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The effects of strong correlations in a substitutional binary alloy A„B,„having a single nondegenerate
tight-binding band are examined by use of the coherent-potential approximation and the alloy analogy
of Hubbard to treat the effects of disorder and Coulomb interactions, respectively. It is shown that
there are no ferromagnetic instabilities in the B band for any band structure, carrier number and the
concentration of B atoms, if the potential at A atomic sites are assumed to be positive infinite. This
assumption causes the A sites to be inaccessible to electrons. Moreover, the spin susceptibility is found
to remain finite even if the density of states .is vanishing at the Fermi energy in the limit of the
half-filled B band.

I. INTRODUCTION

e;„= e&+ Ur (n& ~,), (1 2)

In Eq. (1.2), (n, ,) is the average electron num-
ber with spin o at the ith site, which is to be de-
termined self-consistently. They applied the CPA
to &&„. Reference 6 uses this scheme to discuss

Since the coherent-potential approximation
(CPA)' was proposed, much progress has been
made in the theory of alloys based on a one-elec-
tron Hamiltonian. Many-body effects, however,
have not yet been discussed extensively. Recently,
some authors examined the itinerant-electron
magnetism of a binary alloy of the type A,B~ „
represented by the Hamiltonian

X = Z t&~a, „a~,+ ~ ne, „+QU, n;„n.
$~e

(1 1)
where a, ,(a, ,) is the annihilation (creation) op-
erator of an electron with spin o at the ith Wannier
site. &,. and U; are assumed to take on values
&&, && and U» U» respectively.

Hasegawa and Kanamori' and Levin et al.
treated the last term in Eq. (l. 1) in the loca/ Har-
tree approximation by writing the atomic energy
in the form

the dynamical spin susceptibility.
Equation (1.2) is reasonable when the Coulomb

interactions are moderately weak. However, as
is known, there exist real systems in which the
Coulomb forces and therefore the electron corre-
lations are strong. The case of impurity-band
conduction in weakly doped uncompensated semi-
conductors and the alloy of transition-metal oxides'
are examples. The latter were treated recently
by Rice and Brinkman. '

The present understanding of theeffects of strong
correlations is not yet satisfactory even in pure
systems. However, the investigations by Hubbard'
have yielded valuable qualitative insight into this
problem. He argues that, if the correlations are
sufficiently strong, the quasiparticle energy spec-
trum has a gap corresponding to the double occu-
pancy of the same site. He identified this gap with
the onset of the Mott transition. This type of gap
is also expected in alloy systems. Thus two dif-
ferent kinds of gaps will exist in alloys which arise,
respectively, from disorder and correlations.

As was shown in Ref. 2, one of the essential
parts of Hubbard's approximations, the so-called
' scattering correction" in his terminology, is
equivalent to the CPA. At a fixed instant in time,
the electrons with opposite spins are regarded as
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occupying given positions on randomly distributed
lattice sites. The configuration average in the
alloy problem is here replaced by a time average
which arises because these spins are undergoing
rearrangements continuously. The approximation
which only takes this process into account is called
the alloy analogy. In addition to the 'scattering
correction, " he also examined the "resonance-
broadening" process arising from the recoil of
opposite-spin electrons. By taking these processes
into account, he defined the effective atomic ener-
gy in the presence of the Coulomb repulsive force
in a self-consistent way. This approach of defining
effective atomic energies is also applicable to the
alloy systems.

The aims of the present investigations are to
treat strong correlations in a binary alloy within
the framework of the CPA and the Hubbard approxi-
mation. We employ the alloy analogy exclusively
(except in Sec. IV B) by neglecting the dynamical
character of the problem. Although the magnetic
properties of Pure systems have recently been
examined, "we will add in Sec. II some general
results in the present scheme on the spin suscep-
tibility which show that there is no ferromagnetic
instability for any single-band model and carrier
number except possibly in the case of a precisely
half-filled band. The present approach is not ap-
plicable to this case if the bands split.

Section III present the general formalism for
alloys. Detailed calculations for a somewhat ar-
tificial model of an amorphous metal corresponding
to the case in which electrons are excluded from
A sites are presented in Sec. IV. The conclusions
of the present study are summarized in Sec. V.

II. SPIN SUSCEPTIBILITY OF A PURE SYSTEM IN ALLOY
ANALOGY

A. Implications of Alloy Analogy

X= Pa ~0
' =2Pg

Since

' = —s"'oHImG, (e, g (0))

we obtain

X= 2Psp[1+K]

&G, en—m Im da
@v„~ 80

(2. 4)

where p, ~ is the Bohr magneton,

p= —m
' ImG, (ez)

is the density of states, and

(2. 5)

~no -s ~ ~GK= ' =-- m &Im de'
&n~ &n

(2. 6)

It is possible to obtain a band-structure-indepen-
dent analytic expression for K after some manipu-
lation, which we now outline. The result obtained
will be used to show that p(1+K) ' in Eq. (2. 4) is
always positive and finite. Consequently, within
the present scheme, the system can never be fer-
romagnetic.

From the definition [Eq. (2. 2)], we have

e(k) Q efk&R(-Bg) f (2. 3)

Once e(k) is explicitly given, the self-consistent
equations (2. 1) and (2. 2) determine G, as a function
of energy &. In a magnetic field H, n, is given in
terms of G, and the Fermi energy ez by

n, (H)= —m 'Im f deG, (e —psoH, n (H)) .
In this case the paramagnetic spin susceptibility
corresponding to uniform magnetic fields can be
written

In order to understand the implications of the
alloy analogy, we consider, in this section, a pure
system by setting &z = &~ = 0 and U~= U& = U in
Eq. (l. 1). In the alloy analogy, the original two-

body interactions represented by the last term in
Eq. (1.1) are approximated by a one-electron ener-
gy-dependent potential or effective atomic energy.
With the present choice of energy origin, this effec-
tive atomic energy E, is explicitly given by '

%z ~, On 8G &g

where

s =N 'Q[e —e(k) —E.] '.
(2. 7)

(2 8)

E, = Un [1—(U- E,) G,] (2. 1)
Thus,

G. = N-'P [e- e(k)-E,]-'.
In this equation, N is the total number of lattice
sites and e(k) is defined by

(2 2)

where n = (n, , ,) is the number density per a site
of electrons with 0 spin and G, is the site-diagonal
component of the Green's function given by

~Ga n n-~ a

On the other hand, Eq. (2. 2) also yields

dGO -8 1- dE,

(2. 9)

(2. 10)
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pearing in Eq. (2. 18) has the same sign as 2" and

is also negative. Consequently, Im InZ(l —8) '
can never exceed —m for any S. As a result

(2. 11) i+Z &0 (2. 20)

Substituting Eq. (2. 9) into (2. 6) and eliminating 8
via (2. 11), we get

~1I g~ e a

(2. 12)

where Gz and Go are G, (»=ez) and G,(e= —~). In
order to evaluate Eq. (2. 12) we first transform
Eq. (2. 1) by introducing Z=E, /U and z = UG„re-
spectively,

zS +(1—z)Z —n =0 (2. 13)

or

(2. 14)

In order to express E explicitly in terms of 4, we
use Eq. (2. 13) and (2. 14) to write

lim )t = 2ps[g~ —g~+ ,'][Ugr(g-~- 1)]-'
np»1/2

(2. 21)

which is finite, the factor p in Eq. (2. 4) having
cancelled out. Zz is the value of 2 corresponding
to the energy at the top of the lower band. Thus
we see that spin susceptibility generally remains
finite even if the density of states is vanishing at
the Fermi energy in the limit of a half-filled band.
If we 1st U in Eq. (2. 4) approach infinity,

lim lim y=- p G~,
nay" 1l2

for any band structure e(k) and any carrier num-

ber n, .
The equality in Eq. (2. 20) obtains only for the

case where 2"=0 or p( ez)= Of or a half-filled band

(n, = &), when U is sufficiently large to produce
band splitting. Since X is not determined uniquely
for a precisely half-filled band in this case, we
consider the spin susceptibility in the limit n, ,- &.

Under these conditions the state density p[Eq.
(2. 5)] is finite and tends to zero. More explicitly,

K= —w ~1m f dZ(Z —Z) ' (2. 17)

= m 'Im in[2„(l —Z~) '], (2. 18)

where Sr = Z(e = ez) and Zo = Z(e = -~ ). The cor-
rect branch is obtained by considering $0= v

Equation (2. 18) is the desired result whose phys-
ical implications are discussed below. It is to be
emphasized that Eq. (2. 18) is valid for any single
band e(k) defined by Eq. (2. 3).

We now show that I+K~0. Equation (2. 14)
yields

&rs [gr2 ggy2]-1[(gs 1)2 gna] I

x [2" y g' —2n» g'+ n, ]2", (2. 19)

where 2' and 2" are the real and imaginary parts
'of 2= 2'+iZ" and similarly for z' and z". In Eq.
(2. 19) the first three factors are positive. Fur-
thermore, z"= UG" cc —Up is negative. Thus 2"
is always negative. In addition ImZ(1 —2) ap-

= —U[Z +n (1 —2Z)] '(g —g) . (2. 15)

In addition, from Eq. (2. 14), we obtain

dG, = U 'dz= U '(2'- g) 3[2'+n (1 —22)]dS.
(2. 16)

Thus,

where Gz = G, (» = ez), which has finite value depen-
dent on the band structure.

Since the dynamical effects of opposite-spin
electrons in many cases will reduce the effects of
correlations, they will be unfavorable to ferro-
magnetism. Thus their inclusion would make the
possibility of a ferromagnetic instability even less
likely. On the basis of this physical argument, one
would then conclude that there exists no such insta-
bility in the Hubbard model without orbital degen-
eracy. A more general conjecture of this nature
was already made by Van Vleck. '

Our arguments apply to the case where there is
macroscopic, but possibly infinitesimal, differ-
ence of numbers between electrons and the lattice
site. In this respect, our statements are not in
contradiction with the results of Nagaoka' and

Thouless, '4 who showed the ground state is ferro-
magnetic in some lattice structures when U is in-
finite and the number of electrons Ne satisfies
N-Ne =1. The case of Ne=N, or precisely half-
filled band, is very singular. In fact, the electron
spins align antiferromagnetically when U is large
due to kinetic exchange effects. The Neel temper-
ature T„ is roughly Vo/U and as a result )t is di-
vergent as U- . This feature is clearly exhibited

by Takahashi" for the one-dimensional Hubbard

model by use of exact solutions due to Lieb and

wu. 16

Our present conclusion is also not in disagree-
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ment with recent work by Izuyama. ' He showed
that the stiffness constant of spin waves is vanish-
ing by considering the hypothetical case in which
all of the electron spins align in one direction in
the ground state, This may be taken to imply that
the assumed state does not correspond to the spin
configuration of the lowest energy.

On the other hand, the spin susceptibility derived
by Hubbard's first approximation results in ferro-
magnetic instabilities. ~ This approximation ne-
glects the self-consistency of Eqs. (2. 1) and (2. 2)
and corresponds to taking G, =« ' and E,=n U on
the right-hand side of Eq. (2. 1).

B. Limitations of Alloy Analogy

So far we have treated the correlations among
opposite-spin electrons within the alloy analogy.
The remaining effects are due to the dynamical na-
ture of the two-body interactions. Although Hub-

bard has given an approximate treatment of these,
their total effects are not yet fully understood. Be-
sides some complicated properties of the problem
occurring in the case of n = &, which we do not treat
here, we discuss some of the deficiencies in the
present approximation. First, the existence of
finite damping of the electrons at the Fermi sur-
face even in pure systems is not consistent with
the Fermi liquid theory. This problem was con-
sidered by Brinkman and Rice who employed
Gutzwiller's variational method ' to examine the
Mott transition in this scheme. This deficiency,
however, may not be essential in disordered sys-
tems.

Another problem lies in the case of small car-
rier concentration which has been discussed most
rigorously by Kanamori. ~~ Within the alloy analogy,

E~= Un ~[I —UG~]

according to Eq. (2. 1). By contrast, Kanamori's
theory, in which spins 0'- o are treated on. a com-
pletely equivalent footing, yields

(3.3), G« „defined explicitly in Eq. (3.10), i.s
the site-diagonal component of the configuration-
averaged Green's function to be determined self-
consistently under the constraint that the ith site
is occupied by either an A or 8 atom. The CPA
aspects of the problem are described by

G, (t, ~)=[~-~(u)-R, , -&.(~)]-' (S.4)

&, =6, x[l —(6, —E, )&, ] ',
&. =«~, e -«a,.
E = —ZG, (k, e)

1

(3. 3)

(3.6)

(3. 'f)

(I ) Q t elk(R)-Ry)

i
(3.8)

N is the total number of lattice sites. The local
Green's function G&&, in Eqs. (S. 2) and (3.3) is
related to I', appearing in the preceding equations
by

G() =E [I -(E) —& -E~, ) E ] . (3.9)

Equations (3.2)-(3.10) must be solved simulta-
neously. The Fermi energy is determined from
the relation

IV. AMORPHOUS METALS

The one-body Hamiltonian 3C& for a system with
vacancies is given by

(n, )=x(n„,)+y(n~, )=-v 'Im f rdqp, (g) .
(3.10)

For appropriate choices of parameters &„U,, g,
and the band structure g(j'p), the present model
Hamiltonian Eq. (l. 1) can be regarded as providing
qualitative insight into the behavior of various
systems of physical interest. Typical cases are
(i) amorphous transition metals like Ni4P, Co4P
(eo„- ~) ' and (ii) impurity-band conduction.

The first of these will be examined in Sec. IV.

E~ = Un. ~[1—~ UG, ] ~, = p'/2m+K v(r R,), -
l

(4. 1)

III. FORMALISM FOR ALLOYS

«~,.= «+«~,.0 (S.1)

where

~~, .= U, (n, )[1—(U, -«, .) G„.]-' (3.2)

and ~', and U, ta,ke values Eg cg and U~, Ug at A

and B sites, respectively. Also the local occupa-
tion number is

(n, , )= —w Im f de G«, (3.3)

where e„ is the Fermi energy, In Eqs. (3.2) and

In the alloy analogy, the effective atomic energy
«„ at the &th site is given by

where V(~) is the potential due to the ions. Under
these circumstances R, in Eq. (4. 1) does not in-
clude vacant sites which will be regarded as A
atoms. We write Eq. (4. 1) as follows:

3c =P /2m+K v(t' —R„)—Z v(r —R,), (4.2)

where R„runs over all sites, whereas R, runs
over vacant sites only. In the tight-binding ap-
proximation, Eq. (4.2) i.s given by

&q= ~ (e a~ a~+ t„.a& a&)+ @~a,a,t
f, j s

-Z (t„a)a,+H. c.), (4.3)
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where i, j run over all sites and 8 runs over vacant
sites alone. In Eq. (4. 3), e and v are defined by

[p /2m+ V(x)]P(x) = cog(x)

o = —f d'r P*(r)V(r) P(r)
(4. 4)

pb (e) -=—P 6(e —e (k)) =
1 1

N
)m,

m'Vo

(4 5)
where Vo is half of the bandwidth. They repre-
sented the interaction energy in the Hamiltonian as

Un~ „n&, , = 4U [(n,„+n, ,) —(n, „—n, , ~) ]

and calculated the magnetic properties by confining
their attention to the second term. Cyrot ~ has ex-
amined this problem from the same point of view.
For this density of states, Eq. (3.7) can be written

Fp (z? I)-1Is

where

e=(Z-Z, —I;)/V, .
Since in the limit ~„-~,

p=-x/E,

(4. 6)

(4. 7)

(4. 8)

in terms of atomic orbitais P(r) O. n the basis of
the virial theorem, v=--2e . Thus, if I q I is large
enough compared with the bandwidth, which is
often the case for d bands in real. transition metals,
we can define the energy origin e = 0 and put v= ~
when there are vacancies present. In this model,
each of the vacancies which are randomly distri-
buted in space has the volume of a unit cell. . Thus,
the atomic density per unit volume is less than
that in a perfect crystal. For example, the den-
sity of the Bernal structure is 86%% of that for the
ideal close-packed structure. It must be noted,
however, that in a real amorphous material the
vacant space is distributed more or less uniformly
over the entire solid rather than being confined to
lattice sites.

Because the transfer energy between host and
impurity sites does not enter the physical result
in the case of large atomic energy differences,
the model we examine is the same as that of Eq.
(1.1) for infinite e„. This limiting case is also ap-
plicable to impurity conduction if the main and the
impurity bands are well separated.

We consider the paramagnetic state, suppressing
the spin suffix, and taking the energy origin as e~
= 0. Moreover, in order to compare the present
theoretical results with those of Kimball and
Schrieffer, 24 we assume the same density of states
function

In Eq. (4. 9), the branch of square root is the one
that gives a positive imaginary part. Ez and (nz, )
defined by Eqs. (3. 2) and (3.3) can be written

E.=U. & .&[I-(U. -E.y/yl-',

(ns)= —(vy) 'Im f des . (4. 11)

p = —(I /v) Im F(e p ) (4. 12)

for various values of U~. y is fixed as y=0. 8.
As is seen, the B band, which is separated from
the A. band by disorder, splits when U~ becomes suf-
ficiently large. The critical value of U~ at which
splitting first occurs is given by

U(c) /y (2y)l /2 (4. 13)

This value is properly compared with the half-width
of the Bband, 8', which is given by

W/V, = (1-x')"'
Thus,

Us '/W= [2(1+x) ']'
which is not strongly dependent on x.

A. Spin Susceptibility

The spin susceptibility per B site is

X
= 2 crepe [I+Eye]

(4. 14)

(4. 15)

(4. 16)

where p is the local density of states at 8 sites giv-
en by pe = p/y and

eng.
BB

en~, ~
(4. 17)

By repeating similar manipulations as in Sec. III
[cf., Eqs. (3.4), (3.7), (4.8), and (4. 10)], we ob-
tain

Kes = v 'Im ln [L~(1 —L~)-'],
where L~ is the value of L = Es /Ue at the Fermi
energy. Since ImEs= 0, ImL~(1 —L~) '= 0. Thus,
(1+Res)=0 as in Sec. II. Hence we conclude again
that there is no instability of a paramagnetic state
for any e(k), carrier number, and concentration y
except possibly in the case of a precisely half-
filled B band to which the present treatment does
not apply.

The limiting value of X for a split B band as n~
—,
' is generally given by

Equations (4. 9) and (4. 10) determine F as a function
of e with parameters (ns), Us, and x. Using the
5' thus obtained, we evaluate the right-hand side
of Eq. (4. 11) and determine e~ self-consistently.

In Fig. 1, we show the density of states at the
Fermi energy

Eq. (4. 6) can be transformed as

e = Es —x/E+ [Vo+ E ] (4. 9)
lim y= 2pe(Lz —L~+ ', )

[URAL+(Lz

—1)] '. —

(4 19)
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y = 0.8

).0—

PVo

0.5—

FIG. 1, Density of states
at the Fermi energy for
various values of U3 for
fixed y= 0.8. The dashed
line corresponds to the per-
fect crystal with U& = 0.
The band splits at the cri-
tical value of Uz z/Vo

(2 ) i/2

0

(CF-Us/~)/Vo

In the large U~ limit, we have

lim 1im y = —p2s E/y,
U p fthm 1/2

where I' is to be evaluated at the upper edge of the
lower 8 band.

For the present state density given by Eq. (4. 5),
Eq. (4. 20) can easily be evaluated using Eq. (4.9)
and the fact that Es=-n y/F:

(4. 20)

lim lim X=2iLs/Vo(2+x)'~3(1-x) '~ (1+x) '.
(4. 21)

In Fig. 2 we show the spin susceptibility per 8
site in the case of a nearly half-filled I3 band, i.e. ,

X Yo/2P. &

I
/

/
/

/
/

/

/
/

I
I

I
I

I
I

/
I

/

I&

I

I

I
I
I
I
I

I
I
l

I
/

/
/

lim y~o/2iL2s (4.22)
n& 1/2

as a function of Ue/W and for some choice of y.
These are depicted by solid lines. U~ is not scaled
by Vobutby W [Eq. (4. 14)]. The same quantity in
the local Hartree approximation of Eq. (1.2), which
results in K» = —U~p~, is also shown by broken
lines. As is, explicitly shown, X is finite and be-
haves smoothly in the region where the Mott transi-
tion sets in. This feature exists for any band
structure, q(k), although we used Eq. (4. 5) for ex-
plicit evaluation, and is qualitatively in agreement
with the observation of Mott in relation to impuri-
ty band conduction.

B. Degree of the Localization

Confining ourselves to the case of a half-filled
B band, we consider the degree of localization de-

"Bt'W

FIG. 2. Paramagnetic spin susceptibility per B lat-
tice site for a nearly half-filled B band fEq. (4. 23)] as
a function of Uz/W (solid lines), where W is the B-band
halfwidth (1-x )~ Vo, which depends on alloy concentra-
tion. The susceptibility remains finite, even when the
bands have split. ~ Dashed lines correspond to the
Hartree approximation. Bands become split off at the
crosses on the solid lines.
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0.25 1)=—p 'lm f.~de F[1+ZF] Ee/Ue.

ln the case of e„-~, Eq. (4.26) becomes

D= —(gy) Im f ~de(E~/Ue)F.

(4. 25)

(4. 26)

0.20

0.15

0.10

0.05

I I I

3 4 5
Usiw

8 9

FIG. 3. Degree of localization defined by Eq. (4. 24)
for various values of y. The "resonance-broadening"
effect is included. The result by Kimball and Schreiffer
(Ref. 21) is shown by the dashed line.

fined by" "
(4. 23)

D = (KglV) 2 Illlf da G() (c) (8(/2().
(4. 24)

Averaging over possible distributions of B atoms
yields

If the electrons are itinerant and uncorrelated D = 4,
while D =0 when they are completely localized one
to each site. Equation (4. 23) can be transformed
as follows. In the present alloy analogy, the two-
body correlation at the ith site is approximated by
an energy dependent potential of the electron that
occupies this ith site. The decoupling procedure
already discussed in connection with Eq. (2. 1) may
be used to write Eq. (4. 23) in the form

It is easy to include the contributions from the "res-
onance broadening" at this stage. This is useful
in the present context in order to permit compari-
son of the result obtained here with those of Kim-
ball and Schrieffer (KS). Hubbard'o has shown that
the "resonance-broadening" eff ects are included
for a half-filled symmetric band if the scale of U~
is multiplied by 3. Figure 3 shows the degree of
localization as a function of Us/W, where W is the
reduced band width associated with the B band.
Resonance-broadening" effects are included as is

a comparison with the results obtained by KS. The
dashed line denoted by KS is taken from Ref. 24.
Compared with KS, the electrons in the present ap-
proximation are less mobile. In regard to the con-
centration dependence, the tendency to localization
is seen to be increased as the number of available
sites is reduced (y decreasing) even after the scal-
ing of U~ by W. Note that the electrons occupying
every B site are completely localized at infinite U~
in the sense

limD= 0.
Ug

V. CONCLUSION

The present paper has proposed a scheme for
treating strong correlations in a binary alloy hav-
ing a single nondegenerate tight-binding band using
the CPA and Hubbard's alloy analogy. It is shown
that in the case of a model amorphous metal rep-
resented by &„-~ in the Hamiltonian Eq. (1.1)
there are no ferromagnetic instabilities in the B
band for any density-of-states function, carrier
number, and concentration of B atoms, y. It should
be emphasized that the case of a precisely half-
filled split B band is not treated here since thepres-
ent formalism does not lead to unique results in
that case. It is shown in general that the spin sus-
ceptibility, y, per B site in the nearly half-filled
B band tends to a finite value at large U~ even
though the density of states at the Fermi energy is
vanishing. Explicit numerical results for X were
obtained in the artificial case of a one-dimensional
density of states (Fig. 2). The degree of localiza-
tion was also examined and is shown in Fig. 3.
The tendency to localization is seen to increase
with increasing excluded volume.
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Ferromagnetoelastic Resonance in Thin Films. I. Formal Treatment
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We have undertaken a theoretical study of the effect of magnetoelastic interactions on ferromagnetic
resonance in thin films as a possible mechanism for an appreciable anisotropy in resonance linewidth. This
study is based on a formalism developed by Tiersten, which is exact within the framework of the
quasistatic approximation. The resonance frequency and linewidth are calculated from the simultaneous
solution of the coupled magnetoelastic equations of motion under various magnetic and elastic boundary
conditions. We find that the magnetoelasticity has an appreciable effect on the resonance linewidth only in
the cases where an elastic wave undergoes a thickness resonance near the ferromagnetic-resonance

frequency, which we call the "ferromagnetoelastic resonance condition. " The above facts have made it
possible to develop a self-consistent approximate method, which greatly simplifies the mathematical
treatment without sacrificing the physical model. The agreement between the approximate and exact cal-
culations is excellent.

I. INTRODUCTION

The phenomenological Landau-Lifshitz (LL)
equation of motion~ for the magnetization 1R, a con-
tinuum variable, has been widely used in the study
of ferromagnetic resonance (FMR) in thin-metal
films. 5 The LL equation of motion is applicable
to strong ferromagnets, in which the )MI can be
assumed constant, ~'~ and in which the damping is
isotropic. '

A similar phenomenological equation of motion
can be written for the elastic deformation in the
same sample. The two systems of equations can
be coupled through a. set of quite general magneto-
elastic and elastomagnetic coupling terms, as has
been shown by Tiersten. " Approximate solutions

have often been obtained by treating the solutions
of the uncoupled equations as perturbations upon
each other. More realistic solutions are obtained,
however, if the coupled sets of equations are
solved simultaneously. At a later stage in the de-
velopment, it becomes possible to treat two sets
of polarizations as perturbations upon each other.
This simplifies the computations, while retaining
the essential features of the coupled system.

In this paper we apply such a method to evaluat-
ing the effects of magnetoeiasticity on the observed
FMR line shape in ferromagnetic-insulator films,
using the magnetic parameters corresponding to
nickel. A more accurate representation of the
nickel-metal film could be obtained by adding an
anisotropy field to the LL equation, ' and by in-


