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In this work the decay of correlation in the d-dimensional Ising model is studied at low

temperatures as a function of dimensionality of the lattice and magnetic field h. Except for the special

case of the two-dimensional zero-field nearest-neighbor lattices, the decay of correlation verifies the
Ornstein-Zernike prediction G»{R)= D»{d, h)R ~" '~~ e ' . For the two-dimensional zero-field

case, the Ornstein —Zernike form is replaced by the "anomalous" form G»(R)-D»R 'e " . This
"anomalous" result is shown to arise from the peculiarities of the spectrum of the transfer matrix in

this case and is replaced by the Ornstein-Zernike result when further-neighbor forces are present. The
results presented herein agree with the previously obtained exact results for the zero-field

two-dimensional Ising model.

I. INTRODUCTION

In the first two papers of this series ' (here-
after referred to as I and II, respectively) the
transfer-matrix approach to classical statistical
mechanics was developed in a general framework
and applied to a study of the decay of pair correla-
tion functions in the d-dimensional Ising model at
high temperatures. It was found that an arbitrary
pair correlation function defined on the system
decays as

Gzo(R) —= (5L (r)5Q (r+ R))

= (A +A,R '+ .)R" " 'e

+ (Bo+B&R + ~ ~ ~ )R~e ~+ ~ ~ ~, (1.1)

where A.„and B„factor as C„(L)C„(Q)and D„(L)D„(Q),
respectively. If L is an operator composed of an
odd number of closelyspaced spins, the coefficients
C„(L) tend to a finite limit as the magnetic field h

tends to zero, while the coefficients D„(L ) tend to
zero. On the other hand, if L is composed of an
even number of such spins, the coefficients D„(L)
remain finite and the coefficients C„(L) tend to
zero as It, tends to zero. The first series of
terms corresponds to the Ornstein-Zernike (OZ)
result, while the second series is the leading
correction to it.

G (%)-R-' -e (1.3)

which does not verify the OZ prediction. However,
(1.3) has the form of the first-correction term
to the OZ result in (1.1) if 2K is replaced by rc.

The OZ term in (1.1) arises from the single-par-
ticle band of the transfer-matrix spectrum, and
the second term arises from the two-particle
band. Thus, one is tempted to speculate that
(1.3) reflects the absence of effects due to single-

In this paper the analysis of such correlation
functions is extended to the d-dimensional Ising
model at low temperatures. This problem is both
more interesting and more difficult than the high-
temperature analysis —more interesting because
one is able to treat the spontaneously ordered
system, more difficult because of the increased
complexity of the transfer-matrix spectrum at low
temperatures. Indeed, a major impetus for this
work was the interest in understanding the "anom-
alous" decay of correlation in the two-dimensional
model below the critical point. That is, whereas
at high temperatures the spin-pair correlation
function Ge(K) decays as

G (Q) R-1/ 2e -rcR

in agreement with the OZ hypothesis, ' at low
temperatures it is found that '
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particle states and the dominance of two-particle
effects in the spectrum of the two-dimensional
zero-field low-temperature transfer matrix. In-
deed, it is shown herein that this conjecture is a
correct one. The two-dimensional low-tempera-
ture zero-field Ising model with nearest-neighbor
interactions stands alone in the respect that the
eigenstates of its transfer matrix are all states
with an even number of particles. 3 This anomalous
behavior of the low-temperature two-dimensional
Ising model has led to speculation ' ' that the OZ
theory is not adequate for the treatment of ordered
systems in which two or more phases can coexist.
In this work such worries are dispelled: the anom-
aly is that the of two-dimensional Ising model,
and not a general property of ordered systems.

In general, except for the zero-field two-dimen-
sional case, the decay of correlation at low tem-
peratures verifies the OZ prediction. In addition,
the introduction of second- or further-neighbor
interactions in the two-dimensional zero-field case
restores the OZ decay law. In these cases the
decay of correlation takes the form3

G„s(%)= [Co(A)CO(B)+ O(R )]R+ ) e"

+ CD, (A)D, (B)+O(R ')|R "e "'",
(1.4)

where K & ~'& 2z and x =-,'(d —1). What happens in
this case is that not only the leading term but also
the first correction term verify the OZ prediction.
The leading term exhibits the dominance of the
single-particle states of the transfer-matrix spec-
trum, while the OZ form of the first correction
arises because the nearest-neighbor two-particle
states form a band which lies above the bulk of the
two-particle band of the transfer matrix. These
bound pairs of particles have an obvious "single-
particle" character as evidenced by (1.4).

The duality relations for the square Ising net
are rederived herein from considerations of the
form of the transfer matrix. The fact that the
decay of energy-density correlation functions at
high temperatures in this model is given by the
same form (l. 2) as the decay of spin correlation
functions at low temperatures is seen to be a con-
sequence of the duality relations.

The outline of this work is as follows. Section
II is a derivation of the spectrum of the low-tem-
perature Ising transfer matrix. In Sec. II8 the
transfer matrix is derived in a form suitable for
low-temperature perturbation theory. Subsections
IIC-GE then present the transfer-matrix spectra
for the finite-field case, the zero-field case with
d & 2, and the zero-field two-dimensional case,
respectively. In Sec. III the results of Sec. II are
employed to obtain the decay of correlation in the
various situations treated. Section IV then

presents a summary of the results.

II. TRANSFER MATRIX AND ITS EIGENVALUE
SPECTRUM

A. Introduction

In this section the transfer matrix is expressed
in a form suitable for low-temperature perturba-
tion theory. The notation developed in papers I
and II will be adhered to throughout. The finite-
field case is considered first. This case is similar
to the high-temperature case in that there is no
long-range order and in that the decay of order
follows the OZ prediction.

The states of the Ising system at low tempera-
ture are classified most readily according to the
number of overturned spins in a layer, that is,
the totally aligned state, states with 1, 2, 3, . . . ,
n overturned spins. To zeroth order the eigen-
states of the transfer matrix will be just these
states —the completely aligned state being the state
with largest eigenvalue, the single-particle states
having next-largest eigenvalue, etc. In a finite
field, the field fixes a preferred direction of align-
ment. However, in zero field the system is in-
variant under the total spin-reversal operation so
that the state with N -n up spins and n down spins
is degenerate with the state obtained from it by
reversing all the spins of the layer. Thus, in zero
field, the appropriate zeroth-order eigenstates
are linear combinations of these states.

The zero-field problem has a natural division
into two cases: dimension d equal to 2 and d equal
to or greater than 3. This is because at sufficient-
ly low temperatures the system behaves like a
group of uncoupled layers. Within a two- or more-
dimensional layer, it will always require more
energy to flip two or more spins from the aligned
state than it requires to flip a single spin. This
is because the size of the intralayer phase boundary
grows as the (d —2)/(d —1) power of the intralayer
phase "volume;" hence the total surface tension
within a layer, for d equal to or greater than 3,
always increases as the phase volume increases.
Note, on the other hand, that for d equal to 2, the
intralayer phase boundary is a single wrong (0-0
or 4-0) bond at either end of the phase. Thus the
surface energy is independent of the size of the
phase: It requires the same amount of energy to
overturn n spins in a row as it does to overturn a
single spin. It is shown below that this leads to
the result that the first band of eigenvalues below
the largest levels is two-particlelike —the two
particles being the two crossed bonds at either end
of the row of overturned spins. From the results
of Paper II, it may be seen that in this fact lies
the qualitative explanation of why the low-tempera
ture two-dimensional zero-field spin correlations
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There are two very convenient forms for the
low-temperature transfer matrix. The first has
already been derived in Paper II of this series,
and will be the starting point of the discussion
presented herein. The second form is immediately
derivable from the first, as shown below.

In Paper II the Ising transfer matrix was shown
to have the form

K= [2 a' h(2K„)]"~' aap(a„E a*(r))
r

xa p Z(ha'(r) lK, Z pta)a'(r)a'( aa)) .
(2. 1)

In (2. 1), K)) =Z))/ksT) Kh= J)/ksT) h =gH/ksT,
and the variable u, is defined by

ge„= tanhu„= e

where Z(, and J, are the exchange-coupling ener-
gies in the directions parallel and perpendicular
to the layering direction, respectively; k~ is
Boltzmann's constant, T is the temperature, IJ
is the magnetic field, g is the Lande factor, y(5)
is an interaction shape function, o"(r) is the p, th

component of the Pauli spin operator v(r), ' and
N is the number of sites in a layer. The most
straightforward expansion for the matrix K is ob-
tained by noting that u~) tends to zero exponentially
fast as K„ tends to infinity, and hence as
ksT(= J()/If' ))) tends to zero. Thus, at low temper-
atures it is reasonable to expand the transfer ma-
trix about u,

~

=0. Recall that it was shown in
Paper II that the coupling between layers is pro-
vided by the term in (2. 1) involving u„; so u)ith

this decomPosition of the matrix, the interlayer
interactions act at low temperatures as a pertur-
bation on the spectrum of the intralayer matrix.

The transfer matrix may be written in the pro-
duct form

K=K,K, ,
where

K~=exp u„o" r
r

(2. 2)

(2. 3)

decay as R e —it is because the asymptotic de-
cay is determined by a two-particle band.

Therefore, in zero field, d equal to 2 and d
equal to or greater than 3 are considered separate-
ly. In the latter case, of the OZ form for the decay
of correlation is regained, although the possibility
that for temperatures sufficiently close to T„
the non-OZ form R "e is the dominant contribu-
tion to the decay of correlation cannot be com-
pletely ruled out. However, from the above dis-
cussion of the surface energy, it does seem an
unlikely po ssibility.

B. Transfer Matrix at Low Temperatures

and

K = [2sinh(2K„)] t

K = K2+ (Kg —I)Kq = K2+2 [(K2 —I)K2]„, (2. 5)
n=i

with
n

[(K —I)K ]„=(1/n! )u"„Q v"(r) K
r

(2. 5)

These formulas are then a suitable starting point
for a study of the low-temperature spectrum. An
alternative scheme, which was expounded by
Fisher and Camp, is to perform a straightfor-
ward expansion on K in powers of zv), = tanhu, (.

This scheme takes the following form. The
transfer matrix K is written

K=KO+ V (2. 7)

where Ko contains all those parts of K which are
diagonal in the (v (rg representation. That is, if
one takes as a basis set the states of a layer
labeled by the value (0-0) of v'(r) for each site r
in the layer, then Ko is diagonal in the representa-
tion and V is completely off diagonal. The per-
turbation matrix V is then expanded in powers of
ua

() ~

V =K u))) V„
n=i

(2. 5)

This decomposition of K leads ultimately to the
same physical results as the K&K~ decomposition
described above. However, it enables a some-
what simpler graph theoretical expansion of K. On
the other hand, the K~K~ expansion leads to a
straightforward treatment of the duality of the
square Ising net. ' Since the Ko+ V decomposition
has already been described by Fisher and Camp,
the K&K~ decomposition will be developed in detail
herein.

To simplify the analysis presented below it is
useful to reexpress o"(r) in terms of v'(r), the
spin-half raising and lowering operatorse:

(2. 9}v"(r) =v'(r) + o (r)

It is easily verified that the spin operators v'(r)
obey the same Pauli algebra as the creation and
annihilation operators (I)t(r) and (I)(r) employed for
the high-temperature analysis presented in Paper
II, namely,

v'(r) = 2v'(r)v (r) —1 = 1 —2v (r)v'(r),

[v'(r), v'(r')] = 0,

xexp Q hv'(r)+-,'If, Z cp(5)v'(r)v'(r+5) . (2. 4)
I' 6

This is converted to a perturbation-theoretic form
by noting that one may write K as
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[a'(r), a (r')] = 5(r, r')cr'!r)

fa'(r), (r (r)] = 1

where [A, B] and LA, 8] are the commutator and
anticommutator of A and 8, respectively. If the
vacuum state is I C (+ )&; the state with all spins
in the layer in their (t) state, and if particles are
taken to be spins in their (0) state, then a' (r)
creates a particle on site r, while a'(r) destroys
such a particle. In addition, the number operator
is then simply given by a (r)a'(r) = —', [1 —a'(r)].
Of course if the vacuum is taken to be I C ( —)&,

the state with all spins of the layer in their (0)
state, and particles are taken to be (t) spins, then
a'(r) is the particle creation operator, a (r) the
destruction operator, and a'(r)a (r) = —,

' [1+a'(r)]
the relevant number operator. Throughout Secs.
II C and IID, spin deviations away from the com-
pletely ordered states I C (+)& will be referred to
as type (+ ) particles.

(2. 12)

(2. 18)

C. Finite-Field Low-Temperature Spectrum

This section presents an analysis of the spec-
trum of the Ising transfer matrix at low tempera-
ture and nonzero magnetic field. For simplicity
the detailed analysis is presented for a hyper-
cubical lattice with nearest-neighbor interactions,
although the results obtained are easily seen to
apply even with further-neighbor forces.

This layering direction is taken, as in Paper I,
to be the z direction, which is also taken to be
colinear with the magnetic field h =km. Thus, a
spin is in its up [(t) or (+-, )] eigenstate of a'
when it points in the positive z direction, and in its
down [(0) or ( —2 )] eigenstate when it points along
the negative i direction. Note that K2 is diagonal
in the {o'(r)) representation, so that its states
may be labeled by the number of overturned spins
or "particles. "

As noted above it is useful to define the two
vacuum states 14 (+ )) and 14( —)&, which are the
states of Ks with all spins in their (t) and (4)
eigenstates, respectively. In nonzero field only
the spectrum of type (+) particles is relevant.
However, in zero field 14(+)& and 14( —)& will be
the two degenerate eigenstates of the largest
eigenvalue of K~.

In contrast with the high-temperature situation~
for which the zeroth-order eigenvalues of K depend
only on the particle number, here the eigenvalue
spectrum depends also on the "connectivity" of the
particles. That is, it costs less energy to over-
turn two neighboring spins than it does two non-
neighboring spins —there are two fewer "wrong"
bonds in the former case than in the latter —so
that the eigenstates of two neighboring particles
have larger eigenvalues than those of two separated
particles. Thus these two-particle bound states

f„= [2 sinh(2K„) ]'~2, (2. 16)

the eigenvalues As(+), A, (+), As, (+), and A22(+)
are written

As(+) = t„e p[xN2p(0)A;+Nh],

Ag(k) f2 exp[2(N —4)(a(0)K~+ (N —2)h]

(2. 16a)

(2. 16b)

As, (+) = t"„e x[p(N2—8)y(0)K, +2K, +(N —4)h]
(2. 16c)

and

A2, (+) = f"„exp[—;(N-8)y(0)K, + (N —4)h],
(2. 16d)

where P(0) is the j=0 component of the Fourier
transform of the interaction shape function y(5). 2

Thus, it is seen that

( )/A (+ ) & 2(N n)h (2. 17)

So, with k & 0, n finite, and N tending to infinity,
A„(—) may be ignored with respect to A„(+).

Ap

A,

Ap, ,
Apb

non-degenerate

N states

' Nqb(O) states

& N (N-I-$(0)) states

A)
Ap

N states
non-degenerate

FIG. l. Eigenvalue spectrum of K2 in finite field.

form a subband lying a finite distance above the
bulk of the two-particle band. Of course the same
considerations apply to the n-particle spectra with
~ ~ 3. The spectrum of K~ in finite field is dis-
played in Fig. 1. In this figure, As(+) is the
eigenvalue of 14(+)&, and the n-particle eigen-
states are denoted by

P„rs, . . . , r„(+)&= a'(r, )a'(rs) ' ' ' a'(r„)
~

C (+)&

(2. 14)

If one denotes the n-particle eigenvalues by A„„(+),
where a=a, b, c, . . . orders the eigenvalues at
fixed particle number, n, then A2, is the eigen-
value of two neighboring particles, while A» is
that of two separated particles. Similarly A~„
A3» and A3, are, respectively, the eigenvalues of
three connected particles, of an isolated particle
together with a bound pair of particles, and of
three isolated particles.

It is easily shown that the eigenvalues A„„(—)
with n finite are exponentially damped with respect
to A„,(+) as the number of sites, N, in a layer
tends to infinity. For example, letting
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Of course ('2. 17) implies that for 14=0, h„,(-)
= h„(+), and the spectrum of ~K doubles up.

The spectrum of the full matrix K may be de-
duced from that of K, by introducing .(K, -1}~K
as an additive perturbatiom, on K&. The perturba-
tion formulas have been presented in Paper Q,

'
and wil;1 not be repeated herein. Rather, they will
be taken over directly and applied to this problem.

In a nonzero magnetic field it turns out that the
level shifts are second ox'der in u„since
[(Kt- I)K2], has no particle number conserving
terms so that its matrix elements between states
with equal yarrticle renumber are zero. Thus, sec-
ond-order pexsurb4atien theory for [(K)- I )K2],
together with first-order theory for T(K, —I )K2]2
must be employed in order to correctly obtain the
low-order spectrum of K.

1. Largest Eigenvalue

The laurgest eigenvalue and its eigenvector are
found to be

)&2(+ ) = hp(+ )(I + 2 Nu„[1+ I'), )(K„I))]+ O(u»))

(2. iS)

and

I)&.p(+))= IC(+)&+u,i', ,e'"" ' Q lr(+))+O(u'„),

(a. i9)
where I'„, (K„h) is given by

I'„, (K„,14) =(exp [2nj(0)K,+ amI)] —1} '
(a. ao)

and hp(+ ) = f"„exp[ N2q(&0)K, +Nf)] is the largest
eigenvalue of Kz.

2. Single-Particle Levels

The single-particle band is found by breaking
the N-fold degeneracy of the single-particle
eigenstates of Ka via second-order perturbation
theory. It is easily seen that to do so one must
diagonalize the second-order Rayleigh-Schrodinger
diagrams, '6 i.e. , those diagrams linking a~f
particle on site r with one on site r via either the
vacuum or the two particle states-all other inter-
mediate states being disallowed by particle number
conservation.

The matrix to be diagonalized is

hf'(r r') =&r(+)I[(K -I)K2]2lr'(+)& —[hp(+) —h)(+)] '&r(+)I [(K, -l)K ])I+(+)&&c(+)I[(K -I)K ] Ir'(+)&

+&[h,(+)-h„(+)]-'- [h, (+)- hh, h(+)]-']gg &r(+) I[(K,- I)K,],l
r„r,+ 8(+)&&r„r,+ n(+)

I [(K,- I)K,], I
r'(+)&

+[h,(+)-h2, (+)] 'Z Z &-.(+)~[(K,-I)K2], lr„-rh(+)&&r„r2(+)l[(K, -I)K2],lr (+)&, (2. »)
ig 13

with
L (N 2) + q&(O )(ehh 4&&K4+24i45)K4 I) )

+ (N —2- q" (O))1,„(K„a) (2. 22)

(shh 4K4u2&&& (t))K& 1) 1 Ir (K h) (2 24)

In (2. 22) 5(x, f} is the Kroinecker 5, equal to 1 if

where the summation over 5 is restricted to sites
which are nearest neighbors of the site x'q. In

contrast, the summation over r& is unrestricted.
The matrix elements in (a. 21) may be evaluated,
yielding

&r (r, r'& =urirr(r&~~ Ai&(r, r'&+rip 5(rp, iT&),

(2. 22)

t

x=y and zero otherwise.
The matrix M'(r, r') is diagonalized by a unitary

transformation to the basis

lq(+)&=N' 'g 8"'lr(+)) (a. as)

d 1

)&)[q(+)]=h)(+) I+u'„A+28 Z cos(q, ) +O(u4)
J'ni J

(a. a6)

where the vectors q have components given by

q4 = 2pn4/N, and n, = 1, 2, . . . , N, (N4 being the num-

ber of sites in the ith layer direction, i=1, 2, . . . ,
d —1). The single-particle eigenvalues and

eigenvectors are then found to be

&u(i)&(r» =Ã'" rr u"'(&r(r » -u„r, r(ir„&r&&u(+»-u,„&(r"*'""'~' ~ -&&' —r, ,(rr„u&]
r

~ l»r+«+» u»I"-), -)(+uh) ~ lr r'&,I+o(up»
5

r'
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where in (2. 27) the r and r' sums extend over all
layer sites, while the sum over 5 extends only over
nearest-neighbor vectors of the layer. As in
Paper II, since K is not Hermitian, (X,(q)(+) I is
not given by the Hermitian conjugate of IXT((I)(+)),
but rather must be calculated separately. It is
obtained by replacing e"' by e "', AT/(AT —A&)

by A&/(A, —A&), and I ) by ( I in
I X,((I)(+ )&. The resulting expression becomes

r + +uIII" 1, 1&~, & 4 +

[( 23-4E +2 (0)E„ I)-T I, (If I )] Q (

+ I', ,r(r(„)r)Z (r, r, ( ~ )~)ri)( „) . (2. 28)
ri

3 Bound-Pair Levels

The leading term in the asymptotic expansion
for the decay of correlation may be obtained from
the knowledge of the largest level and the single-
particle band. ' In particular, the inverse range
of correlation E is given by E = In(X3(+)/IX, [(I(+)]I],
with q = 0, as shown in Papers I and II. '~ How-
ever, to obtain the ne~t term in the expansion,
one must consider the next band of eigenvalues i~-
low the single-particle band, namely, the band
of states composed of two neighboring particles.
As noted above there is a finite gap (due to the
smaller number of wrong bonds) between this band
and the remainder of the two-particle band.
Hence, these states are referred to herein as
bound-pair states.

Again the first-order corrections to the eigen-
values are identically zero, and one must diagonal-
ize the second-order diagrams:

M" (r, r+ 5; r', r'+f') =(r, r+ t)(+)
I [(K) —I)K2], l

r', r'+ f)'(+))

+ &r r+ &(+ &1[(KT —I)K2]il c (+)&&4 (+)
I [(Ki —I)K2]T I

" '+ ~ '(+ &&/[A2. (+ &
—A3(+ )]

+z &r, r+&(+)
I
[(Ki-l)K2] lx(+)&&x( ) I[(Ki-I)K2] I"," &'&/[A2. (+) - A, (+)1

X

+g Z Z (r, r+ t)(+)
I [(Kg —I)K2], lxpx+yTpx —y2(+))

x ~1

x&x x+yT. " y2(+)
I [(Ki I)K2]Tlr ', r '+5'(+)&/[A2s(+) A3a(+)]

+Q Z Z' (r, r+ f)(+)
I

[(KT —I)K2]Tlx, x+y, z(+))(x, x+y, z(+)
I

S t F

x [(K|-I)K2],
l
r', r'+5'(+)&/[A2, (+) —A33(+)], (2. 29)

where 5, 5', y, y„and y~ are nearest-neighbor
lattice vectors, and the sum over the vector z
runs over .all lattice sites except x, x+y, and
their respective nearest-neighbor sites, and
double counting of states is explicitly avoided in all
sums over intermediate states. It turns out that
the diagonalization of this matrix is equivalent to
obtaining the equation of motion of a single dimer

diffusing throughout a hypercubical lattice of
dimension d —1. In particular the eigenstates will
again be running waves; but now they will addi-
tionally have a polarization quantum number, and
the eigenvalue spectrum breaks into several
branches labeled by the polarization index.

The second-order matrix is written

r/'(r, r ~ (T;r', F r')= '„rr„(~+)((i)(, ')+i)(r, F+(T )r()(F, + )+r'(T(r (()r'rTTi')]

x (I + A, (+ )/[A2, (+ ) —A, (+ )]+3A3,(+ )/[A2, (+ ) —A3, (+ )]+ [N 2P(0)]A3,(+ )/—[A„(+) —A„(+)]}
+ rA,.(+)/((r, .(r ) —r4.(+))I()(r,F)()((T, T(') i)(r, F+i)')i)( —iT, T('))). (a. 30)

This matrix is block diagonalized by the running-
wave transformation to the matrix

xM" (r, r+tI; r', r'+5')e" ', (2. 31)

so that



DECAY OF ORDER IN CLASSICAL MANY-BODY 3193

M'(q q'6 6') =6(q q'}M'(q 6 6')
(2. 32)

with

M'(q, 6, 6') =.M, (1+e '~' +e"'+e'~'I 6 ')

+M,6(6, 6')+M,6(-6, 6') e"" .
(2. 33}

In (2. 33), M, and Mz are given by

M, =u'„A„(+ )(I + A, (+ )/[A„(+ ) —A, (+ )]
+ SA„(+)/[A,.(+) —A,.(+)]+[N -2q" (O)]

x A„,(+ )/[A„(+ ) —A„(+)]} (2. 34)

M, = Su'„A,.(+)A„,(+)/[A, .(+) —A,.(+)] .
(2. s6)

Thus, to obtain the bound-pair spectrum in second
order, it suffices to diagonalize the block matrices
M '(q; 5, 5') for each allowed value of q. To avoid

double counting, one may require that 5 and 5'
both be greater than zero using the "dictionary"
ordering introduced in Paper II. [Then the term
in (2. 33) involving 5( —5, S') is identically zero. ]
Further, it is useful to remove the part of
M" (q; K, 6'), which is proportional to the identity
matrix 5(6, 6'), since this piece of M"(q; 5, 5')
remains diagonal under any unitary transforma-
tion.

The diagonalization of (2. 33) depends of course
on the lattice involved. For two-dimensional
lattice (d = 2), the layers are one dimensional,
and M" (q; 6, 6') is trivally found:

M" (q; 1, 1) =M, (2+ 2cosq)+M,

In a three-dimensional simple cubic lattice (d = 3),
each layer is a square net. Labeling the layer
axesby x and j, the nearest-neighbor vectors are
5& =x and 5~ =j. Thus, one has

( 4,) 2M' cos((I„)
Mg 1+ +'1' + Q/f

M (q) = (Mp+ 2M')I+ M, (1+y-'+ g+ g/y)
2M, cos(q„)

(2. s6)

where g =e "~ and (t) =e"). This matrix is easily
diagonalized and has eigenvalues p. & and p, ~ given
by

and

p, g
= M2 + 2M)(2 + cos(I„+cos(fy)

p, a =M&

(2. S7a)

(2. S7b)

respectively. Note that while the degeneracy of
the larger eigenvalue branch is broken in second
order that of the lower branch remains unbroken.

More generally, for a (d —1)-dimensional layer,
the largest branch of eigenvalues in the spectrum
of M" (q} is given by

(q)=t(,Mqqq(q+(Z cos(q, )(~)
(2. s8)

This suffices to enable one to write the uppermost
branch of eigenvalues in the bound-pair spectrum
of K to second order in u„as

z„[q;1(+ )]= A„(+) + p g(q) + O(u '„) (2. 38)

In zero field, because of the up-down symmetry
of the Ising Hamiltonian, the states 14(+)) are
the degenerate eigenstates of K& with largest

This completes the treatment of the finite-field
low-temperature spectrum. The most significant
feature obtained is that both the first and second
bands of eigenvalues below Xo have a single-par-
ticle character.

D. Zero-Field Low-Temperature Spectrum in
Three or More Dimensions

eigenvalue. Indeed, as is seen from (2. 17) all
the states I r». . . , r„(+)} and I r». . ., r„(—)) be-
come pairwise degenerate in zero field, and the
spectrum of K~ doubles up. In addition in zero
field the size of eigenvalues is no longer a strictly
decreasing function of particle number. In par-
ticular, with nearest-neighbor interactions on the
three-dimensional simple cubic lattice the eigen-
states l r, r+6, r —5(+)) and the states of four
particles on a nearest-neighbor square are degen-
erate with the states i r~, ra(a)) of two separated
particles. The zero-field zero-, one-, and two-
particle eigenvalues are obtained from (2. 16a)-
(2. 16d) by taking the limit h tending to zero. The
three- and four-particle eigenvalues are given by

A „(+)=tq exp[-', [(N-12)P(0)+8]K,}, (2. 40a)

A, ( + }= f"„exp[—,
'

[(N —12)P (0) + 4]K,}, (2. 40b)

A()„(+)= ef{x-p[(N~-12) j(O)]R,}, (2. 4Oc)

A4„(+ ) = t"„exp[2 [(N - 16)y(0) + 16]K„},
(2. 4Od)

and so on. Table I illustrates the uppermost part
of the zero-field spectrum of K~, In three dimen-
sions y(0) =4& and thus —,

' (N- 12) (0)(())8i+s equal
to -', (N —8)y(0), and to —,

'
(N 16)cp(0) + 16, s—o that

Aa, ,(+), As„(+), and A, ,(+) are degenerate. Note
that at fixed particle number n, the levels are
dictionary ordered: A„„(a)& A„,,(+) & A„„(+),
and so forth.

At low temperatures I r„.. ., r„(+)) and
I r, .. . , r„(—)}do not mix until very high order in
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TABLE I. Zero-field spectrum of K2. (i) in three dimensions, A2&(+) =A3, (+) =A4 (+) &A3&(+); (ii) in four dimensions,
A3~(+) = A4 (+ ) & A3 (+).

Ai(+)

A„(+)

A3, (+)

A3a(+)

A3 (+)

A4 (+)

Irb) )

lr, r+6(+) )

I ri, r2(+) )

lr, r+g, r+y(+) )

Iri ri+$, r2(+))

I ri, r 2, r3(+) )

lrip ri + 6p ri +
Yg ri + 6 +'Y)

2 states

2N states

Ny(0) states

XfX-1—y(0)] states

+[y(0) -2y(0)j states

N(N-2) cp(0) states

—,'X(X-1)QV-2) -Xq (0) tÃ-4+y(O)] states

2N states

u„because each order of g„ is capable of changing
the particle number by 1, and the above states dif-
fer in particle number by O(N 2n). The-refore,
the spectrum of K will be composed of two largely
noninteracting spectra. Of course when n becomes
comparable to &N the two spectra mix strongly
even at low temperatuxes. However, since such
states affect neither the thermodynamics, nor the
decay of correlation, they are essentially uninter-
esting. "

The zero-field eigenvalue spectrum may be ob-
tained as the h =0 limit of the finite-field results
obtained in Sec. IIC. Furthermore, the eigen-
states IXO( —)), IX~(q)( —)), and so on are obtained
from the corresponding type (+) eigenstates sim-
ply by replacing the (+) label by (- ) on all zeroth-
order states involved.

It ls easily seen that one cannot use this px'e-
scription to obtain the zero-field spectrum in twb
dimensions. In this case the layers axe linear
chains with coordination 9)(0) = 2. (This is true
not only on the square net, but also generally —for
example on the triangular and honeycomb nets
as well. ) Now, in the perturbation expansion with
AW 0, the single particle was found above to mix
in second order with states of two nearest-neigh-
bor particles. The mixing coefficient involves
an "energy denominator"

(exp[ [2P(0) —4]K, + 2h) —1) '

When g3(0) is equal to 2 and h is zero, this coef-
ficient diverges signaling the breakdown of the
perturbation scheme. This breakdown occurs be-
cause, with h=o, and Pp(0) =2, the zeroth-order
single-particle states are degenerate with states
of two neighboring particles. Indeed they are
degenerate with states of n particles clustered in

a chain (the number of wrong bonds being two for
all such states). Whence the necessity of treating
the h = 0, d = 2 case separately.

In Paper I, it was noted that for a system with
strictly finite layers, a pair-correlation function
G„s(R) decayed according to

G„s(m) = (Xo I A(0)
I
X,)h, I

B(r,)
I Xo)(X,/Xo) '"))'

(2.41)
where 5=x„z+r, . However, when the layer size
tends to infinity the eigenvalue X~ becomes general-
ly the leading edge of a band. of such eigenvalues,
and one must integrate ovex this band of levels to
obtain the decay of correlation:

G~s(@= f„d(&&o I
A(o)

I &i(())

&(x ($)IB(r,)IX )8 " "'o . (2.42)

In (2.42) g is the band index, and the inverse cor-
relation length k($) is defined, as in Paper II,

"(g)=l [x,/Ix, (g)I] . (2.43

At high temperatures~ the index g was given by the
(d —1)-dimensional vector q which ranges over the
fix st Brillouin zone of the lattice reciprocal to the
layer lattice —as seen above in the treatment of
X,[(q)(+)], this is also the case at low tempera-
tures (except for d=2 and h=o).

Using Eq. (2.48) and the results of Sec. II C,
the fundamental inverse length z'(q) may be
written

x'(q) = 2[K,(ti(O) + h]+u'„ I+

A,.(+) A„(+)
)),(+) —))„(+) A, ( ~ ) —))„(+))
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fluff

x p0+ cosq, +Ou„. 2 44

In zero field, x'(q) = ][: (q) = x(q), and [(:(q) is given
by (2. 44) with h=0. Of course, the inverse cor-
relation length z is given by

x = lim i'(q). (2.45)
pmP

As shown in Paper I, ' this is the univexsa/ inverse
length for the decay of pairwise correlation func-
tions defined on the system.

E. Zero-Field Low-Temperature Spectrum in
Two Dimensions

N

, = Ke (prcx, Z v'(~)rr'(r ())
y=i

(2.45)

The sum over spin operators o'(x)o'(r+ 1) may be
regarded as a function constructed by examining
every pair of neighboring spins, and assigning to
the pair the value +1 if they are co-aligned [t-t
or k-k], or the value —1 if they are antialigned
[0-0 or k-0], and by then summing this assigned
number over all pairs in the layer. If n is the
number of wrong bonds (antialigned pairs), and N
the number of sites in a layer, then

Z o'(~)o*(~+1)=N-2n (2. 47)

Any state with a definite number rs of such wrong
bonds is an eigenstate of K2 with eigenvalue A„
given by

gN ~(N 2n)Kg
n (2. 48)

As before there are two zero-particle states;
namely, I C (+ )) =

I 0 0 ~ ~ 00) and I C ( —))

The very interesting case of the zero-field two-
dimensional Ising transfer matrix will be analyzed
in this section. The perturbation treatment will
be similar to that employed in the finite-field
case, wi.th, however, the exception that the first
band below the zero-particle level will have a
two-particle rather than single-particle character.
Indeed the most convenient picture for treating
this problem is one in which the particles are
wrong [0-4 or 0-0] bonds in the layer. Then it
turns out that with periodic boundary conditions,
there can only be states with an even number of
wrong bonds. (With free-edge boundary conditions
there can be an odd number of particles associated
with surface states. Thus, for example, the
single-particle band reappears. However, it is
easily seen that this band does not affect the decay
of bulk correlation functions. In any case, such
surface effects will be dealt with in a forthcoming
work and will not be considered further herein. )

Let us reexamine the form of K2, the intralayer
matrix:

=
I kk ~ 4k). These two are the degenerate eigen-

states of K2 of largest eigenvalue.
With periodic boundary conditions there can be

no single-particle states. For example, because
the first and Nth sites are nearest neighbors of
one another, even the state I 4f-0 ~ . 00) actually
contains two particles or wrong bonds; the nota-
tionally obvious one together with the implied
wrong bond between the first and last spins. It
will be convenient to label the bonds sequentially
using the convention that the xth bond connects the
rth and (r+1)th layer sites. Note that there are
two distinct particle types: (t-0) labeled as (+)
particles, and (0-0) labeled as ( —) particles.

With these conventions it is easily seen that
there are 2("„)n-particle states, where (f) is the
binomial coefficient. The („") arises because there
are (f) ways of placing n identical particles in n
of N identical boxes. The two arises because
there are two distinct types of particles. [It is
crucial to this argument that (+) and ( —) particles
necessarily interlace each other. ] For an N-site
layer there are 2 spin configurations of the layer.
To show that the above particle enumeration gen-
erates all 2" configurations, it suffices to show
that

(2.49)

To do so, consider the binomial expansion

N 2 tt'N

(1+x)"+(1-x)"=2
~

x' .
l=p (2~

(2. 50)

xu„Z (r"(f), (2. 51)
l=l

With x equal to 1, (2. 50) produces the desired
result (2. 49).

The effect of the perturbation [(K~ —I)K2] on the
states and levels of K2 may now be determined.
As noted above, with periodic boundary conditions
only states with even particle numbers need be
considered. Since the type-(+) and type-( —) par-
ticles alternate, if the first particle encountered
in the layer is type (+ ), the last particle encoun-
tered isnecessarilytype ( —), and vice versa.
Thus, to uniquely specify the eigenstates of K2 it
suffices to note all the particle positions, together
with the type of the first particle encountered
when moving across the layer from left to right.
For example, the state Ix» r& '. (+)) is of the form
It ~ ~ ~ 0-0' 0 —00) and Ir»xz.'( —)) of the form

0-44).
The first-order term in the perturbation may

be written

[(K, —I)K~],= ("„e p()(lc, —RICE[n (l) ~ ()),])l=1
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where n'(I) is the number operator for type-(+)
particles and o"(I)=o'(I)+o (I), as above. One
easily sees that

N N

n'(&) =Q n (I) =2 Q [n'(I)+n (I)] . (2. 52)
2=1

The only off-diagonal terms in (2. 51) are those
involving o"(I); so it is useful to note the effect of
this operator on the state of K2. First consider

its effect upon the vacuum states:

o"(Z)
I
e(+)) =5(»1) II, N': (~)&

+ [1—5(» l)]l/ —I, /: (+)), (2. 53)

which means that the first-order diagrams only
link the vacuum with nearest-neighbor states of
two particles. Next consider o"(I) acting on states
with two neighboring particles:

o'"(I) lr, r+1: (+)& =5(r I) lr I r+I: (+)&+5(r+» I) I@(+)&+5(f r+2)lr r+2: (+)&

+ [1 —5(r, I) —5(l, r + 1) —5(i, r+ 2) ] I
I —1, » r, r + 1:( a )) . (2. 54)

The nearest-neighbor two-particle states are connected to the vacuum states, second-neighbor two-particle
states, and to the four-particle states consisting of two disconnected nearest-neighbor pairs, by the per-
turbation. For second-neighbor two-particle states,

o"(I) lr - » r+ I:(~)& =5(» r - I) lr -» r+ I:(~)&+5(r I) lr, r+ I:(+)&+5(l, r+2) lr —I, r+2; (+)&

+5(» r+1) Ir —1, r: (+)&+ [1—5(r —1, I) —5(r, I) 5(l, r —1) —5(l, r+2)]
xl/ —1, I, r —1, r+1:(+)) . (2. 55)

For third or further neighbors, one has

o"(I)Ir, r'. (+)&=5(» r)lr —1, r' (+)&.+5(»r+1)lr+ 1,r': (+)&+5(I,r'+1) lr, r'+1: (+)&

+ 5(» r')
I r, r ' —1:( + )) + [1 —5(f, r) —5(l, r+ 1) —5(l, r') —5 (l, r '+ 1)] I

I —1, l, r, r ' (+)).
(2. 56)

In (2. 53)-(2.56), when l is equal to 1, o"(I) changes
type-(+) states into type-( —) states, and vice
versa. For example, the state
100 ~ ~ ~ 0 —0 —0 ~ ~ ~ 0&, a type-(+) state is trans-
formed by o"(I) into I 0 —0 ~ ~ ~ 0- 0 —0 ~ ~ 0&, a
type-( —) state. Thus, since a"(I) mixes the (+)
and ( —) states even in first order, the first-order
diagrams which arise in breaking the degeneracy
of the (2n)-particle levels are not block diagonal
in (2„)-dimensional blocks. But, if one chooses
proper linear combinations of (+) and ( —) states,
the first-order matrices will break into two equally
dimensioned blocks. Consider

1
Iri~r2 " r2.:»=

g~ [Iran, ",r2. (+)&

+ lrl ''' r2:(-)&], (2. 57)

1
Iran, r2»r2'4 g, [Iri, ",r2.:(+))

—lr, ",r,.:(- ))], (2. 56)

which are symmetrical and antisymmetrical 2n-
particle states, respectively. It is clear that
every symmetrical state is orthogonal to every
antisymmetrical state. Further it is seen that
[(Kf —I )K,] does not mix these two kinds of states.
The imposition of cyclic boundary conditions within

the layer is equivalent to taking the first and
(N+ 1)th bonds to be the same bond Howe. ver,
with the above labeling convention one has

lx, ++I:(+)&=ll, x:(+)& . (2. 59)

This does not affect the boundary conditions of
the symmetrical states. But for the antisym-
metrical states (2. 59) implies that

I
x.&+ I:~&= -

I
1,x:~& (2.60}

That is, the antisymmetrical states satisfy anti-
periodic boundary conditions 'I Two nonintexac ting
sets of states of (2n) identical particles have thus
been obtained, the one satisfying periodic and the
other satisfying antiperiodic boundary conditions.

Before finding the low-order eigenstates and
eigenvalues, it will prove useful to show that
N„g", , o"(I) may be written as a two-body operator
in this picture. It is already seen from (2. 53)-
(2. 56) that such an isomorphism must be possible
since the effect of this operator upon the states of
K2 is always to create or destroy two particles, or
to leave the particle number unchanged. [With
free edges no such isomorphism can be obtained
since o"(I) is then capable of creating or destroy-
ing a single particle on either the first or Nth
bonds. ]

Let us introduce creation and annihilation oper-
ators for symmetrical and antisymmetrical par-
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ticles. Denote by [I)~(r) and tL)te(r) the destruction
and creation operators for a symmetric particle
at site r; similarly denote by [I)„(r) and ]I)„(r) the
like operators for an antisymmetric particle.
Letting P(=A, S) be the parity, the eigenstates of

K~ may be written

~r, r, ~ ~ ~, r „:P)=]I) (r, ) ' ' ']I) (r „)~O:P)
(2. 61)

These states are even under exchange of particles
and there can be no more than one particle per
bond. Having noted these facts, one sees the
algebra of (g~(r)] to be the same Pauli algebra
as obeyed by a'(r) [(2.10)-(2.13)] and by the oper-
ators ([I)(r)] employed in the high-temperature
analysis of Paper II. The operator [I)~(r) projects
onto the subspace of parity P and then destroys
a particle at site x.

In terms of these operators for symmetric and
antisymmetric states, the perturbation takes the
form

u„Z a "(I)= u„Z Z []I)J (I) + [I)t~(f)]
l=1 P l~i

x [[I)~(f+ 1) +g~~(f + 1)] . (2. 62)

In verifying the correctness of (2. 62), difficulty
only arises in handling the boundary conditions of
the antisymmetric states. However, close
scrutiny shows that (2.60) and (2. 62) enable one
to exactly reproduce the effect of (K, —I)K2. For,
consider the effect of o"(I) on a general (2n)-par-
ticle state. If neither l nor l —1 is occupied, it
creates a particle on each of these bonds. If only
one of these sites is unoccupied, it destroys the
existing particle and creates a particle on the pre-
viously unoccupied site (thereby simply shifting
the original particle one site, and leaving the
particle number unchanged). When both l —1 and
I are occupied, o"(I) destroys both particles. This
is exactly the effect of [[I)~(E)+]I)t(I)] '

[[I)~(/ —1)
+[I)J (/ —1)]. Examination of the boundary condition
(2. 60)—which says that I 1,r„~ ~ ~, r, :2) is equal
to —

I r„.. ., r„N+ 1:2)—completes the verifica-
tion of (2. 62).

It is useful to introduce the number operator,

np(f) =[I)J,(l)[I)~(f) (2. 63)

Using the above definitions, one can verify that
N N

Q Z n~(l) =Z [n'(I)+n (I)] 2 (2. 64)
P l1 l 1

so that if P is the projector onto the subspace of
parity P [recall that [I)~(f) and ]I)~~(f) are defined so
as to project onto this subspace] the transfer ma-
trix can be written

N

K=V„exp K, Z NP —2Z n (I)
P l=i

xexp ujj
P l-"1

x[2 ((+()+(('((+1)]). (2. 66)

Therefore, K may be written

S tjj XSA
with

N

Xi=exp K, NP —2 Z nz(l)
l=1

N

@exp u„Pl+ Pl
l=i

(2. 66)

x[Q (1+1) [(
~+))])(. (2.62)

ln[coth(K6))') ]= 2K,

Further let M be defined by

&I) =~i
so that

2K„=ln[coth(EP)]

(2. 69)

(2. 70)

(2.71)

Recall now that in zero field, u)„=ln[coth(K„)].
The low-temperature matrix XP thus takes the
form

XP =e —exp —ln coth Ã*„nP l
l-"1

xexp M Pl+ ~l
l=1

x[2 (1 ~ 1) 2'0 ()]), (2. 22)

Note from (2. 67) that z„operating on a symmetric
state is equivalent to the identity operator I, as
is X~ operating on an antisymmetric state.

The form of the high-temperature zero-field
transfer matrix was elucidated in Paper II and is
given by Eq. (2. 31) of that paper with h = 0,
namely,

N N

K= p,," exp —u)„Q n(I) exp K, Q [[I)(l)+[I) (l)]
l=1 l=1

x [2() () ~ 2'() x ()]), (2.66)

where n(l)[=[I)t(l)[I)(l)], [I)(f), and ]I)t(l) are Pauli
field operators with exactly the same algebra as
nJ, (l), [I)J,(l), and ]I)],(f). Thus, for the square net,
to within a temperature-dependent, but analytic,
scale factor the low-temperature transfer ma;
trix —given by (2. 66) with (2. 67)—has exactly the
same functional form as the high-temperature
matrix —given by (2. 68). [This is, of course,
true as long as one operates on states of definite
(A or S) parity. ] Let us introduce the fundamental
variable M by
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so that operating on states of given parity, the
total transfer matrix K becomes

(K)1, = (tne 1)"exp
j

—ln[coth(K*„)] Z n(l)

N

&&exp K~ l + l l,+1 + l+1
1=1

(2. 73)
which (given the substitution of 11, for t„e"') is
exactly the high-temperature form for K. Note
that this isomorphism allows one to calculate the
critical temperature of the square Ising net. For,
suppose that there is a unique critical point. Then
it must be given by W~ =K~ and K((I' KI1 Other-
wise, by the duality transformation if there is a
critical point for K, & M there must also be one

of SP,' & K„hence vitiating the assumption of a
single critical point. Thus the critical point is
located via

For K„=K„ this becomes V, =v'2 —1.'
This isomorphism enables one to calculate the

low-temperature spectrum using the results of
Paper II for the high-temperature spectrum of
K, At low temperatures the eigenvectors must be
obtained to first order in u„. However, all the
other results may be taken directly over from
Paper II. Since the calculations involve straight-
forward perturbation theory only the results are
presented.

The eigenstates IX2: P) for the largest two levels
are given by

~Z, :P)= ~e:P&+u„(1-e '"1) '

xg ~2', 2" +1:P)+O(u2), (2. 78)
@=1

and the eigenvalues are

X,(P)=f,', ""{I N,', [
'" -I]-'+O(,',)),

2K, = ln[coth(K„, ) ], 2K„,= ln[coth(K«)]

or, defining V„=tanh(K2) and V, =tanh(K, ),

e ' ~a= V„, , e I1~= V„ (2. 78)

(2.77)
and hence are degenerate in second order. The
(2n)-particle eigenstates are constructed as fol-
lows: The zeroth-order states are

~

4'(q» q2, .. . , q2„): P) with

N N

~y(q„. . . , q2„):P&=g Q q, ...,, (r». . . , r2„)~2». . . , r2„:P& .
pi=i 1 2

(2. v8)

The wave function 4', ..., (r». . ., r2„) is a sym-
metrized Slater determinant of running-wave
states. I et q1, (r) be a running-wave state,

(~) N 1/2e 1at (2. 78)

Then,

@n ~ ~ n (r» '' 'y 2n) e(q» ' ' '&q2n)~2n

x(e~ ». . ., 22) Dte~ „q(~,) ~ „„2„, (2. 8O)

where Det lA&& I &„, is the determinant of the l-di-
mensional matrix A with coefficients A, ,&

and

e(x„.. ., x„) is the signature of the permutation of

(1, 2, . . . , n) required to order x1, . . . , x„ in increas-
ing size. Thus suppose the ordering is xi. &x2.
& ~ ~ ~ &x„i the signature e(x». . . , x„) will be positive
(negative) if (1', . . . , n') is an even (odd) permuta-
tion of (1, . . . , n).

The wave function depends implicitly upon the
parity through the boundary conditions. Recall that
the symmetric (antisymmetric) states satisfy
periodic (antiperiodic) boundary conditions. From
Paper II,"recall that for 4, .„, (r„.. . , 22„) to
satisfy periodic (antiperiodic) boundary conditions

q/, (r) must satisfy antiperiodic (periodic) boundary
conditions. Thus, for the symmetric states, q&

is restricted to

q, =v(2n, +1)/N, n, =1, 2, . .., N; (P=S)
(2.81)

and for the antisymmetric states q, verifies

qg = 2vn1/N, n1 = I, 2, .. . , N; (P =A) (2.82)

~2n(q» ' ' ~ s q2n'.P) = tne (N 4)K

25
X $+ 2g(I COS g) + 0 Q)1 ~ 3n 83

li i

The two-particle eigenstates are given to first
order as

~X2(q»q2):P&= ~4'(qq )»:P2& u„(+1-e '«1) '

N N

xQ Q Q e, , (r»22)~2"»r2, r„vs+I:P&'

N
—2u„(e'«1 - I) ' Q @, , (2, 1'+ 1)

~

e:P& + O(un)0102

(2. 84)
Note that the eigenvalues X2„(q». . . , q2„:A) and

X2n(q». . . , q2„:S) differ slightly simce the wave vec-
tors q, differ by O(v/N) for the two symmetries.

With these preliminaries the (2n)-particle eigen-
values are found to be
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As N tends to infinity this difference disappears
and the levels become fully degenerate with one
another. The qualitative features of the zero-
and two-particle spectra are presented in Fig. 2.

The fundamental inverse correlation length
K(qg~ qa'.P) ' ' is

x(q„q,:P) =-in[to(P)/~ X,(q„q,:P)
~ ]

4K' 2ug [cos(q,) + cos (q~) ]+ O(u'„)

(2. 85)
where q, and qz verify (2.81) and (2.82) in the
symmetric and antisymmetric cases, respectively.

This completes the treatment of the low-tem-
perature zero-field two-dimensional transfer-
matrix spectrum. With free-edge boundary con-
ditions the results are changed by the appearance
of states with odd particle number associated with
surface states. However, as will be shown in
Paper IV of this series such states do not affect
the results derived herein for the decay of correla-
tion within the bulk. Finally, note that even with
cyclic boundary conditions the addition of second-
and/or further-neighbor interactions fundamentally
alters these results. For example with second-
neighbor forces the states of a single overturned
spin (called herein nearest-neighbor two-particle
states) form a single-particlelike band which lies
above the states with two nearest-neighbor over-
turned spins. Below this is the remainder of the
two-particle states (states with three or more
overturned spine in a row). The important point
is that the first three levels are exactly like those
with d equal to or greater than 3. Thus, the
analysis of the spectrum and the low-temperature
decay of correlations follow in detail that presented
for 8=0, d equal to or greater than 3. In partic-
ular, the decay of correlation is then found to
be OZ.

In Sec. III the various correlation functions are
obtained in terms of the states and levels calcu-
lated in this section.

III. ASYMPTOTIC DECAY OF CORRELATION
AT LOVf TEMPERATURES

A. Introduction

In this section the results of Sec. II are used
to obtain the asymptotic decay of net-pair-correla-
tion functions at low temperatures. The division
of the calculations follows the same lines as the
division of the derivation of the various spectra
of K in Sec. II.

In Sec. III B the decay of correlation in a non-
zero field is considered for arbitrary dimension
d. As will be seen below, the decay of an arbi-
trary net-pair-correlation function then turns out
to be OZ in form.

The zero-field decay in three or more dimen-
sions is considered in IIIC. Again the decay of
correlation will be found to be OZ. Finally, IIID
comprises a treatment of the decay of correlation
functions in two dimensions and zero field. The
decay of these correlation functions is found to be
given by the non-OZ form R e "~ found by
Kadanoff and by Wu.

B. Decay of Correlation in Finite Field

The net-pair-correlation function G,(K, h) is
defined by

G,(K, a) =(nS'(O, 0)~S (r„r„)),
where 5= r, +r„z, exactly as in Paper II. Again,
the asymptotic decay of correlation is determined
by the first band of eigenvectors below the largest
level, together with the largest level itself. That
is, as lr„l tends to infinity:

G,(%, 0) =5 e '"o'" ' "(X,(+ )
~

o'(0)
~
xg(q) (+ ))

x&Z,(j)(+ ) I
o'(r~)

I
~0(+ )& (8 2)

where x'(Z) given by Eq. (2.44), ~zo(+)) by Eq.
(2. 19), and I X&(q)(+ )) by Eq. (2. 27).

Recall that K& and K~ do not commute, so that

SYMMETRIC STATES ANTI SYMMETRIC STATES

Xo {S)
Xo(A)

X (q, ,q:S) X. (q, ,q:A)
FIG. 2. Spectrum of K in

zero field and two dimensions.
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[(K, —1 )Kp]„ is not Hermitian. Whence &X,(+ ) I

is not given by the complex conjugate ( I &(.,(+))*
of ( I X,(+ )&. Additionally, the energy denom-
inators are modified in the expansion for the bra
vectors just as they were in Paper II. Thus,
A„(+ )/[A„(+ ) —A (+ )] in the expansion for the ket
vectors I

~ ~ ~
& becomes A (+ )/[A„(+ ) —A (+ )] in

the expansion for bra vectors ( ~ ~ ~ I. Then the
matrix elements in (3.2) are easily evaluated as

hp(+ )
I
a'(o)

I
&(2(q)(+ )&&&2(q)(+ )

I
0'(r, )

I
Xp(+ ))

(+) o(+)
( (

A, (+ ) —A, (+ )

Let us introduce the quantities a(h, K,) and b(k, K,)
via

and

( )
A,.(+) A„(+)

A, (+ ) —A„(+ ) A, (+ ) —A„(+ )

(s. 4)

(3. 5)

respectively. Then K'(q) may be expressed as

'(PT) .= 2 [I't ~ A;()(0) ]+u„(1 t (h, )()—2a th, K)

d-1
—2a(h, lf', ) Z cosq2 I

+ o(22„)
)

(s. 8)

For Ir, l
« Ir„l the correlation function G,(K, I2)

becomes (as N tends to infinity)

2ff "2ff

G,(R, I2) =422'„[ ' '
], exp(- I& „l(2[@+p (O)Z, )+a'„[i-b(f2, A",)]])

I

' ~ ~ ~

Ie p w p

xg exp[2" a(k) If2)I2)tl cos82 —i2»62] (3. f)

As in Eq. (4. 20) of Paper II, the integrals

iv8 x cos88 e

are recognized as representations of the Bessel
function I„(x). These integrals were asymptotical-
ly analyzed in that paper. [Equations (4. 24) and

(4. 29) of Pager ll present the relevant results for
x- ~ and v-~, respectively. ] The results of that
analysis are applied to Eq. (3.71) to yield

G (%2 f2) Bg(12) ((2 2& 22 + ' ' (
I
Ytt I

)

x5[S'(0, 2'„)S'(5, 2'„)]& . (3. 11)

Then as I&'„I tends to infinity,
A

G, ,(R, b) =Z', Z Z e "'"'" t

6 6

x (&t.,(+ )
I
o'(o)o'(5) l., &t.,(q)(+ )&

x(&t (q)(+) la (0)a (5)
I

&t. (+)) (s. i2)

be true at low temperatures. Let us introduce the
energy-density correlation function

G,,(R, I2) =J, Q (5[S'(0, 0)S'(5, 0)]

with
(3.8) The calculation of G,,(R, )2) rests upon the matrix

elements which are found to be

K = K + 2 [(t() (0) —1]EC2 + 2k + O(22
))) (s. io)

At high temperatures and finite field, it was
found that the four-spin functions, called energy-
density pair-correlation functions, show OZ be-
havior. A short calculation shows this also to

B (I2)= " " [4 (I2 K )]
[A (+) —A '+)]'

(s. 9)
and with z given by the q equal to zero limit of
Eq. (s. o).

The second term in the asymptotic expansion of
G,(R, I2) vs IRI -~ involves integration over the
bound-pair bands. As noted above these bands
have a "polarized" single-particle character so
that they also lead to an OZ decay form
[-e"""/If' "

] with, however, a decay length K'

given by

&x, (+)
I

o'(o)o'(5)
I
&,(q)(+ )&&&,(q)(+)

I
a (o)o'(5)

I
&,(+)&

822(t Ap(+ )A2(+ ) g 1+Cosq 5

A, (+) —A, (+)

G,,(R, I ) = Z„(I )e-"~/R"-2& 2'

where, as above, K is given by (3. 8) with q equal
to zero, and E„(I2) by

(3.14)

E (b)=io,~' (o) '
' A()(+) —A, (+)

x[4&a'„a(b, A",)]""" . (3. 15)

Thus, both G,(@ and G,,(R) exhibit OZ behavior

(s. is)
With (3. 12) and (3.13) as N tends to infinity the
asymptotic analysis of Paper II, may be employed
to show that
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at low temperatures in finite field. Indeed, OZ
behavior is found generally in this case. Below
it is shown that for d ~ 3, this remains true when
8=0.

C. Decay of Correlation in Zero Field in Three
or More Dimensions

Let us now consider the decay of net-pair-cor-
relation functions in three or more dimensions and
zero magnetic field. The calculation will also be
correct in two dimensions with second-neighbor
interactions within the layer at sufficiently low
temperatures. These correlation functions are
chiefly distinguished from their high-temperature
counterparts by the existence of nonzero matrix
elements of the energy density between the largest
eigenvector and the single-particle states. That
is, at low temperatures and zero field the decay
of energy-density and spin-net-pair-correlation
functions are determined by the same band even
in zero field.

At low temperatures the zero-field spectrum is
made up of two degenerate noninteracting spectra.
Further there are no nonzero matrix elements
of o&o, ~ ~ o„' connecting these two spectra for n
much less than N. Therefore, one may write the
excess-correlation function as

&6A(%,)6s(g, +5)&=-;Z '" '""[h,(+)IAIDO, (q)(+)&
q,

x(y&(q)( ) I Bl yo (+))

+(x,( —)
I
A

I x, (q)( —)&h&(q)( —) I
B

I
xo(- )&]

(3. 16)
as Irg I terms to infinity. Pr(q) is given by the zero-
field limit of x'(q). Further the matrix elements
have the same zero-field form for both the (+.) and
( —) spectra Indee.d, because of the symmetry
of the spin operators, the zero-field limit [for
(2n)-spin functions] is obtained by substituting
h= 0 into the results of the preceding section [that
is, a'(r) = 1 —2n'(r) = 2n (r) —1, where n'(r) is the
number (=0, 1) of type (+) particles at site r].
Note that with definition (3.16), three-spin [or
more generally (2n+ 1)-spin] expectations are zero
since the contributions from the (+) and ( —)
spectra cancel. However, if one takes the limit
as h 0' only the type-(+) spectrum enters, and
the (2n+1)-spin functions are nonzero. This de-
pendence on magnetic field boundary conditions is
indicative of long-range order as discussed in
Paper I. '

We may thus write the spin and energy-density
correlation functions as

respectively [the limit as h- 0 and q- 0 of k'(q)
yields x]. It is emphasized that (3.1V) and (3.18)
also apply in two dimensions if further-neighbor
interactions within the layer are included.

Before going on to treat the two-dimensional
case, consider briefly the calculation of long-
range order, that is, of the spontaneous magnet-
ization (o'&.

For a completely cyclic system the expectation
value of the magnetization is zero, since (using
the representation of o' in terms of n') one has

&os =-'[&~0(.) lo'l~o( )&+&~o(-)I"l~o(-)&]=-o
(3.19)

However, as k tends to zero from above

(og=lim&xo(+) l(r'lxo(+)&~o .
h~0

Furthermore, with end walls, one may assign any
desired configurational weights W, (0, a) and

Wz„i(0, +) to the first and last layers, respective-
ly. ' The spontaneous magnetization is then found
to be

(s. ao)

(o'& = &xo(+ ) I
(r'I xo(+ )&

Wl(oy +)WI+1(0& +) Wl(oy ) WL+1~$ (3 21)
Wi(0, +)Wi, i(0, +) + Wi(0, -)Wz„g(0, -)

where (3.19) has been used. Thus, while (o*& =-0

for a cyclic system, the use of either an infini-
tesimal field or "free-edge" boundary conditions
can lead to nonzero order. It is to be emphasized
that this nonzero order in the absence of the field
arises from the degeneracy of Xo(+) and Xo( —)
in zero field. Note that a general-pair-correlation
function for the case (d) 3, h- 0') is determined
by matrix elements between the zero-particle and
single-particle states, so that the decay of any
correlation function wiQ be OZ.

D. Decay of Correlation in the Two-Dimensional
Zero-Field Ising Model

This section treats the decay of correlation in
zero field for the two-dimensional Ising model.
Just as in three or more dimensions, thereare two
noninteracting spectra. Before calculating the
decay of correlation, one needs to obtain the ef-
fect of o'(x) acting upon the symmetrical and anti-
symmetrical eigenstates of K.

First, note that

o'(r)I~M)&= I4(~)&, o'(r)l~(3)&= IcQ)& .
(3.22)

The effect of o'(r) and of o'(r)o'(r+ 1) upon the
two-particle states is also needed. For o*(r),

G,(K, h=0)=8~(h=o)e jR'

G„(K,h = 0) = E~(h = 0)e ""/R' ~ "i

(3.17)

(s. 18)

o'(r) lr„r;.~&=(- I)""i"3'"& lr„r, :s&, (s. 23)

o'(r)
I ri, r, :S& = ( —1)""&'"3'"'

I r„r2 A&, (3.24).
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where

( I)&cr»r2&r) I for r~ cr c

=+1 otherwise

For o'(r)v'(r+ 1) one obtains

o'(r)a'(r+ 1)
I x„x,:P)

(s. 25)

G (~, 0) = —,
' + exp[ —Ir„l«(q4, q2)][&no:sic'(r)

'S"2

x
I ~2(ql& q2)'~)&~2(ql& q2): & Io'(r)

I "o:s&+ &A: AI o'(r)

x i&2(qs, q ):s)&x (q, q2):slo'(r)l&o:»] (3 27)

G„(K,0) =-,' Z Z z', exp[- Ir„l (qcc„q )]2
a)2 a2

x &Xo P I"(r) o'(r + 1)
I
~2(q i q2): P)

x&y2(q„q2)'Plo'(r)o (r+1) IXo: P)
(s. is)

In (3.27) and (3.28) the difference between the al-
lowed values of q, for differing parity has been
ignored, since this difference is negligible as N
tends to infinity. 4c(q&, q2) is given by (2.85).
Further, (3.27) and (3.28) only treat correlation
in the layering direction, that is, only for
R=r4«.

Equations (2. 76) and (2. 84) determine the eigen-
states (3.27) and (3.28). These together with

(3.22)-(3.26) for the action of v'(r) on these states
determine the matrix elements. These matrix
elements have the same character as those for the
energy density at high temperatures and zero
field; in addition «(q~, q2) has the form «(q, )+ «(q2)
as for the two-particle band at high temperatures.
The correlation functions are written ( as N- ~)

16 2 KJg~KJlr~~l
G,(%, 0)

(1 4«,),

x Il
—sin q exp(4u„

I r„ I

cos—,
' 9 cosq)

(3.29)
and

32 J2+2&-4KJ e-4KJlrti t

G,,(%&0)= (' ",«),

(' dq I'
sin q exp(4u„l r„l cos2 g cosq)

(s. so)

=(1-2[5 (r& xy) + 5 (r& x2)])lxc& x2: P) . (3.28)

Therefore, the matrix elements of o'(r) are only

nonzero between states of opposite parity; and

matrix elements involving o'(r)cc'(r+1) are only
nonzero between states of like parity; and it fol-
lows that the asymptotic decay of G,(R, 0) and

G, (K, 0) are given by

These are exactly the forms displayed in Eq.
(5. 16) of Paper II (with d = 2), so that the asym-
totic analysis presented in the Appendix of that
paper may be taken over directly to analyze (3.29)
and (3.30). The results are

2 4KJ e KR

G4(~t 0)
(1 4«&)2 ( R)2

(3.31)

4~2 e "4KJg 2

Ge&(~& )
(I -4«g)2 ( R)2 (3.32)

where R = lx, l and x is given by the q, =q2 = 0 limit
of Eq. (2. 85), namely, by

« = 4 (If, —u„) + O(u'„) (3.33)

These results are in agreement with the results
of Kadanoff and of Cheng and Wu for the decay of
spin correlation functions, and agree with the re-
sults found by Stephenson and by Hecht for the
four-spin or energy-density correlation functions.
Neither (3.31) nor (3.32) exhibits OZ behavior.
Further, a short calculation shows that the three-
spin function (5S (0)5e,(r„)), which is identically
zero in the completely cyclic case, decays as

2 tcRe (3.34)

in the case of end walls. One may fully expect
that for this system all nonzero pais correlation
functions decay as (3.34) since the matrix ele-
ments for any correlation function between zero
and two-particle states are finite.

IV. SUMMARY

It has been found that at low temperatures —ex-
cept for the d=2, &=0 model with nearest-neigh-
bor forces —the decay of correlation in the Ising
model verifies the OZ prediction:

G~a(R, Ic& d) = D„a(d& 12) e /R (4. I)

For the special case of the d=2, h=0 model with
nearest-neighbor forces the OZ form is replaced
by

G„a(R, I2 = 0, d = 2) = D„ae ~jR (4. 2)
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G. E. Laramore for his careful criticisms of the
original manuscript.

The difference between the general case and the
d = 2, h = 0 case arises because in the general case
the decay of correlation is determined by the
largest level and the single-particle states of the
transfer matrix, but in the special case the single-
particle states are replaced by two-particle
states.
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Using the Feynman-diagram technique and the Abrikosov fermion representation for the localized

moment, the transverse dynamic susceptibility of a dilute alloy is derived in the presence of the

electron-electron interaction. In the paramagentic region, enhancement factors for the Overhauser and

Korringa rates are found to contain identical averages over the wave vectors q spanmng the Fermi

surface. The former is also deenhanced by the inverse of the uniform magnetization enhancement factor

1 —Vop arising from the relaxation to the self-consistently enhanced instantaneous local field. The

exchange-enhanced detailed-balance condition follows immediately. Our theory represents the first

microscopic derivation of this relation between the enhanced relaxation rates and the static

electron-electron-enhanced susceptibilities.

I. INTRODUCTION

Recently, Barnes and Zitkova-Wilcox' (BZ) de-
rived a pair of coupled linear equations describing
the electron-spin resonance in a dilute alloy. Inthe
classical regime and for equal g factors, these
equations are comparable to those of Hasegawa's
case B. The BZ treatment did not include the
Coulomb interaction between the conduction elec-
trons, however, which is known to enhances the
local-moment g shift ~, and the local-moment
(Korringa) relaxation rate 1/T„; The coupled
resonance in the presence of this (exchange) en-
hancement is ordinarily assumed to be described
by the usual Bloch equations in the form displayed
by Cottet et al. However, there exists no satis-
factory microscopic derivation of the electronic
relaxation rate due to the local-moment-conduc-
tion-electron interaction for the interacting elec-
tron gas. Recent electron-spin-resonance studiese

in Gd„La& „Al~ intermetallic compounds were
analyzed using the so-called detailed-balance con-
dition, i.e. , the relation between the static local-
ized and conduction-electron susceptibilities and
the Korringa and Overhauser rates in the presence
of the electron-electron interaction. In analogy
with the spin-orbit scattering, 7 one can argue that
in the presence of the electron exchange enhance-
ment also the effective s-d scattering cross sec-
tion goes to zero proportional to the inverse static
susceptibility as the ferromagnetic limit is ap-
proached. However, if one tries to modify the
ordinary Overhauser rate accordingly, [e.g. , by
the Brinkman and Engeisberg factor (1-I) ] one
arrives at values of 1/T„, which violate the
mathematical equality of the detailed-balance
relation.

The purpose of this paper is to investigate in a
systematic way the effect of the electron-electron
interaction on the coupled susceptibility. We will


