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An essential feature of the modified Zener model for ferromagnetism in transition metals and alloys

is the coupling of an itinerant d electron to a localized spin in accordance with Hund's rule. In
contrast to the Stoner-Wohlfarth model for ferromagnetism, this model takes into account the
Hund's-rule effects and the orbital degeneracy of the d electrons. The exchange-enhanced dynamic
susceptibility is calculated, and from its singularity in the static long-wavelength limit, the Curie

temperature T~ is calculated as a function of bandwidth, the exchange interactions, and the number

of itinerant d electrons per atom where a fcc tight-binding density of states is assumed. The results of
the model calculation of Tq are compared to results for a pure itinerant-electron ferromagnet of the
Stoner-Wohlfarth type and compared to experimental results for T& as a function of pressure. The
calculated T~ is found consistent with the experimental data. The unusual excitation spectrum for the
modified Zener model is also discussed.

I. INTRODUCTION

Two divergent points of view have been used to
describe ferromagnetism in transition metals and
alloys. On one hand a localized-spin model, name-
ly, the Heisenberg model, has been used to de-
scribe the ferromagnetism. In this model the lo-
calized spins are coupled via interatomic exchange
interactions. Herring' has discussed at some
length the objections to the pure localized spin
model when applied to metals. Basically, the ob-
jections stem from the fact that the localized model
fails to account for the itinerant nature of the d
electrons and the nonintegral numbers of Bohr
magnetons.

An itinerant-electron or band model of the Ston-
er-Wohlfarth type has been used to describe the
ferromagnetic (FM) behavior of transition metals
and alloys. The essential features of the model
as it has been applied are an exchange splitting due
to an exchange interaction, treated in the molecu-
lar-field approximation (MFA), is assumed between
the up- and down-spin electrons, where electron-
correlation effects are taken into account using the
Kanamori ' approximation. In addition the number
of itinerant electrons is assumed constant and spin-
wave effects are ignored. This model is not with-
out its objections either. Within the simplest

forms of this model it is difficult to account for the
rather large magnetic moments observed in some
of the transition metals and alloys, and the orbital
degeneracy of the d electrons and Hund's-rule ef-
fects are not generally considered. ' However, the
itinerant-electron model, based on Stoner's equa-
tions, has been used quite successfully in explain-
ing the relationship between T~ and its initial pres-
sure derivative 8 Tc/BP in transition-metal alloys
and compounds. '~' ' ' Furthermore, since
neither Zr nor Zn is a FM metal, the ferromag-
netism in ZrZn2 is attributed to the itinerant elec-
trons, where the Fermi level lies at a large peak
in the density of states such that the Stoner criteri-
on is satisfied. 3

The recent measurements by Bartel, Edwards,
and Samara'P of Tc as a function of pressure (to
high pressures) for MnSb- and Mn-substituted In-
var alloys reveal some important aspects of the
itinerant-electron model. Even though the results
of Tc vs P to high pressure (P) in Mnsb are as
predicted by the itinerant-electron model, the ex-
perimental results of T~ vs P for the Invar alloys
deviate markedly from the theoretical predictions
of the Stoner-Wohlfarth model. For example, for
the alloy Fep» (Nip pgMnp gp)p pp, Tc decreases
very nearly linearly with respect to pressure up to
32. 5 kbar, whereas the calculated T~ vanishes for
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P in excess of approximately 19 kbar. It was sug-
gested that the disagreement between theory and
experiment may be due to a nonconstant number of
itinerant d electrons. However, as shall be
pointed out in this paper, the nearly linear depen-
dence of T~, for Invar at low P and for the Mn-sub-
stituted Inva, r alloys to high P can be explained on
the basis of a model to be discussed here.

In addition to the Stoner-%ohUarth model, the
Hubbard model'3 has been used to try to describe
the ferromagnetism for itinerant electrons. How-

ever, it appears that the exact ground state, with-
out orbital degeneracy, can never be FM.~ 4

Herring suggested that the model proposed by
Zener' for the ferromagnetism in mixed-valence
transition-metal oxides may be applicable to de-
scribe the ferromagnetism in transition metals.
The Zener model ' as applied to transition
metals, referred to here as the modified Zener
model, is described in this section. This descrip-
tion is essentially that given by Arai and Parri-
nello. " Consider a lattice of transition-metal
atoms identical except that some have x d elec-
trons and others have &+1 d electrons, where 1
& x& 4. The same model applies when the d shell
is more than half -filled, 5 & g & S, where d holes
are treated rather than d electrons. Thus, the
model is valid for cases with more than one d elec-
tron (or d hole) per atom. Furthermore, in this
model it is assumed that the x electrons at each
atomic site are coupled according to Hund's rule
to yield the spin 9 of maximum multiplicity. The
additional electron (Zener electron) is itinerant
hopping from site to site and couples to the local-
ized spin in accordance with Hund's rule yielding
the state S+ —,

' or S- —,', depending upon the relative
orientation of the two spins. Anderson and Hase-
gawa have calculated the interaction energy for
a system of two atoms sharing one itinerant elec-
tron and concluded that ferromagnetism is always
favored. However, as pointed out by Arai and

Parrinello, "the interaction energy depends on the
density of Zener electrons and that in a solid an
antiferromagnetic state might become stable,
rather than the FM state. It should be pointed out
that the model is appropriate for describing the
ferromagnetism of an s-d exchange model where
the d electrons produce the localized spin S and
the itinerant electrons are s-like.

In this paper the primary interest will be model
calculations of the dependence of T~ on the band-
width W (or P)l the effective number of itinerant
d electrons per atom n, the intra-atomic exchange-
interaction parameter I between the itinerant elec-
trons of opposite spin, and the Hund's-rule-cou-
pling-energy parameter J between the itinerant-
electron spin and the localized spin. FM ordering
is assumed at the outset, The model used for the

calculations will be the so™calledmodified Zener
model discussed above. In this model, the itiner-
ant electrons are described by a Hubbard Hamilto-
nian and the itinerant electron couples to the lo-
calized spin (Hund's-rule coupling) by a term like
—Jo ~ S, where cr is the electron-spin operator.
The itinerant electrons will be treated in the spirit
of the Stoner model, i.e. , in the weak-interaction
limit. Major improvements of this model over the
pure-itinerant-electron models are: Hund's-x ule
effects are taken into account, the orbital degen-
eracy of the d electrons is taken into account in the
sense that Hund's-rule effects are taken into ac-
count, and large number of nonintegral Bohr mag-
netons are possible.

of particular interest are the fec transition-
metal alloys involving Ni, Co, Fe, and Mn. The
model calculations are intended to illustrate the
behavior of Tc as a function of 8', ~, I, and J.
For an actual alloy system, the effective values of
I and Jwould be determined from the individual
values for the constituent metals; for example, a
coherent-potential approximation in the manner
used by Harris and Zuckerman~o can be employed
to determine the effective exchange parameters.
In addition, an alloy theory, possibly similar to
that of Hasegawa, and Kana, mori 2i should be used
to determine n. Electron correlation effects as
they affect the exchange energies have been
omitted, but they should be included in any detailed
theory for a transition metal or alloy.

The model Hamiltonian and the Green's-function
(GF) solutions in the random-phase approximation
(RPA) for the response functions are given in Sec.
Q. The GF's are of the type discussed by Zuba-
rev." Because of the inequivalent spin systems,
localized and itinerant, a consequence of the model
is the existence of acoustic and optic branches to
the spin-wave spectrum; the spin-wave spectrum
will also be discussed in Sec. II. This appearance
of two spin-wave branches is identical in nature to
those existing in the s-d exchange model for Pd-Fe
alloys of Doniach and WohUarth. + In Sec. DI the
FM instability in the static long-wavelength ex-
change-enhanced susceptibility and the correspond-
ing equation for T~ are determined. At T~ an ef-
fective exchange can be defined which involves both
I and J. This effective exchange is calculated by
considering the localized spin to interact only with
the average magnetization produced by the itiner-
ant electrons for T- T~. In addition, in Sec. III
the results of model calculations, using a fcc
tight-binding density of states for Tc as a func-
tion of 5', n, I, and J, are discussed, as well
as the consequences of the self-energy-type
term. A discussion of the calc lations as they
relate to some experimental da is given in
Sec. IV.
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II. DYNAMIC SUSCEPTIBILITY AND EXCITATION
SPECTRUM

In this section the model Hamiltonian will be giv-
en, and using GF techniques the response functions
for the itinerant electrons and the localized spins
will be calculated. In addition, the resulting exci-
tation spectrum will be discussed. The Hamilto-
nian for the modified Zener model discussed in
Sec. I is given by

If= Z~„c'„c,.+fZ N„N„

—)1 ZN), —2JZ o') S), (1)
fa

where i and j denote the lattice sites, C~„and C„
are the creation and annihilation operators for an

, electron at site i with spin o = 0 or 0, N„= C~„C„,
and j[L is the chemical potential. The energy of an
electron hopping from site i to site j is &„.. The
electrons localized on the site i interact through
the intra-atomic exchange interaction I, and the
Zener electron couples, according to Hund's rule,
to the local spin S with an interaction parameter
J. Here

+= C)fC)g P f C$gC$ f

o, = —,'(c'„c„—c'„c„) (2)

are the spin operators for the electrons. The
electron operators obey anticommutation relations
and the spin operators obey commutation relations.

To facilitate the calculation of the dynamic sus-
ceptibility and its instability in the static long-
wavelength limit, as well as calculation of the spin-
wave spectrum, the Fourier-transformed operators
and Hamiltonian need to be considered. The trans-
formed operators are defined as

C„=N-'i g c)k )C
k

Ct y-1/2 Q )k ~ tC)'
]0, —L e

k

5, =N-'"Z e'"''5, ,

where N is the number of atoms per unit volume.
For simplicity, fp denotes k in the subscripts and
i the position vector of the ith lattice site. The
energy becomes

N-1 Q c)k ' () - 1)
&k~

k'

(4)
8-ik &)-))

j-]
Thus the Hamiltonian [E11. (1)] using Eels. (3) and
(4) becomes

H =Z c»C„,C», —y. Z C», C»,

+IN 2 C»„,C», C» „C».,
kk'q

+ (C»...C», —C», », , C», )S»]

where, for two vectors a and 5,

a ~ b =
2 (a'b + a f)') + a'b' .

The Fourier-transformed electron operators obey
the anticommutation relations

[C»a& C»r~i]+ = g»»ag~~i

[c„., c, .],=[c'... c'„..],=0,
and the Fourier-transformed spin operators obey
the commutation relations

[s;, s;, ] =2N-"'s'„.. .
[s,', s~] =+ N "'s,'„, .

A. Green's-Function Equations

The thermal properties of the model Hamiltonian
will be calculated using the GF techniques as dis-
cussed by Zubarev. The essential equations of the
GF theory for operators A and B obeying the com-
mutation relations

[~, a],=~a+ a~
are the Fourier-transformed equation of motion for
the GF:

E «&;fl»=(22) '&44fl], &+ «[&, H] 'fi»
(10)

where units of 6=1 are used. The correlation
functions are calculated from

(BA&=2f dz(e' +1) '(((A;B&) „0
—((A; B&), ),

where P = 1/i'22 T. The relation

= —2mig E —Ek
1 1

k k

ls also used.

B Dynamic Susceptibility

To discuss the dynamic properties of the com-
bined system of the localized spins coupled to the
itinerant electrons, it is convenient to consider
the dynamic susceptibility. The discussion given
here follows closely that of Doniach and %'ohnarth+
for the s-d exchange interaction in Pd-Fe alloys,
and the work of Izuyama, Kim, and Kubo~ on the
dynamic susceptibility of an itinerant-electron sys-
tem. In calculating the dynamic susceptibility the
GF of interest is ((C1„„C»„C1».„,, C», , &), where
the transverse electron-spin operators are
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(13)

Thus, the transverse electron-spin GF is

K(q, E) -=((o,';o, ))
= N Z ((C» „,C»„' C»», C», )), (14)

and g, the number of itinerant d electrons per
atom, is defined as

n=N 'Z (n„+n„), (16)

where g is the magnetization per electron. Thus,
from Eqs. (15) and (16),

where the GF's involved are calculated using Eq.
(10). The resulting higher-order GF's are to be
decoupled in the RPA. The essential strategy of
the BPA decoupling scheme is to factor the ther-
mal averages of operators which are nonzero in
first order; these thermal averages are the elec-
tron-number operators n„,=- (C~„C», ) and the
average localized spin per site S=- (S') which is
assumed to be the same for all sites.

In calculating the GF given by Eq. (14), the
procedures used by Doniach and Wohlfarth+ and
Izuyama zP &l.~ will be employed except the GF's
used here are defined differently than in the previ-
ous work (Refs. 23 and 24). Therefore, for the
sake of brevity only the final results will be given.
The electron magnetization gf is defined as

nf =N Z (n„, —n„, ) (»)
k

((S;;S~))=N Ze"'" "((S,'; S, )) . (23)

C. Single-Particle Excitations

The itinerant-electron magnetization gg and the
electron thermal averages nk „,—nk, appear in the
expressions for K(q, E), ((S,'; S,)), and Xo(q, E).
The electron thermal averages are calculated
from the single-particle GF ((C»„c~„)). Using
Eqs. (5), (7), (10), and the RPA decoupling pro-
cedure, the GF becomes

((C„„C„,))= (am) '/(E —&„),
where

(24)

Ek, =Ek —&&+ —,'In)+ JS -for 0=0, + for o =0

(25)

lated susceptibility is bounded from above by the
adiabatic susceptibility which in turn is bounded
from above by the isothermal susceptibility.
In what follows, the word "isolated" will be sup-
pressed when referring to the reduced susceptibil-
ity defined by Eq. (21).

The transverse GF for the localized spins of in-
terest is ((S;; S )), from which the transverse
correlation function can be calculated. Following
the procedures and decoupling scheme outlined
above,

(av)-'as
E - 7 I + 2 T 3 x (q, E) [1- fx (q, E

(22)
where the Fourier transform of ((S;; S,)) is de-
fined as

n, = —,'(n+ nf), n, = —,'(n -nt'), (17)

where n, =N Z»n», . The resultant GF K(q, E) is»»

—(av) 'X'(q E)
1 —[I-2J S/(E- Zgi)] ( E)

where the unenhanced susceptibility X»(q, E) is
given by

x q
0(m E) N g Q n»+ gt n»g

E —(&» —&». ) —~

and where

& = Inf+2JS

(19)

(ao)

is the Stoner splitting.
The response function has been defined in terms

of retarded GF by Zubarev. Therefore, the real
part of a reduced transverse (or perpendicular)
susceptibility is defined as

X(q, E) = —avK(q, E), (21)

where the response function is defined as trans-
verse (perpendicular) to the applied field and not
transverse to q. The susceptibility defined by Eq.
(21) is the so-called isolated susceptibility. It
has been shown that the long-wavelength static iso-

n„, =- (C'„C„)= (e '"'+ 1) ' ~f(»».),
where f(x) is the Fermi distribution function.

D. Physical Picture

(27)

For the approximations used in the above calcu-
lations, the physical model for the interaction of
the itinerant electron with the localized-spin sys-
tem is as follows. As explained above, the single-
particle energies, [Eq. (25)], are calculated in the
spirit of the Hartree-Fock approximation in that

Cy= p-2'.
Here cr will denote the spin direction opposite to
that of o. Note that the single-particle excitation
energy [Eq. (25)] is similar to the Hartree-Fock
result where the electron of spin o interacts with
the average field of the 0 electrons; plus, in this
case, the electrons interact with the average lo-
calized-spin magnetization. Thus, the energy dif-
ference between the up- and down-spin electrons is
the Stoner splitting [Eq. (20)). From Eqs. (11),
(12), and (24) the thermal average of the number
operator becomes
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E,y
= Jnf+ 2JS . (29)

Since there are two inequivalent spin systems, the
itinerant electrons and localized spins, there are
two branches to the spin-wave spectrum, an acous-
tic and an optic branch. In addition, there are the
so-called Stoner excitations, which are found from
the singularities in X (q, Z)—these singularities
give rise to a continuum of excitation energies,
i.e. , branch cuts.

The resulting excitation spectrum is illustrated
schematically in Fig. l. In the spectrum are il-
lustrated the acoustic and optic spin-wave branches
and the Stoner exeitations mhere in Fig. 1 it is as-
sumed that J& I. The dashed portions of the spin-
wave branches iGustrate that when these energies
approach the Stoner energies, the elementary ex-
citations are not well-defined excitations and are
damped due to the Stoner excitations.

Experimentally, the acoustic branch has been
observed and measured in some transition metals
and alloys. However, as far as this author is

an electron of a given spin polarization interacts
with the average field created by the electrons of
the opposite spin polarization; in addition, the
electrons interact with the average spin polariza-
tion of the localized spins. For the itinerant-elec-
tron spin operators [Eq. (18)] the electron spin in-
teracts with the average magnetization produced by
the itinerant electrons gf and the localized spin 5';
in addition, certain electron correlations are taken
into account, 4 According to Wolff, 28 these correla-
tions correspond to certain ladder diagrams; hom-

ever, as he pointed out, these diagrams do not ac-
count for all electron correlation effects. In this
case, account is taken of fluctuations in the aver-
age ~g and $. For the localized-spin operators
[Eq. (22)j the localized spin interacts primarily
with nf, the Zgg term in Eq. (22), plus a term pro-
portional to 9. The real part of this term propor-
tional to 9 gives a level shift to Jnf and the imagi-
nary part gives rise to a damping. This level
shift and damping come from the fluctuations in
nf through yo(q, E).

E. Spin-Wave Spectrum

The excitation energies for the electron and lo-
calized spine are found from the zeros in the de-
nominators of K(q, Z) and ((S„S,)) which yield
identical energy spectra. Following Izuyama et
g).~ and Doniach and %'ohnarth, + the excitation
energies for small q become

&(ac), = Dq' (acoustic branch),
(28)

E(op), = E„~D(IE„/J& —l)q (op'tic branch),

where the coefficient D ean be determined from
Refs. 23 and 24 and E„is

amare, the optic branch has not been observed in
transition metals and alloys. The reason for this
may be that E, is probably on the order of 0.1-
0. 5 eV (above the neutron energies usually used)
or if J-I the optic-branch energy is not well de-
fined because of the Stoner excitations. Investiga-
tion of this optic branch mould be important in
ver1fylng if this model ls Rpproprlate for the de-
scription of ferromagnetism in transition metals
Rnd Rlloys.

III. CALCULATIONS OF T

The FM instability is found from the singularity
in the q- 0, E- 0, 6- 0 limit of the exchanged-en-
hanced susceptibility lt(q, E) given by Eqs. (18) and
{21). The temperature at which this instability
occurs is called the Curie temperature T~. Taking
the above limit requires taking the q-O, E-O,
a-0 limit of the unenhanced susceptibility y {q, E)
as defined by Eq. (19). This is accomplished by
taking the limit of q~ 0 Rnd g~ 0 Rnd then 6~ 0.
In the limit &-0, n»=n». Thus, from Eqs. (19)
and (2V) in the limit of b.-0 for T- Tc and using a
Taylor's series expansion of f(&~), iso(0, 0) becomes

q'(0, 0)~,.,=-iv-'Z ~( ')
Tg

where f(e~) is defined by Eq. (2V). Replacing the
summation in Eq. (80) with an integral over the

(80)

NIAVE VECTOR

FIG. 1. Schematic drawing of the excitation spectrum
for the modified Zener model. Shown are the acoustic
and optic spin-wave branches and the continuum Stoner
excitations. The dashed portions of the curves indicated
that the excitations are not well defined. Here 6 is the
Stoner splitting defined by Eq. (20), E~ is the q = 0 optic-
branch enexgy defined by Eq. (29), and it is assumed in
the figure that I &J.
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density of states per atom per spin direction, N(e),
and defining go(0, 0)~ o

= P—(Tc), Eq. (30) becomes

y (T ) = d~N(~)
sf(~) (31)

TC

where & now denotes the energy E.
Therefore, from Eqs. (18) and (30) or (31), the

singularity in the exchange-enhanced susceptibility
occurs when

I.ffx (Tc) =1

where

I,zr = X+ (33)

Note that the evaluation of zg = z, —n, [Eq. (15)]
for a Stoner splitting [Eg. (20)] between "up" and
"down" spins in the limit of ~-0 at T= T~ yields
the same result as given by Eq. (32) for the FM
instability. As is evident from its definition,

y (Tc) depends on the value of ez, which in turn
depends on the temperature T~, where the value
of yg determines qz. Thus, in order to solve for
Tc when the limit (S/nr)„~ ois ev„aluated, it is
necessary to solve the expression for g obtained
from Eq. (16) with 6=0,

m=2 f deN(e)f(a), (34)

and Eg. (32) in a simultaneous self-consistent man-
ner for Tc and &F ~

A. Evaluation of (S/n| )„& in the Mean-Field Approximation

2S+y (y+1)"'+ (y —1)"''
2S+I (y+1)"'-(y-1)"' '

where here

y= 1+ (S, S,')/S . (38)

Using what are now more-or-less standard tech-
niques, S as a function of T can be calculated. In
this work, the procedure used by Lines3 for an
antiferromagnetic system (it also applies to a fer-
romagnetic system) will be employed. Thus, for a
spin S, S can be found from3'

electrons and the GF becomes

((s', ; s;))=z z &

(2n) '2S
(38)

Using Ecis. (11), (12), and (38) the correlation
function of interest in this approximation becomes

(s; s,') =2s(2'"'-1) ',
and thus

y=coth —,'PJgf .

(39)

Note that the mean-field result for the GF [Eg.
(38)) could be obtained from the GF given by Egs.
(22) and (23) when the last term in the denominator
of Eg. (22) is neglected. Neglecting this term is
equivalent to neglecting spin-wave effects. The
omission of this term will be discussed in Sec.
IIID. In the limit of T- Tc, y-2ksTc/Jn1 so
from Eci. (37), (S/ng)„~ 0 becomes

S 1 S(s+1)J
rig „$0 3 k~T~

Thus, from Egs. (33) and (41), I„f becomes

I,f~ = I+ 2S(S+1)2 /3ks Tc

(41)

(42)

for this approximation.
From Eqs. (39) and (41) the correlation function

for T = T~ becomes

(s,. s;)~,,=-,'s(s+1) (43)

in agreement with results for localized spins using
a Heisenberg model; see, e.g. , Ref. 31. This
agreement leads one to conclude that the above
approximation is reasonable.

B. Density of States

In this paper a tight-binding density of states
N(e) for an fcc lattice will be used in Eq. (31).
For N(a) the nearest-neighbor (nn) and next-near-
est-neighbor (nnn) interactions will be considered.
The tight-binding energies for the fcc lattice are
found from Eq. (4). Using Heine's results for the
dependence of the d bandwidth on interatomic dis-
tance R,

In the limit of T- T~, y- ~ such that S-0. Ex-
panding Eg. (35) for large y, the solution for S is

8 in%'
8 lnR

(44)

s = —,
' s(s+ 1)y-', T- T, . (37)

The correlation function (S,. S,') is calculated
from the GF, ((S,'. ; S, )). This GF can be calcu-
lated from Egs. (1) and (10). The mean-field-ap-
proximation result for this GF is to keep only
those terms which when decoupled are nonzero in
first order, i.e. , either the thermal average of the
term decoupled or the GF are to be nonzero in first
order. In this case, the resultant term which is
kept is the interaction of the localized spin with the
average magnetization produced by the itinerant

the ratio of the nn to nnn interactions can be cal-
culated and the resultant tight-binding energy is

e~ = 4&0 [(cos—.' k„a cos —,'k, a

+ cos-,'k, a cos —,'k,a + cos —,'k„a cos ,'k,a)—
+ 2 ~ (cosk„a+ costa+ cosk, a)], (45)

where &0 is the nn transfer-energy parameter and
a the lattice spacing. The density of states per
atom per spin direction N(e) is calculated using

N(e) =N 'Z 5(e —e„) . (48)
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Then using this N(&) in Eqs. (31) and (34), Tc as
a function of &0, I, J, and n can be calculated,
where I,« is the mean-field-approximation value
given by Eq. (42).

C. Calculations

The numerical computations were carried out in
the following manner. In the calculations of N(e)
from Eq. (46) using the s, given by Eq. (45), the
bandwidth was divided into 100 equal segments q,nd

the number of states falling into each energy inter-
val tabulated. For an fcc lattice the second Bril-
louin zone is simple cubic, thus for the ease of the
summation in Eq. (46), the summation was car-
ried out over one octant of the first two zones with
the proper normalization. Thus, in Eq. (45), 0
& P,g &2m, where i denotes g, y, or z. In calcu-
lating the integration in y (Tc), Eq. (31), and for
n, Eq. (34), a polynomial of order 20 was fit to
the tabulated values of N(&). The integrated area
for the polynomial expression for N(s) was within
0. 4%%d of that for the tabulated N(e), even though the
agreement at any one point was not, in general,
that good. The result for the polynomial expres-
sion for N(e) with &0= —0. 2 eV is shown in Fig. 2.
In using the polynomial expression for N(&), sharp
peaks arising from I Bf/Be i in y (Tc), which are
narrower than the step size in the tabulated N(e),
are properly taken into account. The simultaneous
self-consistent solutions for n and T~ were solved
to within + 0, 001 and 1 'K, respectively.

When the itinerant-electron spins are aligned
antiferromagnetically with respect to the localized
spine, i. e. , o, ~ S, &0 in Eq. (1), this case would

be equivalent to putting J& 0 in the work of this
paper. The instability for this type of ordering
occurs when Eq. (32) is satisfied; I,f, [Eq. (42)j
is independent of the sign of J and the calculations
given here for T~ as a function of 9, g, J, and I
are applicable to this type of ordering.

Calculations of T~ as functions of 8', n, I, and

J are shown in Figs. 3-7. The parameters were
chosen so as to give values of Tc more or less in
agreement with experimental values for the fcc
transition-metal alloys. These model calculations
are intended to illustrate the behavior of T~ for
various 8', n, I, and J. As pointed out in Sec. I,
a detailed alloy theory for the effective values of

9, and ~ is needed before a detailed compari-
son of theory and experiment can be made for the
transition-metal-alloy systems.

The model calculations of T~ with J=0 corre-
spond to a pure itinerant-electron ferromagnet of
the Stoner-Wohlfarth type where there is no cou-
pling to a localized spin. A FM state can exist if
the Stoner criterion (SC) I.«N(e~) &1 (at T=O) is
satisfied (for J=0, I,«=I). Calculations of N(e).
as a function of W show that N(&„) scales as W '.
In Fig. 3 are shown results of calculations of Tc
vs z for various J's with S= 1, I= 0.90 eV, and
S'=3.42 eV; ~ represents the number of electrons
and the number of holes is given by 2 —&, where
the nondegenerate d band is capable of holding two
electrons, one for each spin direction. Here n
was chosen such that e~ is near the peak in N(c),
and Fig. 2 shows the relative positions of q~ for
~ = 1.2, 1.4, 1.6, and 1.8 at T= 0. From Fig. 3
it is apparent that the existence of the FM state
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PER eV PE
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I

EF (INCLUDING

BOTH SP INS)

n =1.8—
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FIG. 2. Calculated density of
states per eV per atom per spin
direction for a fcc lattice in the tight-
binding approximation including nn
and nnn interactions. In the calcu-
lations the nn transfer energy e p is
assumed to be cp= 0 2 eV giving
a bandwidth of 8'= 3.42 eV. The
relative positions of ~z for various
g's are shown where the indicated
n's are for the number of electrons
for both spin directions.
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The effective exchange I,« for JW 0 gets larger
as Tc- 0. However, for W quite large, N(pz) is
small such that the condition I,~,N(&z) & 1 can exist
except at Tc = 0, where I,«- ~ in this approxima-
tion. For the T~-vs-S' curves with J=0.01 eV the
FM state vanishes (at least Tc & 0.8 'K) as illus-
trated in Figs. 5-7. As will be shown in Sec.
IIID, the effect of the self-energy-type term is
that I,«does not diverge as T~- 0 but has some
finite value.

400—

200—

0
1.0 1.2 1.6 1.8

I
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FIG. 3. Calculations of Tz as a function of N for vari-
ous J's. The solid circles are calculated values and the
solid connecting straight lines are shown for clarity. In
the calculations $=1, I=0.90 eV, and %=3.42 eV.

depends quite strongly on z. This dependence
arises because for n= 1.9 or n-1. 3, N(&~) is
small and for a small J [Eq. (32)), i.e. , the SC
cannot be satisfied. For the larger values of J,
I„~ [Eq. (42)] becomes large for small values of
Tc, and thus ferromagnetism can occur because
the SC can be satisfied. In Fig. 4 are shown re-
sults of calculations of T~ vs I for various n and J
with S= 1 and W= 3.42 eV; thus combining the re-
sults shown in Figs. 3 and 4, Tc vs n for various
I's can be determined.

In Figs. 5-7 are shown results of model calcu-
lations of T~ vs %for various g and Jwith S= 1.
Note that W and the pressure P are related through
Eq. (44) so the figures represent calculations of
Tc vs P. When the SC is satisfied for the range of
parameters used for J=O, note the quadraticlike
vanishing of T~ for an increasing 8". This behav-
ior, as expected, is in agreement with the predic-
tions of the Stoner-Wohlfarth model. '0 For JWO,

T~ as a function of W' can take on a quadraticlike
behavior when T~» 0, a concave upwards behavior
when T~- 0, or a nearly linear behavior depend-
ing upon the value of J as well as the values of
the other parameters. Also in Figs. 5-7 are
shown curves for which IN(&z) & 1 and the FM state
exist by virtue of the itinerant-electron-localized
spin coupling, i.e. , for Ze0 the condition I,«N(&„)
& 1 is satisfied even though IN(ez) & 1. In this case
the concave upwards behavior of T~ vs 5' is due
to the Tc' term in I,«given by Eq. (42).

X'(q, E+io) = y'{q, E)'+iX'(q, E)",
where

p (» E)t p ntt + ttt nttt

N a E —(et —Ett, ,) —&

X (q, E)"= wN
' Z (n„„—ntt, )

(47)

(48)

x 5 (E —(e„—g „.,) —d, )

for the real and imaginary parts of X (q, E), and
where P denotes the principal part of the sum.
The last term in the denominator of Eq. (22), the
self-energy term, can be written in the form
Z(q, Eai0) = Z'(q, E)+iZ" (q, E). The calculation
of (S,S';), needed to calculate S, involves a sum-
mation over q and an integration over E. Now as-
suming that if Z' and/or Z" are discontinuous that
they can be approximated by continuous functions,
then one is in a position to apply the mean-value
theorem for integrals to the q summation and the
E integration. Instead of applying the theorem di-
rectly, it is assumed that constants A. and I exist
such that the spin GF, Eq. (22), is given approxi-
mately by

(2p) '2S
))"*'=E-z

g ~s+ r(E)s '

r, ~ —w &z &~+$'
r(E) =

0, otherwise (50)

D. Discussion of the Self-Energy Term

In the mean-field approximation discussed in
Sec. IIIA, I,«diverges as T~-0. The purpose
of the following discussion is to show that within
a constant-level shift-constant damping approxi-
mation, the self-energy-type term in the denomina-
tor of Eq. (22) keeps (Sjng)„r p from diverging in
the limit T~- 0. The approximation to be used
was motivated by Anderson's work on the local-
ized states in metals for an isolated impurity. In
his work the approximation of the wave-vector in-
dependence of the virtual-level width is quite rea-
sonable for an isolated impurity; whereas here for
an extended system, this type of an approximation
needs further explanation.

From Eqs. (12) and (19) the unenhanced suscep-
tibility can be written
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where S' is an effective bandwidth consistent with
the energies defined by Eq. (4) and the Fermi fac-
tors in Eq. (48); thus, W-c~. In this work the
constants X and I" are considered to be proportional
to the energy and wave-vector averages of Z'(q, &)
and Z" (q, E) such that Eq. (49) is approximately
true. Note that if one assumes that one can ap-
proximate the GF, ((S;;S.,)), by evaluating Z'
and Z" at E and q, which give the maximum con-
tribution to the GF, then the GF is of the form

given by Eq. (49). The exact form of Eq. (49) has
not been proven; however, from the above argu-
ments it does seem justified for the purposes of
this discussion.

From Eqs. (11) and (49)
~d+ W

(
. ,

)
2S dE

+g-W

X —2 ~ . (51
2rs

tE -Jng ~ XS) + f S ) '
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the mean-field approximation for I,«, Eq. (42),
is not valid at extremely low temperatures, and at
these low temperatures one must include the self-
energy-type term Z(q, E)

IV. DISCUSSION

Penn's calculations for a pure-itinerant ferro-
magnet indicate that for a half-filled band, e = 1,
the ordering is antiferromagnetic. When n &1 or
n )1 the ordering is FM. For the modified Zener
model discussed in this paper, the itinerant elec-
trons align the localized spins; thus if the itiner-
ant electrons ferromagnetically (antiferromag-
netically) order, then one expects the localized
spine to ferromagnetically (antiferromagnetically)
order. In this paper the antiferromagnetic order
for the half-filled band has not been investigated.

The model calculations reported on here predict
behaviorof T~ vs 8" and T~ vs n, whichareingen-
eral agreement with experimental observations in
transition-metal alloys. Leger and Susse-Lorierss~
observed aquadraticlike dependence of T~ vs P in
Invar (Feo BSNio ~5) to high pressure, Tc = 260 K at P
= 54 kbar. For Feo.vo¹io.so they observed that Tc
depends linearly on P to P= 52 kbar. In addition
for Invar and some Mn-substituted Invar alloys'
[Feo,65(Nii Mn„)0.,5 for 0 &x &0. 19j, it was ob-
served that T& decreases linearly with increasing
P for P &20 kbar (x=O), P &20 kbar (x=0.09), P
& 30 kbar (x= 0.16), and P & 32. 6 kbar (x = 0. 19).
The linear and quadraticlike behavior is consistent
with the T&-vs-W calculations shown in Figs. 5-7.
A 1% change in W corresponds to a pressure of ap-
proximately 11 kbar. The quadraticlike behavior
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FIG. 6. Calculations of Tc as a
function of W/Wo for various J's and
g's with S=1, S"0=3.42 eV, andI
=0.85 eV. For n=1. 4 and J=0.01
eV, the FM state vanishes for 1.05
& W/Wo&1. 055.
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However, the experimental data are consistent with
the results of the model calculations shown in
Figs. 5-'7. It would appear that an appropriate
model for ferromagnetism in the Invar-type alloys
and possibly ZrZna is a system of localized spins
coupled via itinerant electrons such as in the
Zener model. Although a detailed comparison of
experiment and theory has not been made, it is
clear the modified Zener model would be capable
of explaining the pressure results. In order to
test the applicability of the theory, further experi-
mental work on the P dependence of T~ and a
search for the optic branch of the spin-wave spec-
trum are needed.

In conclusion, the model calculations of T~,
based on the modified Zener model for ferromagne.
tism, are consistent with experimental observa-
tions in some transition metals, alloys, and com-
pounds. To describe the FM behavior of an alloy
system, e.g. , the Fe-Ni alloy system, detailed

calculations of the effective exchanges I and J and

the effective number of itinerant d electrons per
atom are needed. At low temperatures the mean-
field value of f,«di verg esand the self-energy-type
terms are important and should be included in the
calculation of I„,. The excitation spectrum (Fig.
1) has some interesting features and further ex-
per1.mental and theoretical work would be fruitful.
To complete the picture of the modified Zener
model for ferromagnetism, model calculations of
the spin-wave behavior and the low-temperature
behavior of the magnetization as a function of tem-
perature and pressure are planned.
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