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Using a Monte Carlo procedure with a self-consistent-field boundary condition, the magnetiza-
tion of a simple cubic classical Heisenberg ferromagnet with nearest-neighbor interactions
only is calculated. For reduced temperatures and reduced fieMs in the range 0. 02 & [ T/T, -1 (,
II//4~&0. 5 the data of this computer experiment can be described in terms of the "effective"
critical exponents 0.31& P & 0. 35, l. 33 & p ~&1. 39, and 4. 9& 4 ~&5.3. Although the present data
are not very close to the critical point they do obey the homogeneity requirement and determine
the scaling function rather precisely. This function agrees very well with the scaling function
for the face-centered-cubic classical Heisenberg magnet derived recently by Milosevic and
Stanley using high-temperature-series-expansion techniques. This agreement supports their
hypothesis that neither critical exponents nor the scaling function depend on the lattice struc-
ture in the Heisenberg model.

I. INTRODUCTION

Considerable effort has been devoted to derive
the critical properties of three-dimensional Heisen-
berg ferromagnets. ' ~ Most of this research uses
high-temperature- series- expansion techniques, "
which yield direct information about the exponents

y, v, Q, and z. Making use of the scaling assump-
tions" one can then draw more conclusions also about
the exponents P and 5. A more direct result con-
cerning P has been derived by Stephenson and Wood's

in the case of an fcc classical Heisenberg lattice.
,Inverting the series for the free energy in a mag-
netic field'~ these authors find P=0. 38+0.03. The
series for other lattices and other values of spin
turned out to be too irregular to yield very precise
results.

More recently, other estimates for the critical
exponents have been given using the Wilson g = 4- d

expansion technique~4'35 and also using approximate
renormalization-group recursion relations. ~~ Apart
from the values of critical exponents, temperatures,
and amplitudes, one is also interested in the homo-
geneous function determining the scaling equation
of state. An important question is whether this
function is independent of "irrelevant" features of
the system (e. g. , lattice structure or value of
spin) as conjectured by the hypothesis of universal-
ity. ' So far, this function has been calculated
for the fcc lattice only in both the S = 2 and S = ~
cases by Milosevic and Stanley. ' For the bcc lat-
tice the scaling function has been given only in the
S= —,

' case, and no scaling functions have been
available for the simple cubic (sc) lattice. This
scaling function has also been calculated using the
renormalization-group techniques. ' Another in-
teresting question concerns the regime of validity
of this asymptotic description in terms of critical
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properties and the magnitude of the corrections to
the scaling behavior. 4'

Bearing in mind all these problems it seems
worthwhile applying techniques which could yield
additional information about the thermodynamics of
Heisenberg magnets near their critical point. Rough
estimates of exponents and other critical properties
have been obtained by generalizing the Monte Carlo
sampling technique of Metropolis et al. to the
classical Heisenberg magnet. ' However, the
critical behavior is somewhat obscured by the pro-
nounced finite size-rounding phenomenon, ' which
itself demands careful attention using this meth-
od, ' ' and is a serious hindrance in making state-
ments about infinite systems. Quite recently, it
has been shown that the use of a self-consistent-
field boundary condition reduces the finite size ef-
fects to a very great extent. This method is also
used in the present paper to derive the critical ex-
ponents and amplitudes of the sc classical Heisen-
berg magnet as well as the scaling function.

In Sec. II we give a short outline of the method (for
a more detailed justification see Ref. 48, where
some computational remarks are also given) and
in Sec. III we discuss the numerical values of the
critical exponents and the low-temperature sus-
ceptibility. In Sec. IV we analyze the scaling be-
havior and compare it with the Milosevid-Stanley
function. Section V contains our conclusions and
also a few remarks about the corrections to scaling.

II. "SELF-CONSISTENT" MONTE CARLO METHOD

In the conventional Monte Carlo method
one considers a finite system, usually with peri-
odic boundary conditions. With the help of random
numbers one generates a Markov chain of points in
the configurational space of the system. For the
transition from state i to state j one uses a transi-
tion probability P,&

satisfying a detailed balance
condition

~~&~& = ~gPg~ y
(1

with the canonical distribution U, c(- e ~~ ~ ~, where

E, is the energy of the system in state i. In the
limit where the number of configurations M tends
to infinity, it can be shown that the canonical ex-
pectation value (A) of an observable A, is given by
an average over the Markov chain,

ill

(A)-—ZA, .
M)g

This average is a "time average" of the stochastic
model whose dynamics are governed by Eq. (1). It
is equal to the phase average since the method is
ergodic by construction. The general hope is
that one can already estimate (A) with reasonable
accuracy from Markov chains with rather short
length M. This method can be applied to the class-

&~~X/Xo ~ (4)

where ~ denotes the susceptibility of a system of N
noninteracting spins. The hope that not too large n

might be sufficient is not justified for N- ~ and
f = I T/Tc —1 (-0 since X ~t "-~.

The second difficulty is that finite systems can-
not exhibit singularities ' and, therefore, the crit-
ical anomalies are smeared out. ' Furthermore,
we have (m, ) = 0 for the Heisenberg model in zero
magnetic field amd m, , =(m )'~o has to be taken as
an estimate for the spontaneous magnetization. 43'44

It is easy to see that m, ,-N '~' even for I/T-O,
while near Tc, m, ,-N ' in three-dimensional
systems. ' In the general case one has strong
rounding effects if the linear dimension of the sys-
tem N'~ " equals the correlation length g(f)

Since (0=1,"we have rounding for

The difficulty (m, ) —= 0 may be removed by applying
a suitable effective field h acting on the spins at
the surface of the system as a boundary condition
instead of the periodicity condition, ' This field
defines the +z direction and its magnitude is chosen
by a consistency condition

s surface ~g buick s

where we define (N,„,& +Nb sa=N)

1
(m, ),„„„.= z s;),

surface 5 on surf.

1
(~g)bulk Z s,'

Nbulk $ in bulk

This condition, Eq. (6), is a generalization of the
consistency condition of Bethe's improvement of
the mean-field approximation. Since neither (m, )
nor h is known at the beginning of the calculation,
h has to be determined self-consistently by an
iterative process for each of the parameter values
J/kT and H/J. This method does not yield the

ical Heisenberg magnet, but one has to deal with
two difficulties when making predictions about the
critical behavior. The first difficulty is that one
observes near T~ a "critical slowing down of con-
vergence" which can be understood if the model is
interpreted dynamically ' in analogy to the stochastic
Ising model. It has been shown" that near T~ the
error in the magnetization m,

N-=-(..)- —zs;),
increases like the susceptibility. Therefore in
order to obtain a good accuracy the number of
Monte Carlo steps per spin, n =I/N, must get very
large,
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usual rounding but a well-defined critical point
which agrees very well with the value of T~ pre-
dicted by the series expansion. In a sense this
method is a systematic generalization of mean-
field theory, and general arguments can be given 8

that very near T~ the wrong mean-field behavior
must occur again. Therefore, one might assume
at first sight that the range of temperatures where
the method is unreliable is again given by Eq. (5),
and nothing has been gained in comparison with the
periodic boundary condition. In fact, this criteri-
on, Eq. (5), is somewhat too pessimistic, as can
be seen considering N 1, i.e. , proceeding to the
limiting case of the Bethe and mean-field approxi-
mations. These are known to give reasonably ac-
curate results for' ~t}&I/8 where Z is the coor-
dination number of the lattice, while the above
criterion, Eq. (5), would require [t[&l. One

might conjecture that the present method is accu-
rate as long as one has

&(«) '&'",
This estimate seems to be supported by numerical
studies varying N in the range 64 &N «4096.

From Eqs. (4), (5), and (8) we recognize the ad-
vantage of this "self-consistent" Monte Carlo
(SMC) method compared to the periodic Monte
Carlo (PMC) method. On the average, about six
iterations are used to adjust the effective field.
To approximate the infinite system in both cases
to the same extent, the size of the system is Np«
= 8 "~ N. Thus we get, for the total number of con-
flgul atlons ~

MsMe=6Nn ~ MpMC=Z ~ ¹ (8)

The gain factor in computing time is thus roughly

z Z "~ . This is a large number for three-dimen-
sional systems. " ~

In the present investigation we used N= 512,

0.6

n & 10, and various temperatures and magnetic
fields. The calculation was performed on the IBM
3VO/155 computer of the IBM Zurich Research
Laboratory. In Table I we give the data for the
magnetization and compare the error estimates
derived from the statistical analysis of the data
with the theoretical estimate based on the study of
the dynamical correlations of the model. ' Both the
order of magnitude and the trend as functions of
H/J and ( T- Tc[/Tc of the experimental and theo-
retical error estimates are in reasonable agree-
ment. In spite of the large n there are considerable
errors near T~, demonstrating the "critical slow-
ing down" mentioned above. It is this fact which
prevents us from choosing a larger N and trying to
get nearer to T~.

III. CRITICAL EXPONENTS OF CLASSICAL HEISENBERG
MODEL

In Fig. 1 we plot the magnetization versus the
temperature for various fields. From these re-
sults one immediately gets the magnetic phase
boundary and the magnetic isotherm, which are
given on a log-log plot in Fig. 2. Replotting the
magnetization versus the field one can find the sus-
ceptibilities by graphical differentiation. ' The
initialslope ofthe m vs-H/J cur-ves the'n determines
the zero-field susceptibility. While this procedure
is straightforward for T/To it is very questionable
below T~. From spin-wave theories 3 one expects
that not only will the transverse susceptibility di-
verge below T~ but also the longitudinal suscepti-
bility, since the expected behavior of the magnetiza-
tion in a field is

m(f, H/J) = m, (f)+ ~n, (f)(H//J)" +, f &0 (loa)

with"

mo(t) = 1 —1.518(kT/12 J)- 1.0(k T/12 J) —~ ~ ~ .
(10b)

Plotting m vs (H/J)'~, one does not see this be-
havior, but this may be due to the fact that the
magnetic fields chosen are not small enough. It is
important to note that the asymptotic decay laws
of the correlation functions in zero and nonzero
field are different; the decay is exponential for
HIO but according to a power P for H= 0. Fol-
lowing Halperin and Hohenberg~s we may define
correlation lengths $~, $ by

0.2 (SESAME ) ~ e-R /4H/ft ag0 (11a)

(S;S„') m'(t)((/H)~, R-, H= 0. (lib)

0
2.0 2.5 5.0

keT keTc

J J (series expansions)

FIG. 1. Magnetization m (saturation value nz = 1) plot-
ted vs temperature, for various magnetic fields H/ J.

Note that )s(H=O) «$; in fact we have $„(H 0)
at any T& Tc. In order to have consistency both
with scaling and with the square-root singularity
of y according to Eq. (10a), the following relation
is conjectured~ (g„»$):
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]' =[t "(H/Z)-'] g' (11c)

Our data belong to the region t '(H//J) ' 1, how-
ever, and (0 (. This would explain the absence
of any indication of a divergent susceptibility. It
is not useful to consider fields H/J which are con-
siderably smaller than the ones used, since as
(~»N' ~ the susceptibility is rounded off to mean-
field-like behavior. According to Eq. (11)our
"extrapolated" susceptibility X is then a measure

and in this restricted sense it can be useful
to plot it in Fi.g. 2. However, we cannot make
really conclusive statements about the divergence
of g below Tc at H=O. ~

In Fig. 2 we found it convenient to normalize
X= ~m/&H above To with Xo= ~ J/ksT and below To
with the asymptotic result of the mean-field theory,

1 k~T J 1 k~T
x r T 0

9 J k T 144 J . (12)
8 C MF

From Fig. 2 we now estimate "effective" critical
exponents and amplitudes,

m-1. 03 (- t)'" m-0 61(H/J)'t ' (13)

X/Xo 0 9'ft '
X/XMr 0 90( t) '

~ (14)

The high-temperature value J/k~Tc = 0. 3458 was
used in Eqs. (13) and (14) and in Fig. 2. This de-
scription has been taken for temperatures It) and
fields H/Pin the range 0. 0'2 & l t l, H/J & 0. 2, but
even for larger l t l and Hj/Z the deviations from
this behavior (dashed curves in Fig. 2) are not
significant. The question now arises whether these
data have been derived close enough to the critical
point to be interpreted in terms of critical expo-
nents. In experiments one takes, rather arbitrarily
in most cases, ltl&0. 01 (or, in very few cases,
ltl &0. 1) to define the "critical region. " The rea-
son for this choice is that for larger rt ) rather
large deviations from the critical behavior are ob-
served. In some cases the mean-field exponents
apply in this region. This behavior may be due to
the existence of "irrelevant" parameters. 6' ~
Such parameters are not included in our model
Hamiltonian, and therefore a region with significant
deviations from the critical behavior due to such
parameters ' is absent in our case. Another argu-
ment is that for ltl& 1/z, mean-field theory breaks
down"' and therefore in this region critical be-
havior should be observed. A similar limit is
given by l t l

& I Te T~~ l /T~~, whic-h is nearly 0. 3
in our case. Note that this quantity will be nearly
one order of magnitude smaller in most experi-
mental situations. According to this latter argu-
ment essentially all of our data should show the
critical behavior, since ksTo"/7=4. 0. A simple
physical condition for the critical behavior is $(t)
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»1, which is true for at least part of our data.
The second question is to what extent the results

summarized in Fig. 2 and Eels. (13) and (14) are
invalidated by the finite size of our system. This
question has been studied by varying the system
size N, and only a very small effect attributable
to the finite size of the system was found. For
example, for N= 4096 instead of N= 512 the mag-
netization was consistently slightly smaller, the ef-
fect being roughly equivalent to a small shift of the

critical temperature of the finite system to higher
temperatures compared to the value of T~ of the
infinite system. The largest shift being compatible
with the data of Ref. 48 and the present data is
about 5T/To=0. 5/0, which would decrease 5 to
about 5. 1 and increase P to about 0. 33. Note that
we are rather limited in such "fitting Tc" proce-
dures since in the high-temperature region X agrees
with the high-temperature formula of Ritchie and
Fisher (K= 2J/ks T),

~T
i'~ 1+0. 6236SK- 0.3765VK +0. 18076K +0 130. 52K

T 1+0.61183K-0.27988K +0, 21222K + 0. 12206K

y «1.39, 4. 9 «O «5.3.
Within the given accuracy, the scaling law' '

y= P(5 —1) is fully satisfied. We compare our re-

numerically very closely on the absolute tempera-
ture scale (see Fig. 2). Any substantial shift of Tc
to higher T tends to destroy this good agreement,
decreases y, and increases y '.

In view of all these uncertainties we take as a
final estimate for the exponents

0. 31 ~ P ~ 0. 35, 1.33 & y,
(16)

suit [Eg. (16)] with various other estimates in
Table II. In most cases, the series expansions ap-
ply to the fcc lattice only, since the sc-lattice
series behave less regularly, The entry "series/
numerical" denotes the method of Stephenson and
Cood" inverting the series for the free energy in a
magnetic field'6 to derive numerical values for the
magnetization for T & To. Their estimate for P is
the only direct series estimate for this exponent in
the case of the classical Heisenberg magnet; it ex-
hibits the most pronounced deviation from our re-
sult. These Pade approximations for the magnetiza-

H

J
0.02 0.03 0.05 0.1 0.2 0,3 0.5 4.0

l00

50

k T
J

ksT

20 20
kaT

XJ

0.01 0.02 0.03 0.05 0.1 0.2 0.3 0.5
Tc

'l ——
T

FIG, 2. Log-log plot of the magnetization and the susceptibility, displaying the various exponents. The left-hand
part of the figure refers to T& T& and the right-hand part to T & T& fwe used the T& of the series expansions (Ref. 22)].
The magnetic phase boundary (curve marked by m: P = 0.31) is compared to the spin-wave prediction (dashed-dotted
curve), both plotted vs 1-T/Tz. This part of the figure also contains the "extrapolated" susceptibility [curve marked by
144 (J/k~T) p: p~ 1.36]. In the right-hand part of the figure the magnetic isotherm is plotted vs II/4 fcurve marked by
m(H/P: 6 ~ 5.3]. This part of the figure also contains the susceptibility, which is plotted vs 1 —Tz/T fcurve marked by
3(k&T/J) g: p~ 1.36], and which is compared to the high-temperature series prediction by Fisher and Bitchie (Ref. 22).
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tion must be evaluated numerically for T & T~ and

plotted logarithmically versus T~ —T as we do with
our data, since their analytic exponent is —,'."'
Thus both methods suffer basically from similar
objections and we do not have a conclusive explana-
tion for this discrepancy. The estimates according
to Wilson's g expansion" are taken from the for-
mulas64 (e = 4 —d, classical Heisenberg model)

y = 1 + 66 6 + ~$4 'E + 0('E )885 2

2 2155 3 ] 4ag=~ & +SSV&28 & +o~

which give, combined with the scaling laws,
the relations

0

8

8
~W

S
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O

O . . O
&I

~ ~ ~ ~ ~

CD

Cg

O N
O

O O

O
LQ LQ

CO Cg

Cg
O

00
Cg

O

LQ

O

LQ

O

~ O
+I
O

O
+I

O
O

0 ~O O

35 2 t3
p 6 Me+2662 ~ +

g= 2 -dy/(y+2P), (19)

since then rl turns out to be slightly negative (rl
= —0.015) contrary to the direct estimates. 66'64

This difficulty is similar to the Ising model where

P=&~ and 5=5, which lead to g=0, contrary to
the direct estimates q= 0. 04, ' or 0. 05. This
difficulty would not exist if we took instead of Eq.
(13) the corresponding exact inerluality'6 q~ 2
—dy/(y+ 2p) = —0. 015. From series expansions only
one direct estimate of 5 is available for the case of
S= —,

' and the fcc lattice. ' The method meets some
difficulties; however, it proves conclusively 5
~ 5. 6. The final estimate of Baker et a/. is 0
= 5. 0+ 0. 2, which agrees reasonably with our re-
sult [Erl. (16)]. The most recent scaling estimates
are Q = 4. 9 y 0.4 and Q = 4. 8 y 0. 3.

Concluding this section about the critical expo-
nents we see from Table II that the uncertainty in
their values is larger than for the Ising model. We
do not claim that the accuracy of the present cal-
culation exceeds previous treatments, but it has
been stressedv' that it is very important to have
several methods to estimate the exponents to avoid
systematic errors as far as possible.

IV. SCALING BEHAVIOR OF MAGNETIZATION

In our treatment so far we have only used the
results for H/J=0 or l tl =0, respectively. It is
also interesting to use the results for both H/J and

I t I 4 0, to see whether they can be described in
terms of a homogeneous function. For this pur-
pose we plot in Fig. 3 the reduced magnetization

y = m(H/J) '~6 vs the reduced temperature, raised
to the power p, x= I tl 6(H/J) ~~6. ~6 If the homo-

5 = 3 + e + 646 & + 0('E ) ~

These exponents of our calculation agree quite
reasonably with all the other estimates. Our rather
high value of 5, however, introduces a slight dif-
ficulty with the scaling law involving the dimen-
sionality
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y = rn/(H/J)
c/

0.8—

0.6—

0.4—

0.2—

0
0

p = 0.53

8 = 5.3

x = i4-T
I

0.2 0.4 0.6 &.0

0.50
0.50

+ 0.20
0.10
0.05
0.05
0.02

l.2

FIG. 3. Scaling function y =f(x)
for the sc classical Heisenberg
ferromagnet using the exponents
P and & of the Monte Carlo cal-
culation. The dash-dotted curves
represent the asymptotic behavior

,
for x» 1. The dashed curve is

' the sealing function of Milosevic
and Stanley (Ref. 23) normalized
to the same amplitudes of the
critical isotherm and suscepti-
bility g.

geneity assumption is correct even for tempera-
tures and fields not very close to 7.'&, all the data
points should now fit a single curve y

-=f(x). Fig-
ure 3 shows that this is indeed correct. The small
scatter of points still present is fully accounted for
by the statistical errors quoted in Table I. ' For
small x «I, we have f(x)= m(H//) ' =-0. 61 as ex
pected from Eq. (13), while for large x» 1 the
asymptotic expressions are f(x) =1.03x on the fer-
romagnetic branch [Eg. (13)]and f(x) = Xo
x 0. 9%x + ~' on the paramagnetic branch [Eg. (14)].
From Fig. 3 we see that these asymptotic descrip-
tions actually hold down to x=1. From this fact
it is also clear that the scaling function is unaf-
fected by the uncertainty in the low-temperature
susceptibility, since the coefficients bq, bz of the
higher-order terms in the asymptotic expansion

y= f(x)=1.03x+ box Oi +bmx '+, x»l
(20)

must be very small. The term with exponent 1 ——,'5
leads to a contribution to the magnetization propor-
tional to H 3, while the next term is proportional
to II. According to spin-wave theory both con-
tributions should be present.

Using series expansions for the fcc lattice
Milosevic and Stanley derived, with the help of
the scaling hypothesis, the result for the scaling
function (S=~),

l.2
g (e) = r m(t, "/q)

W.o

~ = r (q-2e')

0.8

0.6

0.4

0.2

and x = t/m + by the expressions

@=K,(x m +1), m(x m +1)=0.6 K. (22)

Adjusting the amplitudes at x=1 and x»1 (para-

3 —22. 169x + 23. V la + 9. 512@3
(21)

1 —V. 823z + 10.745z'+ 1.69Vz3

where K, = J/b ~T, = 0. 15'73 and s is related to m

0 0.2 0.4 0.6 0.8 1.0
FIG. 4, Plot of the function g(8) vs 8 in the Schofield

(Ref. V8) paramagnetic representation of the equation of
state. The exponents and critical amplitudes are taken
from Eqs. (13) and (14).
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magnetic branch) this function is included in Fig. 3
(dashed curve), showing striking agreement with
our result! The small deviations which are still
present should not be taken seriously since Milo-
sevic and Stanley consider the possibility that the
error of their function could be as large as 10/&,

and the uncertainties in our method also amount to
several percent. Figure 3 demonstrates the im-
portant result that the scaling functions of the
classical Heisenberg model are lattice independent
at least to the quoted accuracy. This property has
been conjectured from the universality argu-
ments. ~' ' Furthermore, Fig. 3 is not very
sensitive to the choice of the critical exponents in
the range given in Eq. (16) as long as Tc is shifted
appropriately.

As a second way of showing the scaling proper-
ties of our result we use the Schofield parametric
representation78 in Fig. 4. In this representation
the scaling function is nearly linear, but in our
case the deviations from linearity are somewhat
larger than in the experiment on CrBr3. Note,
however, that the exponents of CrBr3 are y
= 1.215a 0. 015, P = 0. 368 s 0. 005, which are neither
the Heisenberg nor the Ising values. If we choose
in the Schofield transformation [H/J and f are
transformed to the new variables x, 8, f = x(1
—5 e )] the constant

instead of b = 2 as in Ref. 78 and Fig. 4, as sug-
gested for the linear model, the linearity of the
curve is only slightly improved.

V. CONCLUSiONS

From Figs. 3 and 4 it is evident that any devia-
tions from scaling are numerically negligible if
we choose the critical exponents and Tc as sug-
gested by our results [Fig. 2 and Eq. (16)]. The
corrections to the scaling equation of state for
larger I tl and H/J are small and masked by the
statistical errors. If we use our data together
with the estimates of the series expansion, e. g. ,
y=1. 3V, P=O. 36, 5=4. 8, and J/ksTc=0. 3458, then
we get considerable deviations from scaling, how-
ever, as shown in Fig. 5, which is the analog of
Fig. 3 with other exponents but the same T&. In
this case, considerable correction terms would
evidently be necessary, since now the various
magnetic fields yield definitely different curves,
even if we treat T~ as an adjustable parameter. It
is the uncertainty concerning the precise values of
the critical exponents which prevents us from
making further statements on this question of cor-
rection terms. 3

Summarizing our discussion we can say we have
calculated the critical properties of the sc classi-
cal Heisenberg ferromagnet with an accuracy com-
parable to the series-expansion methodl-22 and the
E-expansion method. As far as previous treat-
ments are available, we get a reasonable agree-
ment. The scaling function can be calculated rather
unambiguously, and it agrees with the fcc scaling
function of Milosevic and Stanley. This fact sup-
ports one aspect of the universality hypothesis,
namely, that the scaling functions should be lattice

y
= m/

g Q — J(

0.8

0.6

0.4

H/J

0.50
0.50
0.20
Q. II 0
0.05
0.03
0.02

FIG. 5. Scaling plot y =f(x) as in
Fig. 3, but with the exponents P and
& of the series expansions.

0.2

Q
0 0.2 0.4 0.6 0.8 'I.O '1.2
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independent. Deriving these results we did not
need to make any a priori scaling assumptions as
in some of the other methods. + The main ad-
vantage of our method is the fact that other param-
eters could be included in the Hamiltonian without
great difficulty, so that further applications seem
rather straightforward.
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The temperature and pressure dependence of the hyperfine magnetic field in ferrous fluoride
is determined by diagonalizing the appropriate crystal-field Hamiltonian self-consistently with
the expectation value of the operator S,. The results of this calculation are in good agreement
with experimental data for P =0. Attention is also given to the temperature and pressure de-
pendence of the nuc1ear quadrupole splitting associated with 7F62'.

INTRODUCTION

The effective magnetic field at the nucleus of
the ix on ion in Fera has been determined experi-

mentally, being found to decrease monotonically
from a zero-temperature value of —329 kQe, vrith
the antiferromagnetic transition temperature
(Neel temperature) determined to be approximately


