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Explicit expressions for the first few terms of the 1/T expansion of the paramagnetic
susceptibility are exactly calculated as a function of the parameters of the magnetic Hamilton-
ian. The calculation is done without approximations such as molecular field. It is done for
a single crystal with one kind of magnetic ion in equivalent crystalline sites and can be usedwhen
Jor S is a good quantum number, or whenthe lowest energy states canbe described using an effec-
tive spin S '. The 1/T and 1/T terms of the susceptibility are calculated as a function of the
direction of the applied magnetic field for a crystal with an arbitrary symmetry, dipolar in-
teractions, and arbitrary exchange interactions between the magnetic ions. These interac-
tions, which can give rise to ferromagnetic or antiferromagnetic ordering, may be bilinear,
biquadratic or of higher order. The first term of the susceptibility is the well-known C/T
law, where C is the Curie constant. Two selection rules allow the determination of the second
term which depends only on the bilinear exchange and on the second-order crystal field. The
third term and the fourth-order saturation term are calculated in the case of a bilinear excharge
for a single crystal having at least three axes of symmetry, where each has at least a twofold
symmetry.

I. INTRODUCTION

The exact expressions for the first few terms in
the high-temperature series expansion of the para-
magnetic susceptibility have been calculated pre-
viously under special conditions. ' This type of
series expansion has been calculated in some cases
to a very high order in 1jT. Rushbrooke and Wood
have determined the first few terms of the para-
magnetic susceptibility for isotropic exchange in-
teractions between nearest neighbors only. ~ Dan-
ielss has calculated the paramagnetic susceptibility
for effective spin —, with dipolar interactions. The
calculation of Marquard is the most general in that
it corresponds to the case of long-range bilinear
exchange and second-order single-ion anisotro-
py. ' This calculation has been extensively applied,
to the rare-earth chlorides~ 8 and rare-earth hy-
droxides. '

The calculation presented here is more general
than the above since it starts from a Hamiltonian
including arbitrary high-order exchange and arbi-
trary crystal field terms. The most interesting
result of the present calculation is that the second-
order term of the susceptibility (or the constant
term of the reciprocal susceptibility~ depends only
on bilinear exchange and on the second-order crys-
tal field. It had previously been found that, within
the molecular-field approximation, this term was
dependent only on the second-order coefficients
of the crystal field. The fact that the second-or-
der term of the susceptibility is dependent on ex-

change only by its bilinear part is the principal
new result which is brought out by the present cal-
culation. This selection rule can be very useful.
It has been pointed out that for many magnetic
crystals the higher-order exchange interactions
may be important. ' 3 According to the results
presented here, they can be disregarded when giv-
ing an interpretation of the experimental value of
the second-order term of the susceptibility. Using
this simplification the theoretical Hamiltonians of
rare earths, or a given series of rare-earth com-
pounds, can be studied by comparing the theoreti-
cal and experimental variations of the anisotropy
of the paramagnetic susceptibility from one rare
earth to another; the theoretical variation will de-
pend only on a very small number of parameters.

The previous calculations gave only the initial
or zero-field susceptibility. In this paper calcula-
tions of the susceptibility in a nonzero magnetic
field defined by y(H) =M ~ H/H~ are presented and
two saturation terms are found. The first satura-
tion term depends only on the intensity of the mag-
netic field and is independent of both the single-
ion and exchange anisotropy, though in the molecu-
lar-field approximation it depended on the effective
field. '~ ~4 There is a selection rule for the second
saturation term: It depends only on the bilinear
and biquadratic exchange and on the second- and
fourth-order single-ion anisotropy.

In the present calculation the third-order term
of the susceptibility is obtained. Its constant part
is the sum of four terms. There are two "parasit-
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ic terms" closely related to the expression of the
second-order term of the susceptibility which are
uninteresting and which are the same as in the
molecular-field theory. The two "nonparasitic
terms" are (i.) the contribution of the crystal poten-
tial, as in the molecular-field approximation, "and
(ii) a contribution of exchange, which is the same
as found by Marquard~ 8 and which does not exist
in the molecular -field approximation. The latter
term corresponds, for an isotropic crystal, to the
first deviation from the Curie-Weiss law.

II. GENERAL EXPRESSION OF HAMILTONIAN

There are two kinds of interactions between the
magnetic ions in a crystal: the electrostatic and
magnetic interactions. The magnetic interactions
are dipolar interactions. The former can be di-
vided into Coulomb and exchange interactions.
When J (or (&) is a good quantum number (rare
earths, Fek', or Mn '), the crystal field, which is
the anisotropic part of the Coulomb interaction,
can be expressed as a function of the Stevens oper-
ator equivalents, 0, (J) and 0('(J), '5 which are
functions of J and are proportional to the real and
imaginary parts of the spherical harmonics within
a J manifold. We shall call p, the set of two in-
dices rag or ms. The exchange interaction between
two ions can be expressed as a function of the J
of the two ions and, since the 0,'(J) form a corp-
plete basis set of functions of J, it can be ex-
pressed as a bilinear function of the Stevens opera-
tor equivalents relative to the two ions. ' Then,
when J or $ is a good quantum number, the most
general form for the Hamiltonian of the magnetic
ions is

(fg), $A f E(f)ff «) l (g)u (j)

xnfyl «). (, )~(~)~ v)ol «) (J~ilol'v) (w~/

&(k& ((k& @k) ~gZi B k' +d &

i(a)i (x)

(1)
where the index i means the ion i; in the first
summation each pair of sites occurs only once. In
this expression g~ is the Landd factor, p, , the
Bohr magneton, and H the applied magnetic field.
The first term of the Hamiltonian represents the
exchange interactions, the second the crystal
field, the third the Zeeman term, and 3C„ the di-
polar interactions. We shall assume that there is
only one kind of magnetic ion in one crystalline
site. Then the coefficients n„-,«)„«»(», (,.) are de-
pendent only on the relative positions of the two
magnetic ions and the u', ('~&' are identical for all the
ions. We have n, z, «»«»(z»(z) =n, »(~»(&»«»«)
because the two coefficients have the same mean-
ing. The roles of the ions i and j are symmetrical

%pl (k)y, (f)l (g) p, (J) nial (j)p, (y)l «)g (j)'
The Hamiltonian has the following properties.

The only nonzero terms correspond to l(i) «2l+ 1
and I(j) «2I+ 1, where I is the orbital quantum
number of one of the magnetic electrons and &(h) «2l .
For rare earths, 1=3. If J is changed into —J,
0;g) i.s changed into (-1)'0, (J). The Hamiltoni. an
is invariant under time reversal. Then l(i) and

I(j) must be of the same parity, and l(h) is even.
The lowest exchange terms correspond to l, = l~

=1. They represent the bilinear exchange. z, y,
g is a right-handed orthonormal basis. When z is
the quantization axis 0((J) = Z„O& (J) = J„, 0&~(J)
= J„. When there is only bilinear exchange, the
Hamiltonian can be written

X= Z J( n(d Jd+Z Z g((('k&'0((k'&'(Jk)
(kj) fW j l(k)y (0)

-Zg~iLaJk, H+Xg . (2)

'/he components of the exchange tensor n, z are re-
lated to the coefficients defined in (1) by»(&„
=n&jqoqo, n&&,„=n„.,o», etc. Since there is one
kind of magnetic ion in one crystalline site, n, &„,
=n, z,„, etc. The tensor n, j is symmetric and
there is no Dzyaloshinskii term.

III. METHOD OF CALCULATION

The magnetization of a state I h) of the crystal
is Mk=gdi(a(hiE( J(ih). If ih) is an eigenstate of
the Hamiltonian associated with the energy W„,
then M„= —Fg(Wk) when referred to axes linked to
the crystal. '~ At temperature T, the magnetization
of the crystal is

-&k&&f(Wk) &

n

When replacing the exponentials by the first terms
of their I/T expansions one obtains the first
terms of the expansion of M.

All the terms in the expansion of the magnetiza-
tion are proportional to expressions of the type
gk Wk or to derivatives of such expressions:
gk Wk = Tr„R". Z is the Hamiltonian of all the
magnetic ions. Tr„ is the trace over all the
space of the entire wave function for all the mag-
netic ions of the crystal. When the Hamiltonian
X is expressed as a bilinear function of the Stevens
operator equivalents, then Tr„X" is a sum of
traces of products of spherical harmonics acting
on different ions, some of them acting sometimes
on the same ion. Such a product of spherical har-
monics can be written II( f(i), where f(i) is an op-
erator acting on the ion i. Since the trace of the
identity operator on a given ion is 2J+1, we have
the relation

Tr„ i = 2J+1 " ~& Tr„
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where N is the number of magnetic ions of the
crystal, i is the number of the ions corresponding
to the operators f(i), and Tr„[f(i)] is the trace of
the single-ion operator f(i) associated with the
corresponding ion i .By using relation (4) for our
particular problem, we transform traces on the
whole crystal into traces of single-ion J functions
that are easy to calculate.

I had previously established" that

Tr,.[O', (J)]=0, (6)

except for l = 0, because this trace must vary both
as X), and Sp. As a result, we have the following
two particular cases of (4) which are often used in

our calculation:

dipolar term is included in the bilinear-exchange
term. We shall display in Sec. VI the contribution
of the dipolar term to the susceptibility. M must
be an odd function of H. Then only the term of or-
der two in H of g„w„=Tr„(KI) can give a contri-
bution to M. This term is

Tr.,(&rr)=V', &rrTr,
„)~

Z )i, H)Z (i, &&)) .

Since Tr(J) =0, the only nonzero terms correspond
to i=j and

Tr„(3CN) = N(2J+1)" ig~~ii~a Tr„[(J~ H)3] .
This trace being independent of the direction of H,
we can take H II z. Then

p(i)»cr o (J )

for l0 and

= (2J+1)"-'Tr,.[O,'(J)]= 0 (6)
Tr„[(J H)'] = O'Tr„(J,') = —,

' J(J+ 1) (2J+ 1)H',

Tr„(Ã az) = N(2 J+ 1)N g ~&i)a
—', J'(J+ 1)Ha .

B. Second Term,

)n(i) g(j) (2J 1)» a" o„„(J,) o„,,(J,)

~(i) T, u(j)

if i 4j & I, 0 0, Ii T& 0 . ( I)

If the two operators act on the same ion i then"

ii(i) p, (j)

Since M is an odd function of 5, the only terms
of g„w~ which give a contribution are the terms of
second order in H. They are

Tr„Z V&r, Tr„Z &r,„&r
)yerm yerm

where g, denotes the sum over all permutations
of the operator V or X,„with the two operators
X~. A cyclical permutation of operators does not
change the trace, and we have

Tr., Z V&r~) =&Tr.,(V&r'),
yerm

ii(i) n(j)(2J+1) Tr„( ) (
~6i

(6)

»., ~ ~..~,"~=»r„(~,„~',).
yerm )

1. Calculation of Tr«(VXE)

Equation (2) then becomes

X„[s(w„')/aa.]
2kTg (2J 1)N

A. Derivation of First Term

We can write X=X,„+7+X~, where X,„ is the
exchange part of the Hamiltonian, V is the crys-
talline potential, and X~ the Zeeman term. The

IV. SUSCEPTIBILITY TO SECOND ORDER IN x/T

In the I/T expansion of (3) the first term in the
denominator is $„1= (2J+ 1)", since there exist
(2J'+1)" orthonormal states in the crystal. In the
expansion of M there are terms which contain
g„w„=Tr„(X). If we drop from the Hamiltonian
the constant terms corresponding to l=0, we de-
duce from Eqs. (6) and (V) that

Z w„=o.

We have

Tr„(VX',) =g', i ', Z Z Z Z u,",„",
a ~(a)f (a) a'

x Tr., [O,",„')'(J,) (J„H)(J„, H)] .

Since Tr(J) =0 and Tr[0,'(J)]=0, the only nonzero
terms correspond. to k=k'=k" and

Tr„(VKa») = ~g~ pa(2J+1)" Tr„[V(J ~ 6) ] .
In a rotation, the components of J transform into
one another according to the Qj representation of
the rotation group. All of the nine operators J„,
J, , J„(J„J,+ J„J,), etc. therefore transform into
one another according to the representation S,
x B,= &p+x), +Q~. Since these nine operators are
symmetrical, they transform into one another as
X)p +L)g Let Va„be the part of V of order 2& in the
Stevens operator equivalents. V~„ transforms as
5)z„, and Tr[V,„(J J~+ J8 J,)], where o, and P are
x, y, or g transforms as n2„x(B2+uo) when the
operators rotate and the dynamical states do not
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rotate. A trace is invariant and Q2„x (&3+~0)
contains $0 only if n=0 or 1. If we drop the con-
st:ant term of V, the only term giving a nonzero
trace is V2:

Tr„[V(J ~ H) ]=Tr„[VR(J H) ] . (12)

9'e have demonstrated the first selection rule: The
niagnetization depends only on the second-order
c,crystal field parameters to second order in the
r eciprocal temperature.

The expression of V2 as a function of the Stevens
equivalent operators is

l' 2
= [3J.' —J(J+ 1)1 uoz& + (J.' —J,')u2g + (Jx Jy + Jv Jx')uses

+(J~ J, +J,J~)ua, +(Jg J~+ J„Jg)ups, (13)

vehen z is the quantization axis. We can also
verite

Vq=u J„+u J +u«J~+u„(J„J„+J J„)
+ u„(J,J, + J,' J,)+u«(J J„+J„J,)

Qgg+ Qyy+ Qzg

V, =u J„'+u„„J,'+u„J.'+u„,(J„J,+ J,J„)

+u,g(J, J, +Jg J,)+u«(J, J„+J„Jg) . (16)

We see in Eq. (16) that the left and right products
of the vector J with the symmetrical matrix of ele-
ments Q,.~ are a given operator independent of the
coordinate axes. Then the Q„are the components
of a symmetrical tensor u. According to (15) u is
traceless and transforms in the S2 representation.
V2 can be written

V2= J ~ u ~ J. (17)

Using the properties of J, we obtain the equiva-
lent expression

V, =[3J,'- J(J+1)]~ +- (u„„-u„)(J„'-J,')

+ u„(J„J,+ J~ J„)+u„,(J~ Jg + J', J„)

+ u,„(J.J„+J„J,) . (16)

By identification of (13) and (18) we obtain the re-
lations

0
Q~~ = 2Q2g

0 2c 0
Qxx ~Q2x' Q2 g Q2g

Qyy
= 2Q2y ——Q2g —Q2g y

rj 0 2c 0 ~

—s J(J+ 1) (u„„+u„+u„), (14)

the constant term being determined by Tr(V2) = 0.
Kt can easily be seen that V2 is unchanged if we
add simultaneously to Q, Q„, and Q„a given
arbitrary constant. We can choose the constant
such that

2g 1 && 1c
+y = Q2g y Qyg

= Q2g y Q~ =Q28

Q2„+Q2y + Q2g = 0 q

0 0 0

where uz is the coefficient of Oz(J) of V~ when &r

is the quantization axis.
We know that a trace of a product of powers of

J„, J, , and J is nonzero only if the product has
the same parity in J„J„J,. Then we have

Tr[V&(J ~ H) ]=2 H,'Zu, Tr (J2J,')
e

(20)

+ Z Tr[(J J+J J)'].
(ea) e Ag

When we express the traces as functions of J,1~

we obtain

Tr„[V~(J ~ H) ]
J(J+1)(2J+1)(2J—1) (2J+3)

30
H ~ u ~ H

and

Tr„(VZ ~) = Ng~u~~(2J+ 1)"

X
J(J+1)(2J- 1) (2J+3)

30
H ~ u ~ H.

2. Calculation of Tr„(K, Kz)

(21)

This trace is a linear function of traces of the
general form

Tr„[O~«&&&&&(J&)O",&~~&&(J,) (Jz H) (J," H)],

with i&j. Since Tr [Of(J)]=0, the only nonzero
terms correspond to k'=i, k"=j or k'= j, k"=i;
using relation (4), we have

Tr„(Z,„.Z ~g) = 2g~u's(2 J+ 1)"-'

x Y'.Z Z Z n&(„&&„& &, u,„, &

(fg)keg l(f)u, (f) l(g)u (g)

x Tr„[O,'&&&»(J&) (J, ~ H)] x Tr„[O",&&~&&(J~) (J~ ~ H)] .

The components of J belong to s» and s, && K)1 con-
tains 5)p only if l =1. Then the only traces which
are nonzero correspond to l, = l~ = 1.

We have demonstrated the second selection rule:
The magnetization depends only on bilinear ex-
change to second order in the reciprocal tempera-
ture.

When expressed with the tensorial expression for
bilinear exchange [Eq. (2)], the expression for
Tr„(Z,„Z~) can be written

Tr„(Z„Z~z)=2g~y, s(2J+1)" 3 Z Z n&& ~
($j)f 0 j e, g

x Tr„[J (J ~ H)]x Tr„[J~(J~ H)] .
(23)

Let us define N=g«I&&~J n„.. Since we have
Tr (J,Z~) = —', J(J+ 1) (2J+ 1)6,&, we find
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Tr„(K,„R~) = —,g ~ p ~~(2J+ 1)"J'(j+ 1)'H ~ N ~ H .
(24)

C. Expressions and Properties of Magnetization and Susceptibility

Using Egs. (11), (22), and (24), we obtain from
E|I. (10) the explicit expression of the magnetiza-
tion,

C 2J(j+1)
T 3NkT

(2J—1) (2j+3) 1
10kT T

C = Ng ~p~ j(j+ I)/3k is the atom gram Curie con-
stant when N is the Avogadro number. The sus-
ceptibility, defined by y= (M ~ H/H ), is

C 2j(J+1) H ~ N H
X T' 3NkT Ha

(2J —1) (2j+3) H ~ u ~ H 1

104T Ha ~T

The two selection rules are in evidence in the ex-
pression for the susceptibility; the exchange is
represented only by the tensor N, which is the
sum over all the pairs of magnetic ions of the bi-
linear-exchange tensors, and the crystal field only
by the tensor u, whose elements are the coeffi-
cients of the second-order term of the crystal
field. The susceptibility is a linear function of the
bilinear-exchange and crystal field parameters and
is a quadratic function of the direction cosines of
the magnetic field, but is independent of its inten-
sity. Since there is one kind of magnetic ion in one
crystalline site, we have also N =-,'NZ«, n„: The
tensor N is proportional to the sum of the ex-
change-interaction tensors between one ion and all
the others.

In the screened point-charge model, when the
magnetic ions are rare-earth ions, if q„ is the
charge of one ion in the sublattice r of the crystal
and c„ the screening coefficient relative to this
sublattice, we have

p n)P) —(&(/3)6 pa&
u„~ 2 e&q~ q Crqr 5

r (Fr
(2&)

In the above equation e is the charge of the elec-
tron, (~') is the average value of the square of the
distance between a 4f electron and the nucleus of
the ion, ~, is one of the coordinates of the ith ion,
y, is its distance from the origin, and ~& is a co-
efficient tabulated in Ref. 15. Freeman and Wat-
son have calculated (g ) for the 4f electrons of
rare earths. ~e

The reciprocal susceptibility is given by

1 1 2j(j+1) H ~ N ~ H

C 3Nk H

(2J-1)(2J+3) H ~ u ~ H 1
10k a'

We shall show in Sec. VIII B that the 1/T term is
relatively small when the relative anisotropy of
the susceptibility is at most approximately one.
In a first approximation the reciprocal susceptibil-
ities corresponding to various directions of the
magnetic field are parallel straight lines whose
slope is 1/C.

Expression (28) for 1/g is the same as the ex-
pression obtained in the molecular-field approxi-
mation in the presence of bilinear exchange. ~' But
in the molecular-field theory we could not calculate
the contribution of the higher-order exchange
terms, whereas with the exact calculation we have
established that the contribution of these terms is
zero.

Expressions (26) and (28) both give a quadratic
variation of y and I/y with the direction cosines of
the magnetic field. If the relative anisotropy of the
susceptibility is important, )( and 1/)( cannot both
be quadratic functions of the direction cosines of
the field. Expression (26) for y is independent of
the intensity of the magnetic field and is valid for
a weak magnetic field. When 5 is small, M is
small and only an expansion of M or g or of the free
energy 6: with respect to 0 has meaning. Since
M= —'V@6' (Ref. 16)

1 8'P
H „~&H sHB

Then for a weak magnetic field, the angular
variation of y is the correct one. The initial sus-
ceptibility always varies exactly quadratically with
the direction cosines of the applied magnetic field,
and the susceptibility has practically the same
angular variation when it is very close to the initial
susceptibility. Experimentally, it is generally
the case and we shall show in Sec. VIII 8 that, in
agreement with the experimental results, the first
saturation terms are small in typical magnetic
fields. For instance, in rare earths where the
relative anisotropy of the susceptibility is impor-
tant, the susceptibility varies quadratically with
the direction cosines of the magnetic field. ~9 In
expression (28) for I/y, the complementary term
is certainly not negligible for some directions of
the applied magnetic field.

When the crystal has at least three axes of
symmetry of at least second order, they will also
be the common axes of symmetry of the tensors
N and u. The reciprocal susceptibility along one
of these symmetry axes x, y, or z will be

1 1 2J'(J'+ 1) (2j- 1) (2J+ 3)
C 3Nk' 10k

+0 — . 29



EXACT CALCULATION OF THE P ARAMAGNETIC. . . 3231

This more simple expression will be adequate for
most experimental situations, since most of the
crystals with one kind of magnetic ion in one
crystalline site have three axes of symmetry.

When the exchange energy is more important
than the crystal field energy, we shall see in Sec.
VIII 8 that the convergence of the reciprocal sus-
ceptibility is more rapid than that of the suscepti-
bility. In this case, which corresponds in partic-
ular to heavy rare-earth (from Gd to Er) single
crystals, it is better to use expression (29) for
1/X along the symmetry axes. Along other direc-
tions the susceptibility will be given by

2 2X= Xx o'e+ XyPH+Xg'4 ~ (8o)

Bare-earth metals have hexagonal symmetry.
Heavy rare earths (gadolinium, terbium, dyspro-
sium, holmium, erbium) have ordering tempera-
tures between 85 K (erbium) and 298 K (gadolin-
ium). There is a very strong magnetocrystalline
anisotropy between the basal plane and the sixfold
c axis. There is an important anisotropy of the
susceptibility'9 except for gadolinium, which is in
an 9 state and has therefore a small anisotropy.

If we take z parallel to the c axis and x, y in the
basal plane, Eq. (29) can be written in this partic-
ular case, using (19) and (20),

1 1 2J(J+1) (2J -1 (2J+3)
C 3' " 5k 2»

1 1 1 2J(J+ 1) (2J'- 1) (2J+ 3)
C 3Nk 10k

The susceptibility in other directions is given by
(80). Experimentally, the thermal variations of
the susceptibilities are represented by almost
parallel straight lines whose slopes are close to
1/C. This is in agreement with the fact that the

where ~H, P~, y~ are the direction cosines of the
magnetic field. For most insulators with rare-
earth ions, the crystal field energy is more impor-
tant than the exchange interaction, and it is better
to use the expansion of y for an arbitrary direction.

The Curie temperature along one of the symme-
try axes is

2J(J+ 1) (2J -1)(2J+3)
urn " 10'

When the crystal is cubic, the susceptibility cannot
vary with the squares of the direction cosines of
the magnetic field and is therefore isotropic; N„„
= N~~ = N»» and uo~ = 0.

V. APPLICATION TO RARE-EARTH SINGLE CRYSTALS

1/7 term is expected to be small, as developed
later in Sec. VIII B. The experimental data on the
anisotropy of the susceptibility give one equation
with two unknown variables: N„- N„„which rep-
resents the contribution of the exchange anisotropy,
and u2„ the contribution of the single-ion anisot-
ropy. Equations (82) are identical to the one en-
countered in the molecular-field approximation.
I had already established these equations within
this approximation in a previous article, ' and from
the measurement of 1/X, and 1/X„by Aleonard, I
had deduced the thermal variation of the parameter
u02, (with the assumption of a small exchange an-
isotropy) for Tb, Dy, Ho, and Er.~g

A. Determination of Contributions of Single-Ion and Exchange
Anisotropy from a Theoretical Hamiltonian

We can use the new selection rule according to
which the paramagnetic susceptibility depends only
on the bilinear-exchange terms to obtain new in-
formation from the experimental data.

The theoretical exchange Hamiltonians estab-
lished for rare earths (see Refs. 20-22 and refer-
ences included there) contain bi linear-exchange and
higher-order exchange terms. The anisotropy of
the paramagnetic susceptibility will depend only on
the bilinear-exchange parameter and on the param-
eter uz, . In the screened point-charge model the
variation of g2, from one rare earth to another is
known, since it is imposed by group theory [it cor-
responds to the variation of the coefficient ~~ of
Eq. (27)]. The variation of the bilinear-exchange
parameter from one rare earth to another is im-
posed by the theoretical Hamiltonian and is differ-
ent from the variation of u2, . From a comparison
between the experimental values of the anisotropy
of the susceptibility for the different rare earths,
we could separate the contribution of the single-
ion anisotropy from that of the exchange anisot-
ropy. For this study, we need very accurate ex-
perimental data, 23 and we must take in account very
carefully the variation of the lattice parameters
from one rare earth to another, the thermal ex-
pansion, and magnetostriction effects. ' The ex-
perimental variation of the anisotropy of the pa-
ramagnetic Curie temperature from one rare earth
to another is not very different from that of u2„
except for holmium and erbium. 25 It can be due
either to the fact that exchange anisotropy is weak
or to the fact that the variation of the bilinear-ex-
change parameter from one rare earth to another
is similar to that of g2, . In any case the relative
value of exchange anisotropy compared to the aver-
age value of exchange is probably not very impor-
tant, since the variation of the average paramag-
netic Curie temperature is not far from being pro-
portional to J(J+1)(gz —1)~, which should be the
case if the exchange is isotropic.
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B. Determination of Two Kinds of Anisotropy from
Susceptibihty of Solid-Solution Single Crystals

In a random substitutional solid solution contain-
ing one kind of magnetic ion and one kind of non-
magnetic ion on the same crystallographic site A,
there are clV magnetic ions and (1 —c)N nonmagnet-
ic ions on A. . If all the ions on the site A have the
same valency, the crystalline potential on one
magnetic ion is independent of c. When we perform
the calculation of the paramagnetic magnetization
as in Sec. IV, we obtain

cC - 2J(J+1)—
C

(2J-1) (2J+3) 1
10kT T

where N is the Avogadro number and N, is the sum
of the bilinear-exchange tensors associated with
all the pairs. of magnetic ions of the solid-solution
single crystal.

In the following it is presumed that in the alloy
under consideration the exchange interaction be-
tween two magnetic ions is independent of the other
neighbors. This approximation may be used when

the magnetic and nonmagnetic ions of the site A

have almost the same size and the same chemical
properties, and when the magnetic moments are
well localized. The bilinear-exchange tensor n, &

is only a function of the vector r,&
joining two mag-

netic ions p and j and is independent of the position
of the pair in the crystal. There are N pairs of
atoms of the site A corresponding to a given r„.:
We can choose N origins, and since the sites A are
identical, at the end of each vector r„.there is
another atom of the site A. Among the N origins,
there are cN magnetic ions. If the magnetic ions
have a perfectly random distribution without any
segregation, among the cN vectors r„.whose ori-
gin is a magnetic ion, there are e&& cN= c N vec-
tors whose end is also a magnetic ion. There are
c N pairs of magnetic ions for any value of r&& .
Then N, is related to the tensor N of the pure
magnetic crystal (c= 1) by

N, =g N. (34)

The explicit variation of the magnetization with
concentration is given by

cC 2J(J+ 1)—
M

T
H c 3' T

N H

(2J—1) (2J+3) — 1
10kT T

and the reciprocal susceptibility

1 1 . 2J(J+1) H ~ N H

cC 3' H

(2J-1) (2J+3) H ~ u ~ 1'1 1
10k H

The exchange contribution to the reciprocal suscep-
tibility is constant, and the crystal field contribu-
tion is inversely proportional to the concentration.

The exchange anisotropy could then be dis-
tinguished from the single-ion anisotropy by the
measurement of the paramagnetic susceptibility of
single crystals of solid solutions with different
concentrations of magnetic ions. One could dis-
tinguish the two anisotropies of rare-earth metals
from the study of single crystals of alloys of rare
earths with lanthanum, lutetium, and yttrium.
This method should have the advantage over the
method of Sec. VA of being perfectly rigorous and

of needing less accuracy on the measurements of
the paramagnetic susceptibility. The error due to
the variation of the lattice parameters from one
alloy to another should be smaller. Theoretically
the average paramagnetic Curie temperature must
be proportional to the concentration. The occur-
rence of segregation could be determined from the
experimental variation of the average paramagnetic
Curie temperature with the concentration.

VI. DIPOI.AR MAGNETIC INTERACTIONS

In all the expressions above for the magnetiza-
tion and susceptibility, the contribution of the di-
polar interaction does not appear, because we had
assimilated the dipolar Hamiltonian with a bilinear-
exchange term. Its contribution is included in the
exchange tensor N.

When J is a good quantum number, we can sepa-
rate the tensor N in a pure exchange tensor N,„
and a dipolar tensor N«, with

I 3r~& && r~&
Nm, =8&a ~ s —

5 (3'1)
(5 j&fA j

where I is the three-dimensional unit tensor and

r, &
&&r,

&
the tensor product of the vector r&& by it-

self. The explicit contributions of the dipolar in-
teractions to the magnetization and susceptibility
are obtained by replacing N«, by its value given
by Eq. (37).

When there is one kind of magnetic ion in one
crystalline site, N«, is the product multiplied by
—,'N of the sum of the interactions of one magnetic
ion with all the others, which can be calculated by
the Lorentz method. The sum of the interactions
between one atom and the atoms inside a small
sphere centered on this atom is usually calculated
numerically. The other atoms are assimilated in
a classical distribution of magnetic moments which
create the demagnetization field H„. The contri-
bution of H„, to the magnetization M is obtained in
(25) by replacing H by H+ H~, . The dipolar inter-
actions can be neglected for spherical rare-earth
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single crystals, except for gadolinium, which is
in an $ state.

VII. FICTITIOUS SPIN

For many rare-earth insulators, the splitting
of the fundamental J level of the free ion by the
crystal field is much greater than kT even at rela-
tively high temperatures. At room temperature or
below, we cannot use the first terms of the expan-
sion (10) of the magnetization with respect to I/kT
inside the «1 manifold because in thl. s case this ex-
pansion converges much too slowly, as we shall
see in Sec. VIIIB. %hen the magnetic ions are
transition ions which are not in an S state (other
than Fe~' or Mn2') the crystalfieldsplitting is much

bigger than the spin-orbit coupling and 4 is not a
good quantum number. In all these cases, which
represent many magnetic substances, we cannot
use the exact expressions of the magnetization and
susceptibility obtained in Sec. IV.

Very often these magnetic ions have a fundamen-
tal multiylet sylitting much smaller than kT at the
temyeratuxe where the measurements are per-
formed, and the higher multiylets are at distances
much greater than kg. In this case the energy lev-
els are often represented as the eigenstates of a
syin Hamiltonian expressed as a function of a ficti-
tious spin 5', whose components obey the commu-
tation rules of the comyonents of a real spin.

The most general spin Hamiltonian can be writ-

ten in the same way as a true Hamiltonian:

(S2 (()u (()) (/) g (g)
(Cg34~y ~(C)f (C) S(g)y, (y)

)(0 la (j) (s &) 0 la (J)(s &)

+Z Z u)(a')"' O)(I))'(SI) -Z H g ~ SI. ,
l (k)If Q)

(33)
when the dipolar term is assimilated to an ex-
change term. The coefficients n&» «» «)«»~(z)
and I,'~(~()" are related both to the coefficients of
real exchange and real crystal field by equations
which can be very complicated. The Landd factor
g~ is replaced by an anisotroyic tensor g. The
time reversal does not necessarily reverse 8'.
Then there are no selection rules on the yarities
of E, , l~, and E„. The g tensor is real and sym-
metrical and has at least three pexpendicular axes
of symmetry.

%'e have calculated the first terms of the mag-
Qetl, zation in the same way as in Sec, IV. The co-
efficients u'z of the fictitious second-order crys-
tal field have the same properties as the real sec-
ond-order crystal field coefficients, since they are
mathematical properties. In particular, gg„'„+g'
+g' =0. Generally, the tensors g, N'=g«»(»n('&,
and u&have not the same symmetry axes. The
magnetization is given by

as'(s'+1) —, - (as' - 1) (as'+ 3)—
M =

T g 8-
SNkT g N' g H —

IOkT g u' g 8 + 0 ~T

and the susceptibility ts defined by g= M
' H/H ~ 1.e.,

aS'(S'+ I) H g ~ I' ~ g ~ H (aS'- 1) (aS'+3) H ~ g ~ u' ~ g ~ H 1
6' H ~ g' ~ lI 3' 8 ~ g' ~ 8 10k 8 ~ g

(40)

In these expressions,

Np~s'(s'+ 1)
3k

is the part of the Curie constant independent of g.
They are very similar to the expressions inside
the J manifold. Though there are no selection
rules on the parities of /, , E~, and E~„ there are the
same selection rules on the magnetization and re-
ciprocal susceptibilities at the above orders in I/T
as before. The magnetization to second-order in
I/7 and the reciprocal susceptibility to zeroth or-
der in I/T are dependent only on the fictitious bi-
linear exchange and on the fictitious second-order
crystal field. But these coefficients may be de-
pendent on various order coefficients of real ex-

change and real crystal field.
Vfhen the crystal has at least three perpendicular

axes of symmetry x, y, z, along one axis of sym-
metry z we have

1 1 as'(s'+1)
Xs g ga

Cg

(as' -1)(as'+3)

' VIII. SUSCEPTIBILITY TO THIRD ORDER IN RECIPROCAL
TEMPERATURE

A. Expressioa for Susceptibihty

From E(I. (3) we deduce that the third-order
term of the magnetization along an axis z is



PIERRE BOUTRON

1
z, & (2J+ 1)"ks Z

3

Z. (r(+"&/». ) ()'„ |re) (Z. (r(""&r'»'))
)24 4(2J+1)"
(42)

There is no selection rule for the contribution of
the different exchange terms to the third-order
term. Since the general expression of this term
should be very complicated, we have calculated the

third-order term only in the case of a bilinear ex-
change and for a crystal with at least three axes
of symmetry x, y, z of arbitrary order.

The calculation of the third-order term is simi-
lar to the calculation of the preceding terms; it is
done using the relations given in Sec. III. It is
available on request.

The susceptibility along the z axis, X, = M, /H„
is given by

C 2J(j+1) (2j'-1) (2j+3) 0 1 4j (j+1) a 4 Qp»

27r,.((r'z,')+Tr,.(&'J.&rJ.) Tr,.((r') z(Jr()
(

r
) r g, r r

)2j(j+1)(2J+1) 2(2J+1) 45N ()~)(z;

2J +2J+1 2 2 2 11
a ~ H +o~~ (43)

T )

and the susceptibilities along x and y are obtained
by replacing in the expression of y, the index z,
by z and y, respectively. Since g, y„and ~, are
independent of the direction of the magnetic field
to this order in 1/T, the susceptibility X =M ~ H/
H given by

2 2
X =Xz&a+X»f s+ Xz ~it

varies as the squares of the direction cosines of
the magnetic field.

The reciprocal susceptibility along the z axis is
given by

1 1 2J(J+ 1) (2J —1) (2J+ 3) 0 1 (2J —1)a (2J'+ 3)a Oa 2Tr„(V2ja)+ Tr„(VJ,VJ,)
C 3Nk '* 5k * k T 25 ' 2J(J+1) (2J+1)

Tr„(V ) J(J'+1) (2j +2J+1) g 2p 2 g 2 2J +2j'+1 2 a 2 1

2(2J+ 1)
rgzn+ (za() +

3O ZgVa +O a 44

The contributions of the exchange and the crystal-
line potential to the paramagnetic Curie tempera-
ture 8~»=8~,„,,+8~ z along the z axis are

(2J-1) (2J+3)
pv, z

re are contr
to the term in 1/T~ of X, and in 1/7 of 1/X, . They
bring no new information compared to the terms
of lower order. It could be predicted that these
terms should appear either in X, or in 1/X by com-
parison of the expansions of X, and 1/X„ they can
be considered as "parasitic terms. " They are the
same as in the molecular-field approximation.

Ne remark that the nonparasitic coefficient of
1/k2T in expression (44) for 1/X is just the oppo-
site of that of 1/k'T in expression (43) for X,.

The contribution of the crystal field to the sus-
ceptibility in third order in the reciprocal tempera-

I

ture appears in Tr„(V Ja), Tr„(VJ,VJ,), Tr„(V ).
This contribution is the same as in the molecular-
field approximation. ' It is not necessary to give
a general explicit expression of Tr„(V J,') and

Tr„(VJ,VJ, ) as functions of the coefficients of the
crystal field. In each particular case we obtain
explicit expressions from the traces of products
of components of J. ~ The expression for the third
term is

Tr,.(V') =Z (n', )'Tr,.[O;(J)'] .

The summation

E aEr'„, +Z r!..r),(i j)i & j 0. Ig

which can also be written

Z [3n),„+4(n(„„en(,, )+n(,. +n(„,+2n),„,],2 2 2 2 .2 2

(&g)i ~g

represents the contribution of the exchange to the
reciprocal susceptibility in the 1/T term. This
contribution does not exist in the molecular-field
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B. Relative Magnitudes of 1/T Term and 1/T Term in Series
Expansions of X and 1/X, Respectively

8~,„,is of the order of magnitude of the average
paramagnetic Curie temperature 8~ . Very rough-
ly, 48~„, is of the order of magnitude of the split-
ting of the 8 level by the crystal field. The non-
parasitic contribution of the crystalline potential
to the coefficient of I/)PCT in the reciprocal sus-
ceptibility is of the same order of magnitude as
the parasitic contribution. When the exchange is
isotropic the nonparasitic contribution of exchange
to the coefficient of I/k~CT is of the order of mag-
nitude of

or

J n1;.4 2

501

The parasitic contribution is of the order of mag-
nitude of

2

T & Nli I 2 II&/ + & Ill lily)
f g1 j81,k 41

When there are long-range exchange interactions,
the contribution of the off-diagonal terms will be
very important, and the nonparasitic contribution
will be small compared to the parasitic contribu-
tion of the exchange. This could be predicted,
since in this case the molecular field is a good
approximation. When there are short-range ex-
change interactions, the two contributions will be
of the same order of magnitude.

Then in every case the 1/T term in the series
expansion for X is of the order of magnitude of its
parasitic terms. When the exchange is more im-
portant than the crystalline potential (8~,„,& 8~„,),
the ratio of the 1/Ts term to the 1/T term is of
the order of 8~JT. The 1/Ts term can be ne-
glected only at temperatures much higher than 9~
for which 8~ /T «1.

In the first-order term of the expansion of I/~„
the parasitic term 8~,/T and the nonparasitic

approximation. 1 It corresponds to the first devia-
tion from the Curie-Weiss law for the initial re-
ciprocal susceptibility of an isotropi. c single crys-
tal.

The last term is proportional to H2. It is the
first saturation term. It is different from the first
saturation term obtained in the molecular-field
approximation, where H is replaced by H,«,
H fg being the effective field which is the sum of
the applied magnetic field and the molecular field.

Thus we see that one of the reasons for calcu-
lating the third-order term of the susceptibility is
to find deviations from the molecular-field approxi-
mation.

contribution of the crystal field are comparable,
and the contribution of exchange will be generally
smaller than or of the same order of magnitude as
the two other terms except when there are impor-
tant short-range exchange interactions. Then the
first-order term will be small compared to the
zero-order term when the splitting of the funda-
mental J level is smaller than OT. This is equiva-
lent to the condition that T is larger than the an-
isotropy of the paramagnetic Curie temperature.
T must also be not too close to the ordering tem-
perature. Roughly, these conditions are fulfilled
when the relative anisotropy of the susceptibility
is smaller than 1. For rare-earth single crystals
they are satisfied from a temperature of about 50'
above the ordering temper ature.

When the exchange energy is more important
than the anisotropy energy, or when the relative
anisotropy of the paramagnetic Curie temperature
is smaller than 1 (case of rare-earth metals), it is
better to use the two first terms of the reciprocal
susceptibility than those of the susceptibility.

The contribution of the term proportional to H2

to the first-order term in the expansion of I/i» is
comparable to the other parts of the first-order
term for a magnetic field of the order of 10~ Oe
when the anisotropy of the paramagnetic Curie
temperature is of the order of 10 K. Then, for the
usual magnetic fields, the convergence of g and of
I/)( are almost the same as the convergence of the
initial y and I/i&& respectively, except when we
are a few degrees above the ordering temperature.

C. Rare-Earth Metals

In the case of rare-earth metals the first-order
term of the expansion of I/» can be observed in
accurate measurements between the ordering tem-
perature and room temperature. In the analysis
of the data, one must take care of the variation of
the paramagnetic suscepti. bility due to the variation
of the lattice parameters with the temperature.
Since the convergence of the expansion is not known

accurately, it is necessary to check carefully
whether the measured term does vary as 1/T.

In gadolinium, we can neglect the anisotropy.
From the 1/T term of I/i» we can deduce the quan-
tity g«~&«~ n&~J. The knowledge of Z«J&«~ n, ~ and

g«z&«J n, z could give some new information on the
variation of the exchange interactions with inter-
atomic distances. In other rare earths, the 1/T
term could give us some information about exchange
and single-ion anisotropy.

IX. SECOND SATURATION TERM

The fourth-order term of the 1/T expansion of

y contains a constant term and a term which is
quadratic in the magnetic field. The latter is the
second saturation term, which depends both on the
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intensity and the direction of the magnetic field.
By calculating this term, we have found that it has
two interesting properties: It depends only on the
second- and fourth-order crystal field parameters

and on bilinear and biquadratic exchange, and it is
not too small to be measured.

From Eq. (3) we obtain the fourth-order term
of the magnetization along the z axis:

( )~ (& ((«„/BH) E w „)''„(&,(,('„ /&B) ) ((', K„,(sw„, /&H ))
(2j+ 1)"k T 120 12(2j+ 1) 12(2j+ 1)" (45)

The term g„&~ and the part of g„W~ which is de-
pendent of H give contributions to the second sat-
uration term, which depends only on the second-
order crystal field and on bilinear exchange. The
term Z„W~6 = Tr(X') contributes to the second sat-
uration term by

Z Tr„(BC,„z~g) = 5Tr„(X K~)
perm

5 Tr„(VSC~)= 5Tr„(VZz) Tr (I/164)

=g z&a
fyf2$3f4fg

xTr„[ 0,"(J,,) (J,~
~ H) (J, ~ H)

x(J, ~ 11) (J« ~ H)] .

The nonzero traces of this sum correspond to two

cases. In the first case, two indices are equal to
i& and the two other are equal to each other. It
gives a contribution which depends only on the sec-
ond-order crystal field. In the second case, all
the indices are equal. Each term of g ~ H) trans-
forms in a rotation as &&&&L)&&&X)z&&$& which con-
tains , &„n2, 3, $4. Since the trace must
transform as L)0, it is nonzero only if E= 2 or 4.
We have thus demonstrated that the second satura-
tion term is dependent only on the second- and
fourth-order crystal field.

The expression of Tr„(X,„X4z) is

Tr„(X,„X',) =g4, i(4s Z Xi
(f j)fPj l ($)if (f)

n(J) (())( (()) (g)g (/)
t(f)v Q)

x Q Tr„[0',(", )'(J)0((",)'(J)
kgk2k3k4

x(J, H) (J& H) (J& H) (J& H)] .

Since (J» H) (J~2 H) (J@ ' H) g& H) contains only
terms varying as $0, S» S» X)~, Q4, the repre-
sentation n, being present for k, = kz = k, = k4, l(i)
&4 and l(j) &4. In order that a trace be other than
zero when l(i) = 4, it is necessary that all the k's
should be, equal to i. In this case, however,
'Zr [0,"((/&))(J)]= 0 should be isolated, and then all the
traces are zero. Then l(i) &3 and l(j) &3. If l(i)

X,~ 4-——
3 z j(j+ 1) (2j + 2J'+ l)g ~pa2 2 2

x[N„+„+N,+„+Nag(H~g+H ))+

«(L( L( 5)), «(«H «g+„+ [B tl )]) .

(46)
In the following b = (2J + 2J'+ 1/30k )g &i)~ is the
coefficient of the first saturation term in the ex-
pression of I/X, and cz, (H) is the coefficient of

(C/T) (1/T ) in )(„4. The second saturation term
of the reciprocal susceptibility is

= —-~ [- 28)„bH —c2, (H)],
Xg

whose explicit expression is

=0k3T2 —
4 N

J'(J+1)(2J +2j+ 1)gyps(
2 2 2

XZ S,2 Ck' T

)((N„,H ', + N,+,+ N„H 2) +—2100
(2j —1) (2J'+ 3)

(47)

x(16j' 16j 3) ' ' 'H'-'g

elan

J3+2s —
42O

«(((I' ~ (((+ 5) («,'W', , ,'/('. . .',a,')), (48)

In the expressions (46) and (47) we cannot distin-
guish clearly between parasitic and nonparasitic
terms. The term c2, (H) is of the same order of
magnitude as 2jg~, bH2. The ratio of the second sat-
uration term to the first saturation term is then of
the order of magnitude of

=3, thetraceisnonzeroonlyif 3 4 areequalto i and
the other equalto j. Inthis case l(j) = l. If l(i)= 2,

l(j) = 2, since 0 &l(j)- 3 and l(j) is of the same
parity as l(i). The possible cases are l(i)= l(j) = 1,
l(i)= 1, l(j)=3 or l(i)=3, l(j) =1, and l(i) =l(j) =2.
We have demonstrated that the second saturation
term is dependent only on a bilinear and biquad-
ratic exchange.

We have calculated the second saturation term
in the case where there is only a second-order
crystalline potential and a bilinear exchange, and

where the crystal has at least three axes of sym-
metry of order at least two. The contribution of this
term to the susceptibility along a symmetry axis is
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2&pgbH TC 2epg

For rare-earth metals at room temperature the
two saturation terms are of the same order of mag-
nitude. Then the second saturation term can be
measured, as well as the first, in magnetic fields
of the order of 100 kOe. ' In this way it should be
possible to obtain new information on exchange and
single-ion anisotropy if very accurate measure-
ments are available. The effect of magnetostric-
tion must be carefully evaluated.

X. CONCLUSION

The expression of the susceptibility obtained by
this general method should be very useful for the
study of rare-earth-metal single crystals. Using
the two selection rules for the constant term of the
reciprocal susceptibility, one can distinguish be-
tween single-ion and two-ion anisotropy. The term
in 1/T and the second saturation term can give
other useful information.

More generally, the expressions for the suscep-
tibility obtained here can be useful when the split-
ting of the fundamental J level is smaller or of the
order of kT and the first excited level is much
higher than k T, or when there is a fundamental
multiplet described by a fictitious spin, whose dis-
tance to the first excited level is much higher than
kT. These expressions are not valid at tempera-
tures close to the ordering point.

This calculation can be used for the following
substances when one kind of magnetic ion is on
equivalent crystalline sites. In single crystals of
rare-earth metals or of ordered or disordered
compounds of rare-earth metals with nonmagnetic
metals, the exchange and the crystal field interac-
tions are generally important, and the splitting of
the fundamental J level is generally smaller than
kT above the ordering temperature. The method
of studying the compounds is analogous to that to be
used for the pure rare-earth metals.

Among the rare-earth insulators, there are sub-
stances in which the splitting of the fundamental
8 level is greater than kT at room temperature (as
rare-earth hydroxides or rare-earth chlorides),
and others in which the splitting of the fundamental
J level is on the order of kT or smaller than kT
at room temperature (example: rare-earth oxy-

sulfides). In the first case, the exact expressions
for the first few terms of the susceptibility can be
used for determining the exchange parameters for
gadolinium which is in an S state, and it can be
used with a fictitious spin for other rare earths.
In the second case, the exact expressions for the
first few terms of the susceptibility expressed in
terms of the parameters of the real Hamiltonian
can be used for all the rare earths. But the ex-
change interactions are generally small and thus
the ordering temperatures are weak compared to
the splitting of the J level. Typical examples are
the rare-earth oxysulfides. For these substances
the ordering temperatures, when they exist, are
on the order of a few degrees kelvin. The expan-
sion of the susceptibility can be used at room tem-
perature. From the constant term of the recipro-
cal susceptibility we can deduce ua immediately.
But since the exchange is small, the exact expres-
sion for the initial susceptibility has no advantage
compared to the molecular-field approximation.
Although it requires the use of a computer, the
Van Vleck method' '" is more advantageous be-
cause it can give approximate values of all the
crystal field parameters. ' '" But in this case the
measurement of the second saturation term could
be very useful, because it should give the fourth-
order crystal field parameter without a computer,
and could be used to check the results coming from
the Van Vleck method or from the spectroscopic
measurements.

The exact expression for the leading terms of the
susceptibility can be used for the determination of
exchange parameters in insulators containing Fe '
or Mn ', which are in an S state, as has been done
for Gd(OH), . For other compounds containing
transition ions, the exact expression for the lead-
ing terms of the susceptibility can yield new infor-
mation only when a fictitious spin can be used.
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The shear elastic constants c&= (c~~ —c~2)/2 and c44 have been measured in DySb. c44 shows
a small softening of about 0.6% at the phase transition, while c~= (c~l —cl2)/2 exhibits a 58%
drop. The large change in c~= (cl~ —c~2)/2 occurs over a temperature range of more than
200 'K. The dominant mechanism for the softening of the elastic constant c~= (c~~ —F2)/2 is a
Jahn- Teller strain coupling. Strong-biquadratic pair interactions are present which com-
pete with the strain coupling,

There has been much interest recently in the
magnetic and structural phase transition in DySb. ' 3

The system was originally thought to undergo suc-
cessive magnetic and structural transitions at
S. 5 and ll. 5 'K, respectively. However, a
recent study of the magnetic properties3 revealed
a single first-order magnetic and structural phase
transition which occux'x'ed at 9. 5 K» This wox'k

left unresolved the question of the microscopic
origin of the transition. As was suggested, sound-
velocity measurements should help to resolve this
point. In this paper (i) we report the results of
the first measurement of the shear elastic con-
stants c»=+&(c„—c,z) and c« through the phase
transition4 and (ii) we present the results of our
fit to the elastic constant c~.

We find that the E~(I'l, ) strain coupling to the
dysprosium ions is the dominant mechanism for
the softening of the elastic constant cz. By itself,

this coupling would produce a cooperative first-
order Jahn-Teller phase transition at about 6 K.
However, the elastic constant cz does not continue
to soften past 9. 5'K because the exchange inter-
actions present in DySb cause the system to under-
go a first-order phase tx'ansition at 9.5'K.

We studied two sampless of DySb, both of which
were originally rectangular in shape, with the
sides being normal to [100]axes. The corners of
each sample were polished flat to obtain faces
normal to the [110]axis, with the resulting faces
being approximately l. 5 mm on a side. Sample I
was 2. 1 mm in length, while sample II was 1.8
mm. The sound-velocity changes were measured
using a pulse-echo phase-comparison technique
which is described in detail elsewhere. e

In Fig. l we show the change in the elastic con-
stant c as function of temperature from 3. 5 to
360'K for sample I. Sample II gave essentially


