- q). (A5)

Upon multiplying from the left with I —P, and using
(A4), we obtain the result

2'IL,') = —ZlL„'). (A6)

This symmetry of the spectrum has important con-
sequences. The resolvent operator [z —2'] ' can
be written, using the spectral decomposition of the
operator ',

[z ~'] '= f dziL'&(L„i[z-'] ', (A~)
e(Z )

where o(Z') denotes the spectrum of 2'. The inte-
gration is actually a sum as long as the number of
sites N is finite. Thus on the real axis

y(q, (@+i')=(P, .)dA I(ZS'(q) IL„)I'[(u —X]
'

isf-, 5(~~ —X) l(ZS'(q) IL), ) I )/X(q, 0),
(A8)

since l(ZS*(q) IL&) I is a symmetric function of X.
This follows from (A6) and the invariance of 2' to
translations and inversions. The diffusion coeffi-
cient is then defined by the relation (A9),

D=lim Z sf dX5(A) l(Z8'(q) IL&) I /y(q, 0),
q~P e{g')

(A9)

and is clearly a positive quantity. We have left the
integral in (A9) in order to emphasize that ILo) is
in general degenerate, and one must sum over
these degenerate states.

Equation (A9) indicates that the expression (Al)
holds when M = 0. To obtain (Al) in the general
case, we observe that y(q, z) satisfies the condi-
tions (a)-(c) for all z such that Imz &0:

(a) y(q, z) analytic,

(b) p(q, &u+io)= —p(q, —&o+io)*,

(c) Imp(q, z) &0.

iy(q, z) is therefore a positive real function, and
hence, according to Youla's theorem as extended
by Beltrami and Wohleri, the boundary value of
p(q, z) on the real axis satisfies

'LQ(q, &d+fE)=Z&d f dM(q, T)d'7

—f(l+ &u') P ' d~
«00

+s(l+~ )DM(q, &u) (A10)

M(q, ~d) is a bounded, odd, nondecreasing function
of &o and hence DM(q, v) is a non-negative measure,
symmetric in ~. The principal-value integral must
be understood in terms of the convolution of dis-
tributions and, indeed, the right-hand side of (A10)
is in general a distribution. For all ur, the rota-
tional invariance of the Hamiltonian assures that
DM(q, r") vanishes as q-0. We will assume that
lim, .oDM(q, ~)/q exists, and is a continuous func-
tion of &o near co = 0. Equation (Al) then follows
from (All) if we observe that the principal-value
integral is proportional to ao for small co. This
assumption is almost certainly satisfied for tem-
peratures away from the transition temperature.
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We survey the principal types of methods of series analysis which have been used in the study of critical
phenomena with a view to determining their accuracy and applicability to the treatment of the critical-point
singularities. These methods include the ratio method and its variants, such as the Neville-table method; the
Pade-approximant procedures; and the procedures based on the generalized-Polya theorems of Thompson et
al, We show that the actual procedures of Thompson et al. are mathematically equivalent to certain of the
Pade-approximant procedures. We give a general error analysis for the series-analysis procedures and derive

a relation between the expected magnitude of the errors in the parameters of A(1 —yx) ~, namely,

5y:5y:hA as 1:J:J ln J, where J is the order of the last term of the series analyzed. This relation is briefly

illustrated by numerical data. We further give procedures for establishing estimates of the magnitude of
errors in the parameters that have the same type of validity as those commonly used to determine the

accuracy of a truncated Taylor series. We discuss the commonly occurring but anomalous case of "defects"
(errant close pole and zero) in Fade-approximant procedures. We show them to be related to Pade's block
structure of the approximant table and emphasize the artificial nature of the apparently rapid convergence
that they cause. By numerical investigation of many test functions, similar in structure to those believed to
appear in problems of critical phenomena, we have illustrated the following conclusions. First, for series
where there is only a simple algebraic singularity, closer to the origin and well separated from any other

singularity, the ratio method, perhaps with Neville-table improvement, is the most effective procedure.

Second, for series where there are interfering singularities close to the one considered, or where there
are singularities either closer than or nearly at the same distance from the origin as the one considered, the
Pade procedures are best. Finally, for not exactly representable singularity structures of the type just
decscribed, the convergence of even the Pade-approximant procedures are significantly slowed. None of the
general methods described does a very impressive job in computing the y value if the function is in fact of
the form A (I —yx) "in~i —yx~.

I. INTRODUCTION AND SUMMARY

Many important results in the theory of critical
phenomena have been obtained by deducing the
asymptotic behavior of functions from their series
expansions. Relatively few rigorous results are
available for the many models that have been in-
troduced to describe systems in the region of a,

phase transition. In the absence of many exact
results, considerable effort has been directed to-
ward calculating series expansions, often of con-
siderabl. e length, for the model partition functions,
and thence the thermal and magnetic (or a counter-
part) functions. Various methods have been used
to extract estimates of the critical points and crit-
ical. exponents from the series. Many of the re-
sults that have been obtained in this way are sum-
marized in two review articl. es' and in a recent
book. Qther developments that have heightened
interest in the field have been the derivation of the
rigorous exponent inequalities, the predictions of

scaling theory, ' and, more recently, the attempts
to deduce equations of state that reflect al.l the
critical. properties. 5

However, while many expansions have proved
amenabl. e to accurate estimation of the critical.
parameters using the current analysis techniques,
others subjected to the same analysis have yielded
results which are too uncertain to reach definite
conclusions regarding, for exampl. e, the validity
of scaling theory for a particular model. . In many
cases, the series expansions are not long enough
to make accurate predictions; in other cases, the
series would appear to be long enough, but the
structure of the function seems to be too compli-
cated for current methods to treat accurately.
This is especially true of the low-temperature
series for the three-dimensionalIsing model. , where
there are known to be other singularities in the
functions closer to the origin than the one corre-
sponding to the physical. transition. On the other
hand, there has not been any rigorouswayto assess


