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Ferromagnetoelastic Resonance in Thin Films. II. Application to Nickel
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In Paper I we presented a formal treatment of ferromagnetoelastic resonance (FMER) in thin films. In the

present paper, this method is applied to the calculation of resonance lines of nickel at room temperature
and at 25.92 GHz, a K-band frequency. It is shown that the FMER conditions are the following: (i) The
film thickness nearly equals an odd-integral number of half-wavelengths of the elastic wave at the
ferromagnetic-resonance frequency under the spin-unpinned and traction-free boundary conditions, or under

the spin-pinned and traction-free boundary conditions; (ii) the film thickness nearly equals an even-integral

number of half-wavelengths of the elastic wave under the spin-pinned and deformation-free boundary
conditions. The thickness range over which the linewidth enhancement occurs is about 3% of the FMER
thickness. The effect of the elastic damping on the linewidth enhancement is discussed. The angular

dependence of the linewidth is examined in detail, along with the resonance-frequency shift and line shape.
Finally, the relationship of the FMER problem to that of phonon generation is discussed briefly.

I. INTRODUCTION

In a previous paper (hereafter referred to as
I), a formal treatment of the solution of the coupled
magnetoelastic equations of motion for oblique-
ly magnetized thin films has been presented. Two
methods of solution have been discussed. The
first is exact within the framework of the quasi-
static approximation (ferromagnetic insulator). It
shows that magnetoelasticity has an appreciable ef-
fect on the resonance linewidth only in the special
situation in which an elastic wave undergoes a
thickness resonance at or near the ferromagnetic-
resonance (FMR) frequency. This is also the con-
dition for maximum phonon generation. We call
this special case the ferromagnetoelastic resonance
(FMER). The second method makes use of a self-
consistent approximation based on the observation
that strong coupling exists only between the reso-
nant spin wave and the thickness-resonant elastic
wave. The approximate method reduces the re-
quired computer time by a factor of 10 with a loss
of less than 1% in the accuracy of the calculation
of the power absorbed.

The approximate method, therefore, is conve-
nient for calculating the magnetic and elastic re-
sponses of the coupled system over a wide range
of magnetic and elastic material parameters and
boundary conditions. Some calculations of the
phonon generation under resonant and nonresonant
conditions have already been reported. 3 The
present paper treats the magnetic response of
nickel at room temperature and at K-band fre-
quency (but ignoring conductivity), with emphasis
on the resonance line shape and linewidth near the
FMEB condition. As the results of the calculation
are developed, they are described in terms of a
model of a coupled pair of resonant circuits. Un-
der many physically reasonable conditions, these

circuits may be overcoupled.
While the influence of the frequency, field, and

film thickness upon FMB has been considered for
situations when the spin-wave and acoustical
branches of the dispersion relation are near cross-
over, 4' the possibility of the acoustical-wave reso-
nance seems not to have been examined until re-
cently. s It is the purpose of this paper, therefore,
to demonstrate that FMER should be observable
in films and plates of magnetostrictive materials,
and to anticipate the magnitude of the effect on the
resonance line and the conditions under which it
should be observed.

As the conditions for optimum generation of
phonons by FMR are the same as the conditions
for FMER, 3'~ the physical intuitive model pre-
sented here gives insight into this effect as well.
Our calculations of phonon generation appear to
explain some of the apparent discrepancy between
the wavelengths of the corresponding magnons and
phonons in nickel and permalloy films by show-
ing that the unpinned, uniform-precession mode
should be more efficient in generating phonons than
the pinned mode. They have also shown that in
maximizing the phonon power transmitted to a sub-
strate, the acoustical-resonance condition is domi-
nant. Thus, the substrate acoustical impedance
should be severely mismatched rather than matched
to the impedance of the ferromagnetic film. The
existence of FMEB modes, rather than magneto-
static modes, may account for oscillations with the
field of the insertion loss in yttrium-iron garnet
(YIG).'3 The possibility of FMER effects on the
main resonance line suggests that the analysis of
line shape in a properly designed experiment could
yield the magnetoacoustic parameters (particular-
ly the elastic damping), without the need for a di. -
rect measurement of the phonon intensity.

Vfe begin here with the definition of the FMER
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TABLE I. Physical constants.

P

8.9 2, 461x 10
g/cm3 erg/cm3

1,220 x 10
erg/cm'

B)

7.63 x 10z

erg/cm3

B2

8.54x 10'
erg/cm3

Mp A. p/2x

485 0.8 x 10 6 —3.074 x 106

6 erg/cm Hz/Oe
3.75 x 10z

Hz

8432
Oe

X/2' cop/ (p )

2A/Mp = D=3 ~ 3 x 10 9 Oe cm ~ &/, ~p = „=-2.515»0-2.

frequency and thickness. A section on the calcu-
lation of FMER absorption lines, using the physi-
cal constants of Table I, follows. %e discuss the
effect of elastic damping, the thickness dependence
of linewidth, the angular dependence of linewidth,
and the resonance-frequency shift and line shape.
Finally, we consider the physical significance of
these results.

II. FMER FREQUENCY AND THICKNESS

A magnetoelastic system can be viewed as two

coupled resonant systems, which can be driven
magnetically or elastically. Let us suppose that
these systems are uncoupled and undamped, and

driven independently by some external drive source
with variable frequency (d and consider their re-
sponses. In I, in treating the approximate method
we showed that the resonant part of the magnetic
system is represented by a uniform«precession
mode (p,) and a spin wave (g,'). The dispersion
curve corresponding to p, &

lies along the ~ axis
(k=0). The dispersion relation corresponding to
L[L,

' is given by

Dk'2+ Ho+ 2"Mo sin28

—[(2vMosin'8)'+((g/y)']'~'=0 . (1)

and c= coo for the transverse (T) elastic wave.
For traction-free (TF) boundary conditions, the
elastic response has thickness resonances when

k equals nn/L with 'n an odd integer, since the
film surfaces serve as antinodes. ' For deforma-
tion-free (DF) boundary conditions, the elastic
system resonates when k equals nv/L with n an
even integer, since the surfaces act as nodes.
Combining the two cases, we can write the reso-
nance frequency of the elastic system as

(o'„= (c/p)" '(nv/L) .
~, the nth resonance of the phonon system, is
shown in Fig. 1.

If we take damping into account, each resonance
has a finite linewidth. If we also "turn on" the
magnetoelastic coupling, the two systems are no
longer independent. Suppose the magnetic system
is driven by an external rf field with variable .
Then, for a given ~ (see Fig. 1), the magnetic
response has 4„and k~ components together with
the k =0 component driven directly by the external
rf field. The elastic response also has P~ and &

components. The amplitude (and phase) of each

For the spin-unpinned (SU) boundary condition, the
magnetic response is described solely by p.&, which
has a resonance at

u)'
4

Elast

&o =
~ rl [Ho(ffo+4&Mosin e)1 (2)

ck —p~ =0,2 2 (4)

where c = cq, for the longitudinal (L) elastic wave

For the spin-pinned (SP) boundary condition, it is
well known that the magnetic response has thick-
ness resonances'o when k, given by Eq. (1), equals
nv/L, where s is any odd integer and L is the film
thickness. If we solve Eq. (1) for ~ with k=sv/L,
we obtain the resonant frequency of the magnetic
system:

~~=
( y( f [ffo+D(nv/L)']

x [Ho+ 4oMo sinoe+ D(so/L)o]] . (3)

Equation (3) includes Eq. (2) if we allow n= 0 for
the SU case. ~„ is shown in Fig. 1.

The dispersion relation of the elastic system is
given by

P
m~2

M
ill

~M

~ra ~
0

u)'
1

2m 3m 4m
L L

5m
L

FIG. 1. Thickness resonance frequencies of the mag-
nons and phonons for a given thickness I are labeled (d„
and uP„, respectively, n corresponding to a mode number.
%'ave numbers for the magnons and phonons for an arbi-
trary frequency co are labeled k~ and k&, respectively.
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component is determined by boundary conditions.
Since the resonant frequency of the elastic sys-

tem (and of the magnetic system for the SP case)
is a function of the thickness L, (d~ can be tuned to

by varying L. When ~ and ~ coincide, the
situation is what is called the magnetoelastic reso-
nance. In the present analysis we consider only
the magnetoelastic resonances in which the main
resonance modes of the magnetic system (n= 0 for
the SU case and n = 1 for the SP case) are involved.
This we have called the ferromagnetoelastic reso-
nance.

We now look for the frequency (~s) and thick-
ness (L„) at which the FMER occurs. For the SU-
TF case, the resonant frequency of the (uncoupled)
magnetic system is o and is independent of L.
Hence, ~~ = ~0. L„must then be the thickness
which tunes ~~ (n odd) to ~o. Thus, I,„=nw/k~(~o)
(n odd). The wave configurations for n= 1 and n
= 3 are schematically illustrated in Figs. 2(a) and
2(b). For the SP-TF case, both ~P and ~„(n odd)
depend on I. (see Fig. 1). The wave configurations
for n= 1 and n= 3 are shown in Figs. 2(c) and 2(d).
Clearly, the phonon wave number is z times the
magnon wave number. Thus» is the frequency
at which k~=nk (n odd) is satisfied, and Ls
=o/k (&s), where k is found from Eq. (1). Note
that for z = 1, ~ = ~„, the crossover frequency,
and I.s=o/k„. For the SP-DF case, ~P and ~~

(n even) are also L dependent. The wave config-
urations for g = 2 and g = 4 are depicted in Figs.
2(e) and 2(f). It is apparent that ~„ is the fre-
quency at which k~ = nk (n even) is satisfied, and
that L~= m/k (~z). In the SU-DF case, only the
uniform precession is excited, and there is no
FMER.

If the elastic system is viewed from the mag-
netic system, it corresponds to an extra loss. Un-
der the FMER conditions, therefore, the reso-
nance absorption line (of the magnetic system) is
expected to broaden. The amount of broadening
depends on three factors: the ratio of the elastic-
resonance linewidth to the magnetic-resonance
linewidth, which is determined by the ratio of the
elastic damping to the magnetic damping, the rela-
tive position of the elastic-resonance frequency and
the magnetic-resonance frequency, which is deter-
mined by the thickness, and the intensity of the
elastic response, which is determined by the mag-
netoelastic coupling.

In Sec. III we present numerical calculations of
the FMER absorption line and investigate its de-
pendence on the parameters mentioned above.

III. FMER ABSORPTION LINES

A. Effect of Elastic Damping

As mentioned in Sec. 'II, the line broadening de-
pends upon the ratio of the elastic damping to the

magnetic damping. Let us define the quality fac-
tors of the magnetic and elastic systems, respec-
tively, as

e.=~o~.= I/I nl,

Uniform Precession
SU-TF

Spin Wa Spin Wave

Elastic Wave
-d

(a)

Elastic Wave

Spin Wave SP-TF Spin Wave

Elastic Wave
(~)

Spin Wave SP-DF

Elastic Wave

Spin Wave

Elastic Wave

(e)

Elastic Wave

FIG. 2. Wave configurations under FMER conditions.

Qp
——&or@ ——c'/2c

where 7 is the phenomenological relaxation time
of the 4 = 0 magnon~5 and 7~ is that of phonons, and
where the magnetic-damping constant q = X/yMo,
where A is the Landau-Lifshitz (LL) damping pa-
rameter, and c' and c" are the real (c~, or c44)
and imaginary (c,& or c44) parts of the elastic con-
stant.

For a given magnetoelastic coupling strength, if
Q~ «Q, then the line broadening may be very
small, since the elastic-resonance line is much
broader than the magnetic-resonance line so that
the elastic response does not change appreciably
as ~ is swept over the magnetic-resonance line-
width. On the other hand, if Q~ » Q, the effect
is expected to be very large. The absorption peak
may even split into two distinct peaks since the
elastic response exhibits a narrow sharp reso-
nance as ~ is swept over the broader linewidth of
the magnetic response. In the intermediate case,
when Q~ is comparable with Q, the line broadening
may or may not be appreciable, depending upon the
other parameters.

Let us examine some typical absorption lines in
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ment on ~07'~ implies that the value of ~ox~ is criti-
cal to a quantitative estimate of the linewidth en-
hancement. We will, however, use ~07'~ = 37.7
for both L and T elastic waves in the present cal-
culations. The sharp thickness resonance shown
in Fig. 4 will be discussed below. A similar de-
pendence of the linewidth enhancement on the
elastic damping is also seen in the T-thickness-
resonance case and in the SP-TF and SP-DF
cases.

B. Thickness Dependence of Linewidth

1.2

'l. 0

0.8

8200 8300 8400 8500 8600 8700
IIIllYI (Oe)

FIG. 3. Power-absorption lines for the SU-TF case
with +07& as a parameter. The LE wave is in thickness
resonance.

the SU-TF case with (dg ~ taken as a parameter.
Figure 3 shows the absorption lines for ~p~ = 10,
37.7, and 75, which roughly correspond to the
above three cases. The value of ~os, correspond-
ing to the value of the LL constant given in Table
I, is 39.8. The thickness (1013 A) satisfies the
FMER condition (~~~= ~0) for the L elastic wave.
45' is the angle at which the L magnetoelastic cou-
pling is strongest. The absorption line of the un-
coupled system, which in this case is that of the
uniform-precession mode, is also plotted for com-
parison.

Figure 3 shows that the absorption line for ~os~
= 10 does not differ very much from that of the un-
coupled case. For the case of ~ox~ =75, it exhib-
its a double peak as mentioned above. The off-
resonance absorption is greatly enhanced, as is
usually the case with a resonant system coupled to
another system with a higher Q. As a result, the
linewidth is broadened appreciably. There is also
line broadening for ~07' = 37.7.

It should be noted that the phonon relaxation time
is not known for the frequencies of interest.
Weber4 and Seaveym estimated ~g~ = 37. 7 for
permalloy at 60 GHz. Figure 4 shows how the
resonance linewidth near the FMER condition
changes as ~07~ is changed around 37.7. In the
figure, 250 Qe corresponds to the linewidth for
the uncoupled case (uniform-precession mode in
the SU-TF case), which constitutes the background.
The strong dependence of the linewidth enhance-

Let us now consider what will happen to the line-
width when the thickness is varied around the
FMER thickness (La). This has been shown, for
the SU-TF case with the L elastic wave in thick-
ness resonance (n= 1), in Fig. 4. We see from the
figure that the linewidth abruptly increases from
the background, for t. within a narrow range about
J„=1013A. If we define the FMER-thickness line-
width b,J ~ as the thickness range over which the
frequency-linewidth enhancement occurs, then we
find from Fig. 4 that n.L„ is about 30 A or n LJ
J~=0.03. Qn the other hand, we find that the
ratio of the linewidth to the resonance frequency
h~„/~„of the uncoupled case is also about 0.03.
This implies that the linewidth enhancement does
not occur until the elastic-resonance frequency is
tuned in approximately within the magnetic-reso-
nance linewidth of the uncoupled case. Thus, we

400
SU-TF
8 =&5

550—

~40.0~~ 37.7~35.0

325—
"

(Oe)

300—
orp 20'0

250—

225 I I I I I I I I I I I I I I I I I I I I

950 OOOO )050 I IOO

Thickness (A)

FIG. 4. Thickness dependence of E~/ iy I for the SU-
TI" case with vox& as a parameter. The LE wave is in
thicknes s resonance.
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FIG. 5. Differential ab-
sorption lines for the SU-TF
case with the TE wave in re-
sonance. L=-713 A. corre-
sponds to the FMEH thickness
for this case.
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arrive at the following approximate formula for
the FMER thickness linewidth:

~La/Lz = ~~./~. (7)

For the case of T thickness resonance, some ab-
sorption lines exhibit double peaks for ~a~ = 37. '7.

This is shown in Fig. 5, in which the derivatives
of three absorption lines (dP/d~) are plotted. This
is due to the fact that the T magnetoelastic coupling
is stronger than the I. coupling for most angles.
Equation (7), however, is still valid if the line-

width is defined as the frequency differences be-
tween the two largest extrema of dP/did. Accord-
ing to this definition, h~/I yl = 640 Oe for L = 713
A (which corresponds to La for this ease), and

&~d/lyl =240 Oe for L=VOO and 726 A.
FMER also occurs for n&3. We call this higher-

order FMER. However, the linewidth enhance-
ment decreases rapidly as g increases. We ex-
pect the intensity of the elastic response to fall off
roughly as 1/na by analogy with the intensity fall-
off of the spin-wave modes. Hence, the linewidth

260—

FIG. 6. Thickness de-
pendence of A~/(y I for
the SU-TF case with the
LE wave in resonance (n
= 3).

250

I I I I

3050
0

Thickness (A)
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FIG. 7. Thickness dependence of 6(d/)y ) for the SU-YF
case with the TE wave in resonance (n=3).

enhancement is also expected to fall off as 1/g~.
Examples of higher-order FMER are shown in
Figs. 6 and V for the SU-TF case with yg= 3. The
wave configuration for this case corresponds to
that of Fig. 2(b). Figure 6 shows the case with
the L elastic wave in thickness resonance. The

pp5 I I I I l l I I l + l l I l l I l I l I

900 950 IOOG l050
Thickness (A)

Thickness dependence of Aced/ Iy I for the Sp-gr
case with the LE wave in resonance (n= 1).

linewidth enhancement is 10 Oe, which is in agree-
ment with the expected l/Sa falloff. Figure '?

shows the case with the T elastic wave in thickness
resonance. The falloff in this case is also about
l/S~ as expected (see the discussion in connection
with Fig. 5). Note that b, Is is about three times
that of the main (n= l) FMEB as expected from
Eg. (?).

Let us briefly discuss the situation for other

I.O
I I I I I I I I I I I I I

FIG. 9. Differential
absorption lines for the
SP-TF case with the TE
wave in resonance. I.
= 654 A corresponds to the
FMER thickness for this
case

I I I I I I

8600 SSOO 9000
I I

9400
I
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~/IVI (e)

I. I l

9800
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FIG. 10. Thickness dependence of 6u/ Iy I for the SP-DF
case with the LE wave in resonance (n =1).

boundary conditions. Figure 8 shows the thick-
ness dependence of the linewidth for the SP-TF
case with the L elastic wave in thickness resonance
(n = 1). The linewidth enhancement is slightly
larger than that for the SU-TF case shown in Fig.
4. This is expected because the FMER occurs at
the magnetoelastic crossover. Some absorption
lines for the case of T thickness resonance under
the SP-TF condition show double peaks similar to
those under the SU-TF condition. Examples are
shown in Fig. 9. ha&/l yl = V30 Oe for L = 654 A

(=Ls) and n, &/lyl =260 Oe for L=642 and 666A.
According to the 1/n~ law discussed above, the

linewidth enhancement for the SP-DF case is ex-
pected to be approximately 1/23 smaller than for
the TF case, since L~ for the DF case contains a
full wavelength of the plastic wave [see Fig. 2(e)].
Thickness dependences of the linewidth for the
cases with the L elastic wave and the T elastic
wave in thickness resonance are shown in Figs.
10 and 11. Comparison between Figs. 8 and 10
confirms the above estimate, although this estimate
is somewhat crude because the elastic boundary
conditions are not the same for the two cases.

C, Angular Dependence of Linewidth

The angular dependence of the linewidth is al-
most solely characterized by the magnetoelastic
coupling functions f~ (8) and fr(8) which are defined,
respectively, in Eqs. (42) and (5V) of I. These
functions are plotted against 9 in Fig. 12. As seen
from the figure, f~(8) is largest at about 8=45'
and vanishes at 8=0 and 90', and fr(8) is largest
at 8 = 0 and has a minimum at about 55 .

In Fig. 13 we show the angular dependence of the
linewidth for the SU-TF case at three thicknesses
for which three kinds of FMER occur. Curve L,
is for the case of the first-order (n= 1) FMER for
the L elastic wave. Note the similarity between
the curves of Lq and of f~(8). The small departure
from the exact proportionality is due to the angular
dependence of the background (uniform-precession)
linewidth, which is also plotted in Fig. 13. Curve
Tj is for the case of the first-order FMER for the

I.O

0.8

I
i

I I I I
I

I I I I

400—

350—

AM—(Oe)
l~l

300—

III I
I

I III }
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CUO T = 57.7-

8» Io

FIG. 11. Thick-
ness dependence
of 4~/ iy I for
the SP-DF case
with the TE
wave in reso-
nance (n=1).

0.6
(3
O
ill

~~ 0.4
0)

0.2

0
0

e (deg)
60 90

I 500 I 350 l400, I450
Thickness (A)
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I500 FIG. 12. Angular variations of the magnetoelastic
coupling functions.
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D. Resonance Frequency and Line Shape

th bsence of magnetoelastic coupling, the
resonance frequency is obtained from Eq. ( ):

,/Iyl =9[)I. D(-/L)']
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ot is mainlycross, while curves Lz and T& do not, is m
'

due to the fac at th t Bs is some 25% larger than
h B and B are the L and T magneto-

elastic constants, respectively. Curve 3 is
~& =3& FMER for the Tthe case of the third-order ~n=

elastic wave. Note that the approximately I/O
falloff is present for all angles. The similari y
between the curves Ts and fr, ,&9& could be more
easily seen i cu'f curve T were drawn on a larger

casesscale. Linewi s'dth for the SP-TF and SP-DF c
show similar angular dependence.
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FIG 13. Angular dependence of b, / I I for the SU-TF~ ~

case at three thicknesses for which threee kinds of FMER
occur.
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&&[He+4mMesin 8+D(ns'/L) ]] ~

the SPwhere n= 0 for the SU case and n= 1 for the S
te that P =1+g' has been introduced incase. No e a

n sh ft due(8) to take account of the frequency s i
to the LL damping.

In genera, e ml th magnetoelastic coupling also
However, if eHow, ' thh'ft th resonance frequency. How

nc ~ is tunedelastic thickness resonance frequency ~ is
L=I. ) the shift disappears.exactly on ~„ i.e. ,

If L is slightly increased from L~, is tune
1' htl lower than ~„so that it pulls down the ab-s ig y 0

t' line around ~~ and pushes the a p
'bsor tionsorp ion ine

Hence,eak sli htly up to the higher side of i&„.
At some valuethe resonance frequency shifts up.

hich turns out to be L~+ —24L» the frequen-ofL, wic r
cy sh'ft aches a maximum and comes
asymptotica y o „ll t as L is further increased. If
L is decreased from L~, the situation is, of
course, reversed and the frequency shifts sym-
metrically downward.

In Fig. 14 we have plotted ~, /l yl vs L for the
ith the L elastic wave in resonance.SU-TF case wi e

l for the SP-TFThe thickness dependence of ~„/}yi for e
case with the L elastic wave in resonance is

i . 15. Note that the resonance fre-
lf thicknessquency of the uncoupled system is itself ic ne
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small deviation of the asymptote from unity (per-
fect symmetry) is due to the slight asymmetry of
the uniform-precession resonance line at 8 = 45'.

Finally, it should be noted that the resonance-
frequency shift shows a much broader thickness
resonance compared with the resonance linewidth
and line asymmetry. In other words, the thick-
ness-dependence curve of the frequency shift (e.g. ,
Fig. 14) has longer tails than those of the line
asymmetry (Fig. 19) and of the linewidth (e.g. , in

Fig. 4, imagine the derivative of the linewidth with
respect to the thickness). This is responsible for
the resonance-frequency difference between the
exact and approximate calculations shown in Fig.
3 of I. For L=1000A, the T elastic wave, which
is far from thickness resonance and therefore very
weakly excited, contributes slightly to shifting up
the resonance frequency in the exact calculation.

FIG. 16. Resonance-frequency shift as a function of
thickness for the SP-TF case with the LE wave in reso-
nance. I l

I
J I I I

I
i s

dependent for the SP case. If the frequency shift
from ~„/ ~ y( of the uncoupled system is plotted, as
in Fig. 16, a curve similar to that of Fig. 14 is
obtained. If one knows, for a given thickness, the
resonance frequency shift 5(w„/ I yi ) at an angle 8
= 8', then 8(~„/ I yl ) at any angle 8 can be obtained
simply by

(9)

where f(8) is the magnetoelastic coupling function
plotted in Fig. 12.

If an absorption line has a double peak, as in the
case of the T thickness resonance under the SU-
TF or the SP-TF condition, the resonance fre-
quency is not uniquely determined. Examples of
such lines are shown in Figs. 5 and 9. If either
7~ or the magnetoelastic coupling is decreased, the
double peak gradually disappears and a unique
resonance frequency is obtained. It is interesting
to see how the double peak of the L = 713-A curve
shown in Fig. 5 disappears as 0 is increased.
This is illustrated in Fig. 1V.

Line shape is closely related to frequency shift.
Typical derivative line shapes are shown in Fig.
18. If L= LR, then the thickness resonance mere-
ly broadens the linewidth and does not change the
symmetry of the line. The symmetry is greatly
distorted as the FMER is tuned off. As a mea-
sure of asymmetry, plotted against L in Fig. 19
is the ratio of two extrema of the dP/de curves, of
which three curves have been sampled in Fig. 18.
We note that the thickness difference between the
two turning points again coincides with 4LR. A

7I5 A

I I 1 i i I i l & 1 I

8000 e500 9000"
(Oe)

FIG. 17. Line-shape change with 8 for the SU-TF case
with the TE wave in resonance.
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For L =800A, the L elastic wave in the exact
calculation contributes slightly to shifting down the
resonance frequency.

IV. CONCLUSIONS

Vfe have shown that magnetoelastic coupling,
combined with isotropic magnetic and elastic
damping, provides a mechanism for an appreciable
anisotropy in the FMB linewidth of metal films.
In I, we presented the exact and approximate
methods for calculating this line broadening. The
accuracy and range of validity of the approximate
method were verified. In this paper we have ap-
plied the approximate method to the calculation of
resonance lines of nickel (with zero conductivity)
for various cases of interest.

The results of our study may be summarized as
follows: (i) Magnetoelasticity has an appreciable
effect on the resonance linewidth in the cases
where an elastic wave undergoes a thickness reso-
nance at or near the FMR frequency. (This is
called the FMER. ) (ii) The FMER occurs when
the film thickness L equals an odd-integral number
(n) of half-wavelengths of the elastic wave at the
FMR frequency for the SU-TF and SP-TF cases,
when L equals an even-integral number (n) of half-
wavelengths of the elastic wave at the FMR fre-
quency for the SP-DF cases, whenthe SU-DF case
merely reduces to the uniform-precession problem
so that there i.s no magnetoelastic effect. (iii) The
effect decreases rapidly as n is increased.
(iv) The thickness range over which the effect is

I l I I I I I I
I

I P dP

dog AlIA

dm max

1.0—

0.9—

FIG. 19. Thickness dependence
of the ratio of the two extrema of
dI'/des curves for the SU-TF case
with the LE wave in resonance.
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significant (FMER thickness linewidth ELs) is ap-
proximately given by the formula

where Ls is the FMER thickness defined in (ii),
and ~„and 4~„are the resonance frequency and
linewidth of the magnetic system without magneto-
elastic coupling. (v) Under the FMER conditions
the linewidth enhancement depends strongly upon
the elastic damping and the angle 8 between Mo and
the film normal. (vi) If the elastic damping is
comparable to the magnetic damping, the linewidth
enhancement is as much as 50% at 8 =45' for the
case of L thickness resonance and more than 100%
at 8 = 0 for the case of T thickness resonance.
(vii) The angular dependence of the linewidth en-
hancement is almost solely determined by that of
the magnetoelastic coupling. For the L-thickness-
resonance case the linewidth enhancement is maxi-
mum at 8=45' and vanishes at 8=0 and 90', and
for the case of T thickness resonance it is maxi-
mum at 8 =0, decreases as 8 is increased, reaches
a minimum at 55, and increases slightly as 8 is
further increased to 90 . (viii) The resonance
frequency coincides with that of the uncoupled case
for L=L» shifts up as L is increased from L~,
reaches a maximum shift at L= L~+ —,'&L~, and

asymptotically approaches the resonance frequency
of the uncoupled case. If L is decreased from LR,
the resonance frequency shifts down symmetrical-
ly.

Previous workers in the field, not having con-
sidered the possibility that FMER might exist have
not deliberately attempted to establish conditions
in which it might be observed. Is there any evi-
dence that it has been observed'P Vittoria et al. '
have reported a peak in the angular dependence of
the FMR linewidth of single-crystal nickel platelets
which closely resembles the expected angular de-
pendence for the L elastic wave in thickness reso-
nance under SU-TF conditions. s However, more
recent experiments have indicated strongly that
while this peak is frequency dependent, it appears
at film thicknesses that do not correspond to thick-
ness resonance. Experiments to demonstrate the
existence of FMER in films of a suitable thickness
and with suitable acoustical boundary conditions
are in progress.

An important practical consideration in such an

experimental demonstration is the problem of film
smoothness. In a real film the thickness varies
from one place on the surface to another because
of surface roughness. In some cases this may be
only a few atomic layers, but is likely to be
greater with most evaporated, sputtered, or elec-
troplated films. The effect of the thickness varia-
tion is such that it broadens the effective thickness
linewidth 4L„of the linewidth-vs-thickness curves
of Fig. 4. In the real film, therefore, the effective
thickness range over which the linewidth enhance-
ment occurs may be considerably larger than the
calculated one. However, the thickness variation
also tends to smear out the linewidth-vs-thickness
curves. Consequently, if the thickness variation
is very large, the linewidth enhancement will be
washed out unless the elastic damping is very
small.

It therefore seems that the observability of the
FMER depends critically on the magnitude of the
elastic damping. As mentioned above, the elastic
damping of single-crystal nickel is not known for
frequencies higher than 200 MHz. ~ This is due
to technical difficulties which arise in the conven-
tional pulse-echo technique at high frequencies. ~~

However, if FMER is observable, it will provide
us with an excellent method for measuring the
elastic damping in the appropriate frequency range.

Finally, using our formalism we can solve many
other interesting problems as pointed out in I and
in the Introduction. For example, suppose a mag-
netic film is attached to a nonmagnetic medium.
In our formalism this corresponds to a finite-
stress (finite-acoustic-impedance) condition at one
surface, instead of the TF (zero-acoustic-impe-
dance) or DF (infinite-acoustic-impedance) con-
dition. We can easily calculate the effect of such
a substrate on ferromagnetic resonance. v ~2 It is
this case in which the nonmagnetic medium is, for
example, a quartz transducer which is most close-
ly related to the problem of phonon generation by
thin-film ferromagnetic resonance, which has
been treated elsewhere. a 3 The same formalism
we have described here and in I, and the physical
picture described here have permitted the calcu-
lation of phonon power transmitted into the sub-
strate under arbitrary spin pinning and acoustic-
impedance boundary conditions. This had not been
possible in previous work.
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Using a Monte Carlo procedure with a self-consistent-field boundary condition, the magnetiza-
tion of a simple cubic classical Heisenberg ferromagnet with nearest-neighbor interactions
only is calculated. For reduced temperatures and reduced fieMs in the range 0. 02 & [ T/T, -1 (,
II//4~&0. 5 the data of this computer experiment can be described in terms of the "effective"
critical exponents 0.31& P & 0. 35, l. 33 & p ~&1. 39, and 4. 9& 4 ~&5.3. Although the present data
are not very close to the critical point they do obey the homogeneity requirement and determine
the scaling function rather precisely. This function agrees very well with the scaling function
for the face-centered-cubic classical Heisenberg magnet derived recently by Milosevic and
Stanley using high-temperature-series-expansion techniques. This agreement supports their
hypothesis that neither critical exponents nor the scaling function depend on the lattice struc-
ture in the Heisenberg model.

I. INTRODUCTION

Considerable effort has been devoted to derive
the critical properties of three-dimensional Heisen-
berg ferromagnets. ' ~ Most of this research uses
high-temperature- series- expansion techniques, "
which yield direct information about the exponents

y, v, Q, and z. Making use of the scaling assump-
tions" one can then draw more conclusions also about
the exponents P and 5. A more direct result con-
cerning P has been derived by Stephenson and Wood's

in the case of an fcc classical Heisenberg lattice.
,Inverting the series for the free energy in a mag-
netic field'~ these authors find P=0. 38+0.03. The
series for other lattices and other values of spin
turned out to be too irregular to yield very precise
results.

More recently, other estimates for the critical
exponents have been given using the Wilson g = 4- d

expansion technique~4'35 and also using approximate
renormalization-group recursion relations. ~~ Apart
from the values of critical exponents, temperatures,
and amplitudes, one is also interested in the homo-
geneous function determining the scaling equation
of state. An important question is whether this
function is independent of "irrelevant" features of
the system (e. g. , lattice structure or value of
spin) as conjectured by the hypothesis of universal-
ity. ' So far, this function has been calculated
for the fcc lattice only in both the S = 2 and S = ~
cases by Milosevic and Stanley. ' For the bcc lat-
tice the scaling function has been given only in the
S= —,

' case, and no scaling functions have been
available for the simple cubic (sc) lattice. This
scaling function has also been calculated using the
renormalization-group techniques. ' Another in-
teresting question concerns the regime of validity
of this asymptotic description in terms of critical


