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We have undertaken a theoretical study of the effect of magnetoelastic interactions on ferromagnetic
resonance in thin films as a possible mechanism for an appreciable anisotropy in resonance linewidth. This
study is based on a formalism developed by Tiersten, which is exact within the framework of the
quasistatic approximation. The resonance frequency and linewidth are calculated from the simultaneous
solution of the coupled magnetoelastic equations of motion under various magnetic and elastic boundary
conditions. We find that the magnetoelasticity has an appreciable effect on the resonance linewidth only in
the cases where an elastic wave undergoes a thickness resonance near the ferromagnetic-resonance

frequency, which we call the "ferromagnetoelastic resonance condition. " The above facts have made it
possible to develop a self-consistent approximate method, which greatly simplifies the mathematical
treatment without sacrificing the physical model. The agreement between the approximate and exact cal-
culations is excellent.

I. INTRODUCTION

The phenomenological Landau-Lifshitz (LL)
equation of motion~ for the magnetization 1R, a con-
tinuum variable, has been widely used in the study
of ferromagnetic resonance (FMR) in thin-metal
films. 5 The LL equation of motion is applicable
to strong ferromagnets, in which the )MI can be
assumed constant, ~'~ and in which the damping is
isotropic. '

A similar phenomenological equation of motion
can be written for the elastic deformation in the
same sample. The two systems of equations can
be coupled through a. set of quite general magneto-
elastic and elastomagnetic coupling terms, as has
been shown by Tiersten. " Approximate solutions

have often been obtained by treating the solutions
of the uncoupled equations as perturbations upon
each other. More realistic solutions are obtained,
however, if the coupled sets of equations are
solved simultaneously. At a later stage in the de-
velopment, it becomes possible to treat two sets
of polarizations as perturbations upon each other.
This simplifies the computations, while retaining
the essential features of the coupled system.

In this paper we apply such a method to evaluat-
ing the effects of magnetoeiasticity on the observed
FMR line shape in ferromagnetic-insulator films,
using the magnetic parameters corresponding to
nickel. A more accurate representation of the
nickel-metal film could be obtained by adding an
anisotropy field to the LL equation, ' and by in-
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eluding the effects of conductivity through Max-
well's equations. ' The effects of these processes
have been evaluated separately in the absence of
magnetoelastic coupling. The influence of mag-
netocrystalline anisotropy upon the oblique-angle
resonance linewidth is small for nickel (a, few Oe
at room temperature at K band). ' The effect of
conductivity has been calculated for oblique-angle
resonance in thin-nickel films at K band and is on

the order of 10 Oe. ' In the absence of a resonance,
the coupling between the magnetic and electronic
structure of the metal is already accounted for
yhenomenologically in the LL damping parameter. '3

Effective internal-field linewidth anisotropy in

single-crystal disks and films has been reported
several times, ' ' and except for one case, ' the
results are adequately explained by the calculations
of power absorption based on the LL equation of
motion. The intent of the calculation presented in

this paper is to evaluate the influence that mag-
netoelastic properties of the material might be ex-
pected to have on the observed resonance line.

In Sec. II, we present a method of calculation,
based on the coupled equations of motion developed

by Tiersten, e ~~ and which are exact within the
framework of the quasistatic approximation. %'e

then demonstrate by the calculation of the power
absorbed that the conditions under which the mag-
netoelastic coupling has an appreciable effect on
the resonance linewidth are those for which the
elastic wave undergoes a thickness resonance at
or near the FMR frequency. We call this the
"ferromagnetoelastic-resonance" (FMER) condi-
tion. When these conditions are not met, the mag-
netoelastic contribution to the linewidth is very

n X~

2d= L

Xl

x Ji

M 0

small. However, the magnetoelastic interaction
produces a small shift in the resonance field far
from FMER.

In Sec. III, on the basis of the above results, we

develop an approximate method, which is much
simpler to use and yet gives nearly the same ac-
curacy as the exact method. The approximate
method is widely applicable to the generation of
longitudinal or transverse magnetoelastic waves
under arbitrary magnetic and elastic boundary
conditions.

The detailed results of the approximate calcula-
tion applied to nickel will be given in the following
paper. '7 The application to phonon generation is
reported elsewhere. '8' "

II. EXACT METHOD

A. Equations of Motion

Tierstene has derived the differential equations
and constitutive relations governing the macro-
scopic behavior of nonconducting magnetically
satura. ted media undergoing finite deformations.
He then specialized the resulting nonlinear equa-
tions to a linear approximation in the small-field
variables for the important case of a small dy-
namic field superposed on a large biasing field.
We have applied Tiersten's linearized equations to
the study of magnetoelastic effects on the oblique-
angle FMR in cubic-crystal thin films.

We consider an infinite plate with (100) surfaces
placed in a rectangular Cartesian coordinate sys-
tem x, , 8. =1, 2, 3, with &, along the crystallo-
graphic cube edges and with g~ = + d defining the
plate surfaces. The appropriate geometry is
shown in Fig. 1(a). The static magnetization Mo is
in an arbitrary direction with respect to the co-
ordinate axes. The internal static field H0 is de-
fined as the vector sum of the external biasing
field, demagnetizing field, and local field and lies
parallel to M0. An rf field is then applied at nor-
mal incidence (wave vector parallel to xs) upon both
surfaces at right angles to M0. Tiersten's equa-
tions, then yield the following: the equations of
motion for the rf magnetization gag, ,

(1/y) m, = e„„M,' [a,"+(2A/M, ')m, „+h', ]
—e„,m&,'; (1a)

the equations of motion for the rf elastic displace-
ment u~,

x

0 N
pii~ =v]~ )+M;h,; ],'

the equations of the quasistatic magnetic field,

(lb)

(b)

FIG. 1. (a) Infinite plate in coordinate system x& (i =1,
~, 3) with surface at &3=ad. (b) Polar-coordinate sys-
tem defining the direction of Mp.

h] ]+4m'I) ] —4aM, N; J] =0,N 0

e]y~h~ ~=0;

(lc)

(ld)

the linear magnetoelastic constitutive relations,



PERRQMAGNE TQEI.ASTIC RESONANCE IN THIN PII.MS. I. . . .

Il =g g „—(X/yM2)e($2(Mga2 +my&2) (le)

@~2 = h,"+(2&/M22)m, „+g„u,
1

TU = C~JNS2 I + 62ffm2 2 Z~gN (Q2, l + Ql 2) ' (lg)

In Eqs. (1), the symbols are defined as follows:
M, and H, are the x& components of the static
magnetization Mo and the internal static field Ho,
respectively. A,", A, ~, and h~ are the x& compo-
nents of the rf Maxwellian field, local field, and

effective internal field, respectively. The local
field is the sum of the magnetostrictive (elasto-
magnetic) field and the LL damping field. The
effective internal field is the sum of the Max-
wellian field, the exchange field, and the magneto-
strictive field. It is easy to add the anisotropy
field, e'1 if so desired, to both the local field and

the effective internal field. v'&& is a component of
the symmetric part of the stress tensor, which
consists of the ordinary strain term, magnetoelas-
tic term, and elastic-damping term. In magneto-
elastic media, the stress tensor in general also
contains an antisymmetric part. However, this is
usually small compared with the symmetric part,
so that it is not considered here. y, p, A, and X

are the gyromagnetic ratio, mass density, ex-
change constant, and LL damping parameter, re-
spectively. c,»» p+, , g,», and Z, ~» are the
elastic, magnetoelastic, elastomagnetic, and elas-
tic -damping tensor constantsy respectively. The
symbol e,z, represents the alternating tensor which
is defined by

+1 if ijk cyclic (123, 231, 312)

e,&,
= 0 if any two indices are equal

—1 if ijk anticyclic (132, 213, 321) .
An i.ndex preceded by a comma denotes differ-

entiation with respect to a space coordinate, and
the summation convention for repeated tensor in-
dices is employed, as is the dot notation for dif-
ferentiation with respect to time.

Since the magnetization is conserved and ~ is
small compared to Mo, we can consider m to be
perpendicular 'to 1Ã2 ~ i.e.~

M', ~, =0. (I )

Hence, one of the three equations (la) may be re-
placed by (lh).

It is worth noting the terms M, hq, ~ in (lb) and
—47TMyug g) ln (1c). The terms M)I2g g

describe
a body force produced by a nonuniform magnetic
field. The terms -4mM~ou, ~, arise because the
saturation magnetic moment per unit volume varies
as the sample changes its volume. It is terms of
this sort, as well as the magnetoelastic terms in
the stress tensor, which have been included by
Tierstene and by some subsequent authors, 0'31

which were neglected in earlier treatments. It
will be seen later that these terms slightly modify
the magnetoelastic coupling.

%'e now specify the material tensor constants.
%e can still consider the biased crystal as elas-
tically cubic since the static deformation caused
by the biasing field (magnetostri. ction) is small.
Yhus, the elastic constant takes the form

cfjkl cpq

c11 c18 c12 0 0 0

c13 c11 c1& 0 0 0

c1s

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 C44

where p and q are the abbreviated double indices.
The elastic-damping constant Z,,-» has exactly the
same symmetry as c„-».

Although the biased crystal is elastically cubic,
it is not magnetically cubic since it is magnetized
in an arbitrary direction with respect to the cube
edges. Therefore, the magnetoelastic and elasto-
magnetic constants take the following forme 13:

&22 0 &«0 &28 i & (2b)

0 6 ass &16 &28 0

.» =(»~/M2) ~,
g22 = (28, /M2) n2,

~«= +2/M. )~2,

ag2 = (B2/M2) c,2,

A3 As A4 F15 As

822 822 824 g14 g22 l p (2C)

A3 As 8's4 4's5 g1
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g11 {2B1/MQ)n1{1 —») ~

ra1=»1 /Mo)nina

g31 {2B1/Mo)nsnl ~

g14 = {2Ba/Mo)n1nang ~

g„=—(B,/M, )n, (1 —2n,'),
g„=—{B,/M, )n,{1—2n,'),

g12 {2B1/MQ)n1n2 s

gaa = —{2B1/Mo) na{1 —na),

gga {2B1/Mo)nang

g18 - —(B,/Mo) n, (l —2n', ),
gao = —(Ba /MQ) n, (l —2 nag),

Zss = —(Ba /Mo) n1(l —2 ng),

g13 = {2B1/MQ) nang,

gag = (2B,/M, )n, n,',
gss = {2B1/Mo)ns(I —ns),

g„=- (B,/M, )n, (1 —2na),

In the above B& and 82 are the magnetoelastic cou-
pling constants and o,~, ~3, and ~3 are the direc-
tion cosines of Mo, which may be written in terms
of the polar coordinates defined in Fig. 1(b) as

gM go

fag = —4vmg+4vMsus 3,N 0

(4a)

n1 = sin8 cos@, na = sin8 sing, ng= cos8. (2)

I.et us now assume the spatial variation to be
along the xs direction only and consolidate Eqs. (1)
into a set of differential equations for &pe, and u,.
by eliminating other variables. First of all, the
quasistatic field equations (lc) and (ld) together
with the electromagnetic boundary conditions (con-
tinuity conditions) simply yield

where ho (a= 1, 2) is the external rf field at the sur-
faces. Equation (4a) implies that the tangential
component of the rf Maxwellian field is uniform
across the plate. This is, of course, a result of
the long-wavelength quasistatic approximation.
Then, substituting the Eqs. (2) into the constitu-
tive relations (le)-(lg) and finally substituting the
constitutive relations and Eqs. (4) into Eqs. (la)
and (lb), we obtain

1i(I nl) {Hom1 ™188 ™of21)+ {ns+1)nina) {Hom2 Dma 3$ ™0)22)
—(n, —1ingn1) [(Ho+ 4vMQ) m1+ Dms gg] Ba [n1n—a+ 1ins{I -2n, )]u, ,

B8[(n2 n8) —2nn1nans]ua, s —2{B1 2&MQ)ns(na 7nsn1)+$, $ ~

(1/y)ma = —(ng —1}n1na) (Homa —Dm1 sg
—MQJP1) —1i(I —ng) (Hom1 —Dma 88

—MQ)'21)

+ (n1 + sinans) [(Ho + 4WMQ)ms Dmssg] Ba [(ns na) 217n1nans] u1 3

+ B2 [n1na+ lng(I 2n2)lug, 8+ 2{B1 2vMQ) ns{n1+ Vnans) 8,$ i

Qjmg+ +attica+ QSI3 —0 y

pu1 = c44u1 88+ Z44u1 gg+ (Bg/Mo) (ngma 8+ n1mg 8) i

pua C44ua $8 + Z44ua 88 + (Ba /MQ) (nsmg 2 + nams 8)

pus = C11ug 8$+ Z11ug 33+ (2/Mo) (B1—2vMQ)ngmg 2 ~

(5a}

(5b)

(5c)

(6a)

(6b)

(6c)

In Eqs. (5) D=22/Mo and 1I = XjyMQ. As was
pointed out above, the terms M01Iag, in Eq. (lb) and
-4vMou, &, in Eq. (lc) result in a correction,
-2mMO, to Bz in the above equations. Thus,
there is a set of five differential equations and an
algebraic equation, with six unknowns, ng&, ng~,

tPgsy Ql y Qpy and Q3 ~

B. Plane-%Pave Solution

Let us assume the external rf field ho= hog'"~

and consider a solution of the form

m, = mo(f) + mI (x„f)

(mo+ m& C-11Ng)81(ot

3
m'=Z g' h'

pug
(6)

](et- A@3)
Q) —u] 8

Here ho, rno, and u, are complex constants. If
we substitute Eqs. (7) into Eqs. (5) and {6), the
equations for m, , the 4 =0 uniform-precession

I
mode, can be separated from those for m, and u, .
The result is a relation between m, and h, the
uniform-precession susceptibility. By equating
the determinant of the coefficients of ~m and u) to
zero, we obtain the dispersion relations between
(d and P.

The uniform-precession susceptibility, g„, is
defined here such that
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Then, X„ is given by

X'1=(Mo«') (p[(I - ')Ho+4 M. l]

&o= p( olr)'-(~/r)'

+ 2iq [Ho+ 2o Mo(1 —noo)] (&/y), (10a)

+ in(1 —ng) (~/r)'I,

X, =(M /6)[-P (H +4 M) (Ido/y)' = H, [H, + 4vMo(1 —no)] . (10b)

—i(no+ qngno) (( lr)1,

Xo, =( o/&)[ Pn-~no(Ho+«o)

+ arI(1 —no) (~/r)},
1 a

Xso
= ~ na Xs»

G3

where

P= 1+g

(9)
+ i(n, —en(no) ((u/r)],

= (M /b, ) (P[(1 — )H +4 M ]

The frequency ~o given in Eq. (10b) is that for uni-
form-precession resonance in the absence of mag-
netic damping. The LL damping shifts the fre-
quency to P'~ &o as can be seen from Eq. (10a).
From Eq. (10a) the half-power-point linewidth of
the uniform-precession resonance is

&~/I yl =2lnl [Ho+»Mo(I- no)].
For the relatively simple geometry considered

here, the dispersion relation does not depend upon
z~ and z~ but on &3 alone, since the magnetocrys-
talline anisotropy has been neglected. Using +3
= cos8, this becomes

(c»k —p~ ) (c44k —p~ ) (pD k + 2 [p(Ho+ 2wMosin 8)+ iq(v/y)] Dk + 4 }
—sin 28(B&/Mo —2vMo) (c44k —p~ ) [p(Dk'+ Ho)+i@(&o/y)] —(Bo/Mo) (cqqk' —pro ) (c44k' —p&u )Mok

x {(sino8+ cos 28 cos8) [p(Dk +Ho)+ ig(&u/y)]+ pvMo sin 28]

+cos 8cos 28(Bo/Mo) p(c»k —pv )Mok +cos 8s'" 28(Boi Mo) (Bi/Mo 2o'Mo) p(c44k p& )Mok =0,
(12)

where

Cgg —C] g + 243 Zyg ~ C44 = C44 + 2 Z44 o

Equation (12) consists of five terms. The first
represents the uncoupled spin-wave and elastic-
wave dispersion relations. The second represents
a coupling between the spin waves and the longitu-
dinal (L) elastic wave (referred to as longitudinal
magnetoelastic coupling); the third term a cou-
pling between the spin wave and one polarization of
the transverse (T) elastic wave (transverse mag-
netoelastic coupling). The last two terms repre-
sent couplings between the elastic waves.

It can be seen from (12) that at 8 = 0 the L elastic
wave becomes uncoupled from the spin wave since
the second and the last terms vanish and c~qk —p&
factors out. At 8=45 one polarization of the T
elastic wave becomes uncoupled since the fourth
term vanishes and c44k —p~ factors out. At 8
=90' the L elastic wave and one polarization of the
T elastic wave become uncoupled since the second,
the fourth, and the last terms vanish and c»k~
—p~ and c44k —p~ both factor out. At all other
angles, all the elastic waves are coupled to the
spin waves, and the dispersion relation is quintic
in k and quartic in . The L magnetoelastic cou-
pling is strongest approximately at 8 = 45' since

the second term has sin 28 dependence on 8. The
angular variation of the T magnetoelastic coupling,
represented by the third term, is more compli. -
cated. It is a maximum at 8 =0 and a minimum at
some angle between 45' and 90 depending on the
ratio of 4oMo to ~o/I yl. ~~

The secular equation (quintic in k ) has five
roots ko(~) at each value of ~o. Each root yields
two values of k, + k(&u). It is convenient to repre-
sent the full solution by the positive roots only.
Thus, the solution of the secular equation is repre-
sented by five dispersion curves representing ten
roots in all, k„(r= 1, 2, . .. , 10). Furthermore,
the existence of the spatially uniform solution
(mo) implies another k=0 branch coincident with
the ~ axis. If electromagnetic propagation is
taken into account, this k =0 branch splits into
two (km 0) branches. '

In the absence of magnetic and elastic damping,
the five values of k for every & are either purely
real or purely imaginary. Under this assumption,
the dispersion curves for 8=0, 45', and 90' are
plotted in Fig. 2 with the uncoupled branches indi-
cated by dashed lines. The elastic-wave branches
always lie in the real k-~ plane while the familiar
spin-wave branch goes into the imaginary k-+ plane
for ~ & ~0. There is also a nonpropagating spin-
wave branch which lies entirely in the imaginary
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jp-~ plane.
If both magnetic and elastic damping are in-

cluded, these branches no longer lie precisely in
the real or imaginary 4-z planes, but come slight-
ly out of these planes. As a result, the mixing of
the elastic and propagating spin-wave branches at
crossover points is modified.

Each of the 10 values of k„yields an independent
plane-wave solution in the form of E I. (7). Thus,
the spatially nonuniform solution (m,

' and u4) is a
linear combination of ten independent plane waves,

whose amplitudes and phases are determined by
boundary conditions.

C. Boundary Conditions, Power Absorption, Resonance
Frequency, and Linewidth

The continuity conditions for the tangential com-
ponent of the magnetic field and the normal compo-
nent of the magnetic induction at the surfaces have
already been taken into account and included in the
e luations of motion, Eqs. (5). The remaining
boundary conditions are given by the surface spin
and elastic constraints. Here, we consider two
limiting cases of the spin-pinning conditionM; spin
unpinned (SU), and spin pinned" (SP), and two
limiting cases of the elastic boundary condition;
traction free (TF) and deformation free' (DF).
We then apply the four combinations of these
boundary conditions, (i) SU-TF; (ii) SU-DF;
(iii) SP-TF; (iv) SP-DF, to the two surfaces.

For symmetrical boundary conditions the solu-
tion for m& must be even, with the five plane waves
with positive roots paired with the five with nega-
tive roots. Thus, the solution takes the form

24 20 I 6 I 2 8 4
Im (k) (x IO cm )

0 2 4 6 8 IO

Re (I ) (xIO'cm')

m~ = mof — C m~ cosa x3 e'"t
s=1

s&= 'iCn, 'sink, ss)e'"',
s=l

(Isa)

(Isb)

where mI and u& are amplitude ratios' ' asso-
ciated with k, , and C, are complex constants to be
determined from the specific boundary conditions.
As a result, it is sufficient to write out the bound-
ary conditions at one of the surfaces (say x3= d):
the SU condition at x, = d;

mg 3=mp 3=0,
the SP condition at x3

I I I I I I I

24 20 I 6 I 2 8 4 0 2 4 6 8 IO

Im (k) (xl0 cm ') Re (k) (xlO cm ')

8- eO.

mg=m2=0,

the TF condition at x3 = d;

r31 —C44~1e3+ (~2/MO)(~3~1+ Qtms) =0,

F32 = c4482 3+ (B2/MO) (Q3m2+ Qsm3) 0

%33 C11Q3e3+(2B1/Ms)n3Pg3 0,
the DF condition at x, = d;

gy =Q2=Q3= 0

(14b)

(14c)

(14d)

Spin ~a

I I I I

24 20 I6 I2 8 4 0
lm (k) (x10 cm )

2 4 6 8 IO

Re (k) (x IO cm )

FIG. 2. Dispersion curves at a&3/(7( =8432 Oe, with
zero damping. LE and TE stand for longitudinal elastic
and transverse elastic. (a) 8=0', (b) 8=45', (c) 8=90'

gee take (14a) and (14c) for the SU-TF condition,
(14a) 2nd (14d) for the SU-DF condition, (14b) and
(14c) for the SP-TF condition, and (14b) and (14d)
for the Sp-DF condition.

Upon substituting (18) into the above boundary
conditions 2,nd using relation (8), each set of
boundary conditions gives five equations to deter-
mine five unknowns (C,) in terms of h, . It is easy
to show that for the SU-DF condition, Egs. (14)
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yield a set of homogeneous algebraic equations for
C,. Consequently, C, = 0 for all s, and the only
solution is the uniform-precession mode, i.e. ,

0 faut
m~ =m~e u]=0 .

The other three cases have nonzero solutions for
C,. Each of these cases yields a set of inhomoge-
neous algebraic equations. If we solve these
equations for C, in the form

and

II(xu+X22) + 2L(xll X2R) +4X12X21)
A A 1 f A A 2 A A i/2

h'=
lh'I I X"„I

(ix'-x i'+ ix i')'"

I h I I xig l (X —Xxx)
3 (i ia

i
iaPla

(24)

2

C,=Z I",h, ,
asi

then we can write the solution in the form
2

0m] —~ X]a&a

(16)
In Eqs. (24) h', ha.s been normalized such that

2~ h:h:*= lh'I'
a*],

and that hi be real. Substituting these eigenvalues
and eigenvectors in Eq. (20) yields

P"= ——'v lh l
Im(x') . (26)

2

it/ —2 /I. (IIkII (17b)

where

0
X@= Xja+ Xia (18)

is the total magnetic susceptibility, the sum of the
uniform-precession and spatially nonunif orm sus-
ceptibilities, and X&, is the rf magnetostriction.
X&, and X&, can then be written in the form

5

XIII =K m( Y II cosk+g (19a)

5

X~, =Ziu&I", sink, x, .
s=i

(19b)

The power absorption per unit volume is now
calculated from the formula

2
P= ——Im — Z m,h, "dx~) .

2 24 ~ g a~i
(20)

Using (17a) we can rewrite P as
2

P= —2(o Im ~ ha Xab hb
1 0 A 0

a, be],

where X,b is the average susceptibility defined by

Xab 2d Xab dxs

or, by virtue of (18) and (19a)
5

X,q = X,q —Zm*, Y', sink, d/k, d . (21)

X",b has two eigenvalues and corresponding eigen-
vectors, which we denote by X, h, and X, h, .
Then,

Suppose X is an eigenvalue of X,b and h, is the cor-
responding eigenvector. Then, we can write

2
0 0~ Xab hb Xha ~

We find that X' and X correspond to the resonant
and antiresonant responses, respectively, and that
h', and h, correspond to the resonant and antireso-
nant polarizations, respectively.

In order to calculate resonance frequency and
linewidth, we first fix the uniform-precession
resonance frequency fa0 and the magnetization di-
rection, and calculate the corresponding internal
field &o from Eq. (10b). We then vary the frequen-
cy ~ with H0 fixed, and calculate the derivative of
the resonant power absorption P'. The resonance
frequency is given by the frequency at which dP'/
d~ vanishes. The linewidth is defined as the fre-
quency difference between the two extrema of
dP'/d(o.

D. Ferromagnetoelastic-Resonance Conditions

We have applied the above formalism to an in-
sulator having otherwise as parameters those of
nickel at room temperature and at E band. We
find that the magnetoelasticity has no appreciable
effect on the resonance linewidth unless an elastic
wave undergoes a thickness resonance at or near
the FMR frequency. This condition is referred to
as ferromagnetoelastic resonance, FMER. The
FMER conditions are summarized as follows: The
film thickness L nearly equals an odd-integral
number of half-wavelengths of either the L or the
T elastic wave at the FMR frequency for the SU-TF
or the SP-TF case; L nearly equals an even-inte-
gral number of half-wavelengths of either the L or
the T elastic wave at the FMR frequency for the
SP-DF case. These conditions can easily be un-
derstood by considering the fact that the TF and the
DF cases sustain standing elastic waves with the
surfaces corresponding, respectively, to the anti-
nodes and the nodes. Note, however, that the
FMR frequency is different for different boundary
conditions. These conditions will be examined in
greater detail elsewhere. '

Under the FMER conditions the linewidth en-
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hancement may be as much as 50% when the L
elastic wave is in thickness resonance, and more
than 100/p when the T elastic wave is in thickness
resonance. This effect is anisotropic, due to the
anisotropy of the magnetoelastic coupling. Quanti-
tative analyses of the linewidth enhancement and

its angular and thickness dependences are reported
elsewhere. ' '

III. APPROXIMATE METHOD

A. Introduction

In the preceding section we presented the exact
method for calculating ferromagnetic-resonance
parameters in the presence of magnetoelastic cou-
pling. In principle, we can use this method for any
material whose physical constants are known. In

practice, however, the exact method is tedious to
apply. This arises from the fact that the com-
plexity of the magnetoelastic coupling produces a
secular equation quintic in k . The numerical so-
lution of this equation requires great accuracy.
Otherwise, the accuracy of everything which fol-
lows becomes very poor. It is therefore desirable
to simplify the method of calculation. Fortunately,
an approximate method has been found which is
much simpler to use and yet gives all the essential
information of the exact calculation.

The idea of the approximate calculation stems
from the fact that a strong coupling exists only be-
tween the propagating spin wave and the elastic
wave which undergoes a thickness resonance. By
a series of transformations and approximations
we decouple the equations for the nonpropagating

spin wave and the elastic waves which are not in

thickness resonance, leaving only the propagating
spin wave and thickness-resonant elastic wave.
The dispersion relation thus obtained becomes
quadratic in k and can readily be solved analyt-
ica,lly. From this point on, the procedure is the

same as for the exact method.
We have seen in Sec. II that in the absence of

magnetocrystalline anisotropy the dispersion rela-
tion is invariant under rotation of the x, and xz axes
about the x, axis. Therefore, without loss of gen-
erality we can put /=0 (i.e. , @1=sin&, n&=0, 0.3
=cos8) in the equations of motion.

Let us introduce the following transformation:

mJ ml9 cos8
& mp mp & m3 ———mp sin8, (27)

where m& and m~ are the transverse components of
m with respect to Mo. If we. substitute (2V) into

Eqs. (5) and (6), and neglect the damping tem-
porarily, we obtain

(I/y)m«Homo Dmo, op
—Mpk2+ B2 cos8ua 3

(28a)

(I/y)mo = —(Hp+4PMpsin ) 8+mD«m«pp+Mpcos8k,

—B2 cos28u, ,3+ (B, —2mM 0) sin28~3

(28b)

pu, =c44uy 33+ (Bz/Mp) cos28mo, ,

pup = c44up 33+ (Bp /Mp) cos8mp 3

pup Cggup 33 (Bg /Mp) —27rMO sin28mp 3

(29a.)

(29b)

(29c)

Note that Eq. (lc) is automatically satisfied. It is
Eqs. (28) and (29) which we wish to solve.

Eqs. (28) and (29) become

A m= —MOQ ~ h

(Dk I —A) ~ m'= —iB~kRuo,

(c»k —p&z )uo = i (B~ /Mp)kR* ~ m',

where

(30)

(3la)

(31b)

o)

—(Hp + 4OMO sin 8) —i &d/yA=
f&d/y —Ho

(32)

cos8 0 R1 sin28

and R* is the transpose of R.
Since A is a Hermitian matrix~there exists a.

unitary matrix U such that U ~ A ~ U transforms
A into diagonal form, which we denote by A '.
Here U is the Hermitian adjoint of U. A ' and U

are given, respectively, by

A,', = —(Ho+ 2OMo sin 8) + 0,
Aoa -——(Ho+ 2PMo sin 8) —0,

12 +21

&gg = (&d/
~
y

~
)/(2&+ 4OMo sin'80)' ',

B. Longitudinal Thickness Resonance

Let us now consider the case where the L elastic
wave undergoes a thickness resonance (referred to
as L thickness resonance). Since the wavelength
of the L elastic wave is in general much shorter
than that of the T elastic wave for a given ~, the

T elastic wave is far from resonance when the L
elastic wave is in resonance; that is, its response
is negligible. Therefore, we neglect the T elastic
wave in the equations of motion. If we again as-
sume the external rf field

r y„0

(kzP )
and a plane-wave solution

(
0 i - i' idiot= m = (m + m' e '""3)e'"',

i (.ut- k@3)
Q3 —u3e
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Uu=~(~/Iy I)/(2Q -4((Mosin 8Q) ~

U~~= f(2wMO sin 8+ Q)/(2Q +4((MO sin 8Q)'

U2z= (2((Mosin 8 —Q)/(2Q —4((Mosin 8Q)'~

Q = [(2((MO sin'8)'+ ((d/y)']' ~2 .

(34)
is expected to be very weak since the correspond-
ing branches are widely separated for all frequen-
cies. Hence p,z, the nonpropagating spin wave, can
still be considered a normal coordinate.

Considering the facts that p, z is antiresonant and
that p(', is nonpropagating, we can neglect pm(= p~
+ p,'). Thus, Eq. (36) reduces to (38a) and Eqs.
(37) reduce to

We note that I U»/U~, I
=

I U,~/U, ~ I
=

I (co/y)/
(2((Mo sin'8+ Q) I corresponds to the ellipticity of

spin precession at a given angle.
If we introduce the transformation

m, =U ~ p, , (35)

where p, = i('+ p'=(p '+ p, 'e-'"3)e'"', then (30) and

(31) become

(Dk -A(~)p(+ f(Bg —2(TM ())kRgus = 0, (40a)

i(Bg/M(( —2((MO)kR~p,
' —(c,~k —p((( )u~ = 0 .

(40h)
The corresponding dispersion relation becomes

(Dka —A,', ) (c„k~—p(ua) —(I/M(&)

x(Bi —2((MO) fi(8)k =0, (41)

A ~ p = —MOQ' ~ h

(Dk' I —A') ~ p,
'= —f(B, —2vM 0)kRu,

(36)

(37a}

where

fq (8) = R& = U» sin 28

(c„k —p(g )us=i(B, /M(( —2'(()kR* p', (371)

where

031Q-
U,*...s8 U„

U»sin2eR= U 'R=
p1 sin

H, '=U„sin2e V„sin28 .
It is more convenient to write Eq. (36) in explic-

it form

pi = —(Mo/»'~) @f~g+ @[ah2),

L(2 = —(Mo/&ca) @2ihi+ Qaaha) . (381)

From Eq. (33) we see that A,', has a zero at &o/I y I

= [Ho(HO+ 4((Mo sin 8)]', whereas Am~ has no
zeros. In fact, IA32 I increases monotonically with
(d/lyl. It then follows from Eqs. (38) that p( is
the resonant mode, whose resonance frequency is

(oo/
~
y

~

= [Ho(HO+ 4((MO sin 8)] ~ (39)

while p2 is antiresonant,
In the absence of magnetoelastic coupling, Eqs.

(37a) and (371) yield three independent dispersion
relations

DA~-Aj1=Dk -A, aa=e11k' —P(O =0,
which correspond to the branches of the propagat-
ing spin wave, the nonpropagating spin wave, and
the L elastic wave, respectively. Thus, p1, pz,
and uz correspond, respectively, to the normal
coordinates of the uncoupled system. The mag-
netoelasticity couples these waves, and therefore
p.&, p.&, and us are no longer the normal coordi-
nates. However, the coupling between p, z and us

characterizes the angular variation of the L mag-
netoelastic coupling.

If we include the LL damping, the matrix A be-
comes non-Hermitian. As a result U is no longer
unitary. If the damping is small, however, we can
still use, to a good approximation, the same
transformation with the same unitary matrix, pro-
vided we make the following correctionsa' to Q

in A'.

Q' = [(2((MO sin'8)'+ (I/p') (~/y)']'~'- i(7((d/y),

(43)
where P= 1+re. The L elastic damping can easily
be reintroduced by allowing g» to be complex,
li e. y C11 = C»+ $C11.

We see that (41) is a quadratic equation in k2

and can readily be solved analytically. The solu-
tion is

k =2 c»Agg+ p(d D+ (Bg —2mM—O) fr (8)
2De11 0

cliA11+PM'B+M Bi-2MO' 5 8

1/3
—4p(g Dc»A» (44)

which yields two pairs of roots, + k, (a= 1, 2).
Thus, the solution is given by

~{j gS fkSX'3 CS+3
s&1

I, = Zuj(c'e "+s c"'e"e's))g'"'
S~1

Here the amplitude ratios u3 are obtained by sub-
stituting k, into Kq. (40a) or (40h) with p', nor-
malized to unity, This yields



3282 KOBAYASHI, BARKER, BLEUSTE IN, AND YE LON

Dk —Aggu3= —i(B2 —2 M P) k,B22
i(B2/Mz —2Mz) k,~R

2 2
cggk —p~

(46)
The coefficients C' are constants which are to be
determined by boundary conditions. We shall
treat these in Sec. HID. The stress component
2zz which was given in Eq. (14c) can now be written
in terms of p, & as

are defined as

cos2g 0S=
0 cosa (49)

and all other quantities have been previously de-
fined. Using the transformation of Eq. (35) with
the same unitary matrix as before, Eqs. (48) now

yield

Tzz = C22222 2
—(B2/Mz) U22 S11128222

C. Transverse Thickness Resonance

(47) (Dk I -A') 22' —iBzkS't u, =0,

(c44k —pro )u, + i(Bz /Mo) k S '
~

22
' = 0,

(50a)

(50b)

Let us now consider the case in which the T
elastic wave undergoes a thickness resonance
(transverse thickness resonance). Hence, we
neglect the L elastic wave. By assuming the same
plane-wave solution for m~, m~, N~, and ua as
in the previous discussion, Eqs. (28) and (29)
again yield Eq. (30) for the uniform part of m, and

(Dk I A) ~ m' ——iBzkS ~ u, =0, (48a) (Dk I —A ') ~ 22' —iBzkv = 0, (52a)

where S'=S ~ U and S'~= U~' S is the Hermitian
adjoint of S'. If we introduce new variables vq

and e, such that

(
v S ut~

Vp

then we can write (50) as

(c44k —pro )u, + i(Bz/Mz)kS m' = 0, (48b)

for the nonuniform part In E. qs. (48), u, and S

(c44k —pro )v+i(Bz/Mz)kS '
~ 22' =0,

where

(52b)

T Us~ cos 28+
I Ua~~ cos 82 2 l l2 2 U„U»cos 28+ Ur, Uzzcos 8

~ U»~ cos 28+ Uzzcosz8
(53)

Let us rewrite Eqs. (52) in the following matrix form:

Dk —Agg

i(Bz /Mz) S 22 k

2(B,/M, )S»k

-m, k 0
l

c44k —pro ~ i(Bz/Mz)S»k
+

Dk —Azz —iBqk
I

2(Bz /Mz)szzkc44k —pro

Vg

2

=0. (54)

We see that the transformation (51) has brought
(54) nearly into block diagonal form as indicated by
the dotted lines.

At 8 =0, (54) is exactly in block form since 3»
and Sz, vanish, "and the (22,', v, ) and (P.,', v, ) Pairs
become independent of each other. Both p.,' and v&

correspond to positive circular polarization, and
both p, ~ and va correspond to the negative circular
polarization. That is, our transformation sepa-
rates those waves with the resonant polarization
from those with the antiresonant polarization. At
oblique angles, the off-block elements are nonzero
so that there exists a coupling between the (22,', v2)
and (2rz, vz) pairs. This coupli. ng, however, is of
higher order than the coupling between p, ,' and v~

or that between 2rz and vz. The (p2, v2) and (pz,
vz) pairs have elliptical polarizations with opposite
senses of rotation, but in each pair the spin wave
and the elastic wave do not have the same elliptic-

(Dk —222) 222
—iBzkvr = 0,

2(Bz/Mz)ks22I22+ (c44k —pro )v2 = 0 .
The corresponding secular equation is

(55a.)

(55b)

(Dk'- A,', ) (c„k' p~') —(B,'/M, )f,(8)k'= 0-,

(56)
where

fr(8) =S»= U,zcos 28+
i Uz, i

cos28

characterizes the angular dependence of the T
magnetoelastic coupling. We see that we have .

again reduced the secular equation to quadratic

(5V)

ity.
Since the coupling between the (22'„vz) and (irz',

vz) pairs is weak, and iran is nonpropagating, we ig-
nore the (irz, vz) pair, as we ignored 2rz in Sec. II.
Then Eqs. (52) or (54) reduce to
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which yields two pairs of roots +k, (s= 1, 2). Thus
the solution for p, i can be written in the same form
as (45a), and that for 181 in the same form as (45b)
with the amplitude ratios replaced by

Dk, —AII f(B2/M)k, Sll
SB2ks C44k —pQp

1 ~ 2 2

There are again four constants {C') to be deter-
mined by the boundary conditions.

The stress component associated with the strain
. pi 3 can be obtained by transforming v'31 and v'32

given in Elf. (14c) as
lf

~12 ~31+ ~12~32 ~

Expanding (60) and neglecting pa yields

71 C44V184+ (BR/MO) 311/1 '

D. Boundary Conditions and Poorer Absorption

(61)

Because of the similarity between the L-thick-
ness-resonance and T-thickness-resonance cases,
we can treat the two boundary-value problems in
a similar fashion. Let us introduce the following
definitions: for the L-thickness-resonance case,

c= cll, m=u4 8
b= —(B,/Mo) U»sin28; (62)

for the T-thickness-resonance case,
=« ~

b = (B&/Mo) (Ull cos'28+
i U» i

'cos'8) .
(63)

%e also omit the subscript of p,i. Then the analy-
sis given below holds for both cases.

We consider the same symmetrical boundary
conditions as in Sec. II. The solution can then be
written

8= no -EC, cosSss)s'",
8&1

o= Zse, o sino, ss)s'",
s 1

(64b)

where C, =2C', C' being the arbitrary constants

form.
The LL damping is reintroduced in the same

fashion, as previously, by replacing Q in Aii by
0', defined in EIl. (43). The T elastic damping
is introduced by allowing c« to be complex, i.e. ,
044 = C~ + SC44i

The secular equation in 4 has the solution

2

k =2 c44AII+p(v D+ fr(8)
j. , 2 ~B

2aeii 0

+2 2

c44AII+ p~ D+—fr(8)
0

1/2
—4p~ Dc44A'll 8 (56)

used in (45). The SU, SP, TF, and DF conditions
at xs=d are given, respectively, by

p, 3=Op

go+ LU, '=0,
clo s+b(p'+ p')=0,
%=0 o

(65a)

(65b)

&I = (icwl kl+ b)k4 sinkqd coskld

—('Ecw k4 + b}kl sinkld coskpd .
In the SP-TF case,

W $2@~

(w kl-w k4) coskld

wj'p p,
C2= 1 2(w'kl —w kz) cosk2d

In the SP-DF case,

C, = —(1/a, ) (w'p, 4si.nk, d),

Cz = (1/b 2) (w' iso s inkld),

42=w sinjpid cosk2d -w cospid sin&2d .
To calculate the power absorption from Eq. (20),

we express mi and m2 interms of p:

rni Uii cos8

Since p' is proportional to p. as can be seen from
the expressions for C, and since p.

o is related to
ha and h02 by (36a), we can write (69) as

m„= X ~ h', (70}

1 -~ C cosjp g3
s=3.

-8 88 Uiscosss llnttlicoss)
r

Ail Uii U21 cos8 ( +21
2

C.'= C./p' .

The combinations (65a)-(65c), (65b)-(65c), and

(65b}-(65d) give the conditions SU-TF, SP-TF, and

SP-DFq respectively. V/e have omitted the SU-DF
condition since iwe have shown above that it corre-
sponds to the uniform-precession problem.

On substituting Eqs. {64) into Elis. (65), we obtain
C, and C2. In the SU-TF case,

C, = (1/&I) (b p.'k& sink&d),

C3= —(1/&I) (by kl sinkld),
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Substituting Eq. (70) into Eq. (20) we obtain

P= —z& Im(h * ' X~ ' h0

where y" is the average susceptibility and is given
by

2 smkg ~p

approximate calculation due to the fact that the
antiresonant mode p, 2 has been neglected. The
eigenvectors h' corresponding to the eigenvalues
are obtained from Eqs. (24) with X in place of

The resonance frequency and linewidth are
calculated from the resonant absorption P' in the
same manner as discussed in Sec. GC.

Following the same diagonalization procedure dis-
cussed in Sec. II C, we obtain the eigenvalues of
g" as

~sink d p
s yd Xkp

S=i
(73)

Clearly, y, and y correspond to the resonant and
antiresonant responses, respectively. Of course,
the antiresonant response is identically zero in the

where X, are the eigenvalues of the uniform-pre-
cession susceptibility, XP, given in (72), and are

X, = —(Mp/Agg) (Ugg cos28+
i Upgi ),

(74)

IV. CONCLUSIONS

In an attempt to provide a foundation for the
evaluation of anisotropic broadening of FMR lines
due to magnetoelasticity, we have presented here
a formal treatment of the solution of the coupled
magnetoelastic equations of motion for an obliquely
magnetized thin film. %'e have considered two
methods. The first, based on a formalism devel-
oped by Tiersten, is exact within the framework
of the quasistatic approximation. The second is
an approximate method by which the mathematical
treatment of the boundary-value problem has been
greatly simplified. This method is based on the
fact that a strong coupling exists only between the
resonant spin wave and the elastic wave which un-
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83 I 6.5

l .0

c
0.5

0

g -0.5
CJ

-I.O

-t.5—

8200
I

8500
I

8400

IOOOA thick
= 339.0 Oe

IVI

)=O, 8=45
I

8500

~ij~ p Wk

8570.5
I

8600
I

8700

FIG. 3. Ferromagnetic resonance line shapes as calculated by the exact and approximate methods. The approximate
solutions, represented by the points, depart from the exact solutions, represented by the lines, by 1% or less everywhere, .
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dergoes a thickness resonance near the FMR fre-
quency. Thus, the simplification was made pos-
sible without sacrificing the physical model of the
exact method.

We now quantitatively justify the validity of the
approximate method by a discussion of some ex-
amples. Figure 3 shows the resonance absorption
lines and their frequency derivatives for nickel
films of 800- and 1000-A thickness, calculated for
+0/I yl =8432 Oe by both the exact and the approxi-
mate methods. They represent the SU-TF case
with Mo along the (101) axis. 1000 A corresponds
to the half-wavelength of the L elastic wave at
~/i yi =8432 Oe. We see that the agreement be-
tween the two calculations is excellent for this
case. The accuracy of the approximate calculation
is within 1% of the exact one. For the thickness
of 800 A neither the I nor the T elastic wave un-
dergoes a thickness resonance near the FMR fre-
quency, since the thickness is considerably larger
than the half-wavelength of the T elastic wave
(-700 A) and far smaller than that of the L elastic
wave. We have used the transverse-thickness-
resonance equations for this case. Even in this
case both calculations agree quite well as far as
the linewidth is concerned. This is not unexpected

because neither of the elastic waves has an appre-
ciable response. There is, however, a slight dis-
crepancy in the resonance frequency. This will
be discussed elsewhere in conjunction with the
resonance-frequency shift due to thickness reso-
nance. ~ Under the FMER conditions, both calcu-
lations agree just as well for the SP-TF and SP-
DF cases as they do for the SU-TF case.

It is possible that for some materials the elastic
damping is small enough and at the same time the
magnetoelastic coupling is large enough for the
off-thickness resonant elastic wave to have an
appreciable response. In this case, both the
L and T elastic waves (v, for the T elastic
wave) have to be included in the approximate
equations of motion. Although this results in a
cubic secular equation, it can still be solved
analytically.

Finally, the boundary conditions can easily be
generalized to arbitrary spin pinning and elastic
conditions at each surface of the plate. s' By doing
so, we can evaluate the effect of substrate acous-
tic impedance on FMR 8 and also calculate the
phonon power transmitted into the substrate. ' '"
For this problem, it is frequently necessary to
employ the cubic secular equation. '9
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