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We introduce a simple model to interpret the results of a polarized-neutron study of para-
magnetic solid y-02 carried out at 46 'K. The model is based on the assumption of a rota-
tional motion of the molecules around the lattice sites, and agreement with the experimental
results presented in the preceding paper is quite satisfactory. The function nr(h) which is used
to describe the motion of the molecule as a whole may depend strongly upon temperature. Its
qualitative behavior is discussed particularly in the T=0 K and T= limits for an ideal 02
crystal having the paramagnetic y structure over the whole temperature range.

I. INTRODUCTION

In the preceding paper~ (referred to as I), the re-
sults of a polarized-neutron diffraction study of
paramagnetic y-oxygen are described. The main
interest for this lies in the fact that no detailed
studies of materials containing unpaired p electrons
have previously been made, and also that in oxygen
these electrons occupy molecular rather than atom-
ic orbitals.

At atmospheric pressure three modifications of
solid oxygen are known, two paramagnetic and one
antiferromagnetic. ~ The cubic y phase ip stable
in the temperature range 54. 4-43. 8 'K, the rhom-
bohedral P phase in the range 43.8-23.9 K and the
monoclinic ~ phase from 23.9 down to 4. 2 K. The
latter is antiferromagnetic. Previous x-ray studies
have shown the space group of y-02 to be Pm3e,
with eight molecules per unit cell, centered at the
2(a) sites at (0, 0, 0) and the 6(d) sites at (0, —,', —',)
with point symmetries m3 and 42m, respectively.
These studies revealed that the electron density
has an approximately spherical distribution around
the 2(a) sites, but an oblate spherical distribution
around the 6(d) sites (Fig. 1). This is readily de-
duced from the fact that some reflections are ob-
served which would be forbidden if there were per-
fect spherical disorder. The x-ray studi. es indi-
cated that the disorder could be reasonably well

Idescribed on the basis of free spherical rotation
in the 2(a) sites and statistical disorder about the
6(d) sites. A more definitive result was given by
the neutron study in which structure refinement
yielded excellent agreement with a model in which
there is statistical disorder in 16(i) and 24(k) posi-
tions together with quite large and anisotropic tem-
perature factors which can be interpreted in terms
of molecular librations.

—~p ~ [F„(k)—k(F„(k) g)] „ (1)

where p is a unit vector in the direction of the neu-
tron polarization, k is the momentum transfer, and

F„(k) is the magnetic structure factor. From a
knowledge of the cross section it is possible to de-
termine the structure factors. Our purpose in this
paper is to calculate and compare these with the
experimental values.

If we assume that the electron wave function is
essentially the same as that of the f.ee molecule,
the structure factor can be written as a sum over
all the molecules in the unit cell:

F (k) Q elk'Sg ~ f (k) wye(f, T)

where R,- is the position vector of the molecular

(2)

In the present paper we develop a simplified mod-
el which incorporates the essential features of the
crystal structure and allows a satisfactory explana-
tion of the observed magnetic data without requiring
an explicit knowledge of the thermal motion or posi-
tional parameters as a function of temperature.
Numerical calculations of the magnetic structure
factors have been made on the basis of this model
with the Gaussian Meckler wave function. '

Other phases of solid 02 have also been studied.
The crystal and magnetic structure of the & phase
have been determined by Alikhanov and co-'

5workers. The form-factor values for the two mag-
netic reflections observed in this phase are in rea-
sonable agreement with theory.

II. THEORY

As is well known, the magnetic scattering cross
section for polarized neutrons can be written in
terms of the structure factor according to the fol-
lowing formula:
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y —OX&GFN Comparison with experiment will be made in
terms of the averaged density

p(r) = (p(r, a)) = f w(a) p(r, a) da (3)

or alternatively by the averaged form factor

f(k) = f e'"'p(r)dr= ff e'"'w(a)p(r, a) drda

= f f(k, a)w(a)da (4)
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FIG. 1. Projection of the unit cell of y-02 on (001)
showing the rotational symmetry of each molecule.

In this section we make an analysis in spherical
harmonics of the spin density and the form factor.
We will show that once the spherical harmonic com-
ponents of w(a) and p(r, a) are known, the form fac-
tor can easily be calculated and the numerical work
is reduced to the computation of a few integrals
involving Bessel functions.

Let us first develop the spin density and the prob-
ability function in spherical harmonics,

p(r, a) =Z p, „(r) Y; (a),

center, f&(k) is the form factor of the j th molecule,
p,,- is the corresponding magnetic moment, and

e ~&'~ ' the Debye-Wailer factor.
As has been shown by Trammel, '2 there are in

general both spin and orbital contributions to the
magnetic scattering. In the case of oxygen it is
possible to see by simple symmetry arguments
that the orbital scattering vanishes, and that only
the z component of the spin form factor differs
from zero. ' We will accordingly use the symbols
I (k) and f~(k) to denote the g component of the
structure factor and the form factor of the jth
molecule, respectively.

The form factor is the Fourier transform of the
spin density, and in order to interpret the experi-
mental data we observe that if a is the direction of
the molecular axis the spin density at a point r will
depend on both r and a. Of course, the molecules
in the solid will not all have a common fixed direc-
tion, and we assume that each molecule has a prob-
ability w(a) of poi.nting parallel to a. This can be
regarded in two ways; either each molecule is ro-
tating with a probability w(a) of being found in the
g direction, or alternatively each molecule has a
different fixed direction and w(a) is proportional
to the number of molecules pointing paralled to a.

An analogous interpretation can be given for
gaseous O~. In this case all the directions are
equally probable and w(a) is a, constant. In solid
y-O~ we have to consider two different functions
w(a) which must be compati. ble with the point sym-
metry m3 and 42m of the 2(a) and 6(d) sites, re-
spectively. For the sake of simplicity, we assume
a spherical and ellipsoidal distribution, and we ac-
cordingly require w(a) to be constant for the 2(a)
sites and to have spheroidal symmetry at the 6(d)
sites.

w(a) =Z w, Y*,„(a),
where

p, (r) = f p(r, a) Y*, (a) da

w, = f w(a) Y, (a)da

In order to derive the last result, use has been
made of the orthogonality properties

f Y*,.(a) V;... (a)da =6. ..6.„„
(a) = ( —1) Y, (a)

It is easy to calculate

p(r)=Z w, p, (r)

Similarly we obtain

f(k) =Z w,.a,.(k), (6)

It is then easy to show that

A, (k) =4m Z i' Y,.„.(k) f j,. (kr) p, (r)

where

Y)i~a (r)r drdr

=4v+ f' Y,,„, (i) f j„(ur) p...,., (r)r'dr,
t'm'

(11)

where

A, (k) = ff(k, a) Yf~(a)da = f e' 'p, „(r)dr . (9)

In the last expression we use the following expan-
sion~4

e~S'=4, p; 'j, , (qr) Y*, (;) Y,...g) . (1O)
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p, , , {~)=f p, {~, i) Y*, (r)dr .
The problem is now reduced to the calculation of

the functions p, , „,(y) and of a radial integral in-
volving spherical Bessel functions.

A great simplification is introduced by the use of
a symmetry property of p(r, a). Let us consider
two identical molecules pointing in the direction a
and gg, where (R is a rotation operator. It is ob-
vious that the spin density of the first molecule cal-
culated at a point r will be equal to that of second
molecule at a point r' = (R r (with i

r'
[

=
[ r I ):

p(r, a) =p((hr, cia)

In particular if a =N (a)z (where z is the unit
vector parallel to the z axis of the reference frame)
we will have

46 K. An obvious question is how the tempera-
ture enters into our theory and how this affects
the structure factors. The effect of the molecular
motion is contained in the Debye-Wailer factors
of formula (2). If we neglect the vibrorotational
motion of the molecule, there are only two sources
of the possible dependence of the neutron scattering
cross section on temperature: the contribution
from the excited states of the molecule and its ro-
tational motion around the site.

Let us examine the two sources separately. We
exclude first the rotational motion by considering
a crystal with atoms (not molecules) fixed at the
lattice sites. The elastic-magnetic-scattering
cross section for unpolarized neutrons 6 is

p(r, a) = p((h(a)r, 2) = p(r', z) (13)

We expand both members in spherical harmonics
and use the addition theorem for them:

p(r, a) =Z p, , (r) Y, ~ (a) = p(r', z)
tm'

=Z p, (r, z) Y (j.')
tm

=+ p, (~, z) D' (a) D' (r) [(2l+1)/4z]'~z, '

(14)
with standard notation~~ for the D functions. p, gr)
has been previously defined, and

p, (r, z)= f p(r', z) I', „(Y)dr
The last equality in formula (14) has been obtained
by using an application of the addition theorem for
spherical harmonics. ' By comparing the two ex-
pansions we obtain

p, (r)=Zp, „,(~, z)D', (r)[(2I+I)/4m] ' . ( 5)
m'

P™
The result (15) is important because it shows that
we do not need to know the spin density p(r, n) for
any a direction. It is sufficient if we know it just
for a molecule whose axis points in the z direction.

Further simplification is obtained if we consider
the m = 0 component

p&0(r) =~ p& (~, z) Y, (~) = p, & (~, z) &,o(~) ~ (16)

The last equality follows from the symmetry of
the molecule with respect to its axis (which coin-
cides with the z axis of the reference frame).

If we analyze the form factor in terms of spher-
ical harmonics, we may easily show that

Apo(k)=4wf' Y,o(k) fj,(kr)p, o(v, z)r dr . (IV)

III. TEMPERATURE DEPENDENCE

We will compare our theory with the results of
a neutron experi-raent~ y-O~ performed at

(18)

where the sum is over all (ground and excited)
states of the atom. In the absence of orbital scat-
tering

=Z e'"'~s

r, and s, being the position and the spin of ith elec-
tron. P„ is the probability of the 'state I X) being
occupied, which is given by the Boltzmann factor.
Then it is apparent that only the ground state has
a high probability of being occupied and also that
the transition probability P, {X'

~ Qlg) is negligible
when ~ A.') differs from ~g). Then only the form
factor (gl g lg) contributes significantly to the scat-
tering. The same applies to the molecule, pointing
in a fixed direction. Hence we can use the same
p(r, a) at any temperature.

So far we have only considered the motion of the
electrons in a fixed molecule. The motion of the
molecule as a whole is described by w(a). Since
the motion is essentially thermal, particularly so
in a scheme such as ours in which interactions
between the molecules are disregarded, it is clear
that zo depends upon the temperature T as well as a.

We will now examine the qualitative behavior of
w(T, a) as a function of temperature. We recall that
w(a) is the probability that the axis points between
a and a+da. It is consequently related to the in-
verse of the time the molecular axis spends with-
in such a solid angle. This time depends on the
rotational (and eventually vibrational and vibroro-
tational) energy of the molecule in the direction a.
Iff is the degree of freedom, the mean value of the
energy in a space is approximately E„,'fksT. -—
The molecules which have this energy for any a
direction have spherical rotational motion: w(T, a)
= 1/4w independent of temperature, while for the
aspherical molecules E(T, a) = E„(T)+DE(T, a).
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Hence m depends effectively on T and a. The
asphericity is determined by the parameter )7:

~E(a) 1 $ nE(a)
4m „E(T,a) 4p J ,'fkjj—T+&E(a)

and is therefore an order parameter equal to 1 for
T = 0 'K and 0 for T- ~. This has the advantage
that it provides a convenient way of allowing for
thermal motion without the necessity of having to
know the thermal and positional parameters as a
function of temperature. We therefore expect that
the ellipsoidal motion of these molecules at the
temperature of the experiment should become
spherical at the upper limit. Conversely their
asphericity should be much stronger at T= 0 'K.

This is of course only a qualitative discussion.
Our purpose in fact is not to calculate the temper-
ature dependence of the function go(a) from first
principles, but simply to show that such dependence
can be built phenomenologically in it by fitting the
parameters gg, with experiments done at different
temperatures. In particular, on the basis of the
above arguments we expect that in the limit T- ~,
ge, =0 for l, mc0; whereas gg00 is temperature in-
dependent, being given at any temperature by the
normalization condition for go(Q).

The vibrational effect is contained in the Debye-
Waller factor, which is very difficult to calculate
from first principles. In order to interpret the y-02
experiment performed at 46'K, we can assume
either that zo, depends phenomenologically on tem-
perature, and put some model-dependent Debye-
Waller factor in formula (2), or equivalently we

can correct the experimental data by the same
Debye-Wailer factor and set it equal to unity in

formula (2). We have followed the second procedure
and applied it to the two models described inpaper I.

IV. APPLICATION TO y-02

In the last section we showed how it is possible
to calculate the effective form factor by the use of
a development in spherical harmonics once the
spin density p(r, z) and the probability function a)(a)
are known.

where Q and (1)' are the atomic 2p' orbitals calcu-
lated at ——,'R and —,'R (R being the internuclear dis-
tance with %= Re), and 8 is taken equal to -A.

The 2p' orbitals are taken to have a Gaussian
f oral

-br22p'= (x~ iy) e (22)

This is the choice which has been made for the
gaseous molecule, ' and we assume that the wave
function does not change very much in the solid.
The Gaussian form has been chosen because the
analytical calculation is simplified and the nu-
merical computation is accordingly reduced. More
realistic wave functions would involve linear com-
binations of Gaussians with different parameters.
We will see, however, that a good fit with the experi-
mental data can be obtained in terms of a single
Gaussian.

From the definitions of (t) and (l)' we obtain

p(r, z) c(- r e [Ypp(r) ——', Ypp(r)]

~[(e-Ppr'i[+ ePPr y()+2R] (22)

We generalize Eq. (10) to exponentials with real
argument. If B is parallel to g the expansion is

e-""~'=4v Z [(2l+1)/4v] "i'f, (f2l rR) Y„(r) .
(24)

After straightforward algebra involving the use of
the addition theorem for spherical harmonics we
obtain

We assume that gg(a) has either spherical or
ellipsoidal symmetry according to which sites are
occupied. Hence

zo& = 0 if I, m+0 for the a sites,

w, = 0 if m4 0 for the d sites

This allows us to use the simpler formulas (16) and

(17).
We assume the Meckler electronic ground state10

for the Op molecule and the spin density given by
Kleiner'3 in terms of the Meckler atomic orbitals

I

I g 2[ 1/2
pj "p(r e)~r e " &+ ~2"2 —(2l+1) (2l"+1) l(2l+1)000

x[j (i25rR)+ j(—i25rR)] +Rjj 5, 5
— 11„,5)I: i(25)

1
I,"0 5 r ~ ~2

A Fourier transform yields the expression

2l
A, „5(2) Rri' I;.,5(5)IAZ 5„„—(21+1) 1 (Rl"+1) 5 5 5 (21+1) 1 j, ~ (Rr) [j,(i25rj()

4
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4 -2' 1
+j, (-Sabra&]X e " de+ Ppd, ~

—d=d;. S~ j„,(dv&r e "
drI . (26&).

The constant factor common to all the components
A,o can be determined if the form factor is taken
to be unity at k = 0. If we put AN(k) =f &(&(k) Y&(&(k)

we can write

f(k) =Z~„f„(k)Y„(k) . (27)

The functions f &(2k) play the same role as the (j&)
functions in the theory of transition metals, 8 ~

and the ones which are significant in the present
problem are plotted in Fig. 2.

=
u)(&(& A(&() (k) + u&2(&A2(& (k) + u&4(& A4(&(k)

In the other 6(d) positions + (—,', —,
' 0) and + (0, —,', —',)

V. CALCULATION OF MAGNETIC STRUCTURE FACTORS
AND COMPARISON WITH EXPERIMENTAL VALUES

We are now able to calculate the form factor in
the case of spherical and ellipsoidal symmetry
when the asymmetry axis of the ellipsoid is di-
rected along the z crystallographic axis. This
happens in»-02 for the sites (0, 0, 0) and (-,', —,', —,')
with spherical symmetry and the sites (-,', 0, —,') and

(2, 0, a) with ellipsoidal symmetry.
In the first case we have simply f(k) = u&vvA 2(k);

in the second case

f(k) =ri u&&() A&(&(k)

u'(a) = (R, kv'(a) = u '((R,.a) (26)

By definition and formulas (12) and (25) we have

p '(r) = I u)'(a) p(r, a)da =
$

u&((R(a) p((R; r, (R,a) da

=5 u&(a) p(a,.r, a) da=/&'((R( r)
I

(29)

The last two equalities follow from the unitary na-
ture of (R( and from the definition of /&(r).

We can express the result (29) for the form fac-
tor by making explicit use of the Cartesian com-
ponents of the vector k:

f"(k„, k„k,) =f'(kz, k„k„)

f'(k„) k„k,) =f'(k„, k„k,)
(20)

It is now an easy matter to calculate the structure
factor:

the form factors also have ellipsoidal symmetry
with axes pointing in the x and y directions, re-
spectively, and can be deduced by application of the
proper rotations.

Let us call u&'(a) and p'(r) the probability and the
mean-spin-density function when the major axis of
the ellipsoid points in the ith direction (2 stands for
x, y, 2). Then

~(k k k ) Q g(k '0& ~ f (k) e- j k, [~ [I+ (a(k dk dkz& /2]f (~ k~ ) S &Vzp(lkl T )+ i& [e(a kz/'+kz)/

+ (a(3k„/2+kp) /2 dz(k k k ) + &(a(kp/2dkz&/2+ &(a(2kp/2dkz) /2 Zz(k k k )e~ y& x J x'0 g&

+ (a(kz+kz/2)/2+ &(a(kz+2kz/2&fz(k k k )]8 &Vzap&(k, T&] (21)

where f„(l k i ) is the form factor calculated for
the molecules with spherical symmetry, a is the
lattice parameter, p,„and p,, are the magnetic mo-
ments at the sites with spherical and ellipsoidal
symmetry, respectively.

In order to avoid the difficulty of calculating the
Debye-Wailer factors, we compared our theory
to the E& experimental data extrapolated to 0 K
by the E and H models introduced in I by assuming
a different statistical disorder in calculating the
nuclear structure factor I"„.

We computed numerically the A» 0 components
up to l = 4 and found that only AM, A2(&, and A4() are
significant. We have assumed A = —B as proposed
by Kleiner for gaseous oxygen. The Gaussian 5
parameter has been varied in order to obtain better

agreement with experiment, and a value of 1.125
a.u. was found to be satisfactory. This may be
compared with the value of 0.8 a.u. used for the
free molecule. 3 We have restricted our fit to the
first 18 reflections since the Gaussian wave func-
tion is not very accurate at low r (and hence high

k), »„, //„and u&2& (&
were taken as free parameters,

while u&M = 1/4&( from the normalization condition.
Since the lattice sites have different symmetries

the two magnetic moments p,„and p. can differ.
However, the total cell moment JL(, =2@,„+6JL(,, is ex-
pected to be comparable to the value 1.15',~ ob-
tained by extrapolation of the susceptibility mea-
surements at 80 kOe. Such a conclusion is in
agreement with the values p,„=0.115~0.002 ]L(, ~
and p. = 0. 102+0.002 jL(, ~ found in the fit to the E
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I.O

f2l 0(k) 0.5
t

4e

SOLID b = I.I25 a.u.--- GAS . b=0.8 a.u.

model, and p„=0.113+0.002 p, ~ and p,,=0.104
+0.002 p,~ to the H model. The parameters gg, p

and w4p have been found, respectively, as follows:

zg,p=1. 32~0.041, gg4p=0. 62~0. 10 for the E model,

zppp 1 20 + 0 OV 4p = 0 61 ~ 0.02 for the H model.

In both cases the fit is very good, perhaps slightly
better for the latter, and the values agree within
error for the two models considered.

Comparison of the theoretical and experimental
values of I'„ is given in Table I and Fig. 3 for both
models. Vfe obtained y2= 11.6 for the E model and
X~ =9.1 for the H model. Table I lists both the

TABLE I. Comparison of the calculated magnetic
structure for y-02 and the experimental values corrected
for the Debye-Wailer factor for models H and E. Units

are in 10 cm.

I

0.5 I.O

Experimental

Model H

Calculated
+S

s ln 8

0.08 —
)

0.06—
0.04—
0.02—

E
CP

OJ 0
'O

—0.02

—0.04

ob

0
Q9 Pg

a 0 ~ ~

6

MODEL H

~ ca I c.
o obs.

o 0.06
I-

(a)
I

O. I

I

0.2
I I

0.3 04
sin8

(A

I

0.5

0.08
C3

0.06I-

0.04

0.02

0

—0.02—

I I

MODEL E
~ calc.
& obs.

FIG. 2. Plots of f~p(k) of importance in the present
problem.

(11o}
(2oo}
(21o)
(211)
(22o}
(31o)
(222)
(32o)
(321)
{4oo)

(41o)
(411)
(33o)
(42o)
(421)
{422}
(430)
{431)

0.1o)
(200)
(21o)
(211)
(22o)
(31o)
(222)
(32o)
(321)
(4oo)

0..0125 + 0.0023
0, 0564 + 0.0028
0.0612 + 0.0036
0.0612 + 0.0087

-0.0110+ 0.0018
0.0088 + 0.0014

—0.0200 + 0.0014
—0.0113+ 0.0019

0.0135 + 0.0027
0.0196 + 0.0020

-0.0276 + 0.0060
-0.0153 + 0.0026

0.0087 + 0.0014
0.0076 + 0.0013
0.0039 + 0.0015
0.0137 + 0.0022

—0.0061 + 0.0047
—0.0048 + 0.0010

0.0066
0.0573
0.0655
0.0637

—0.0107
0.0085

—0.0191
—0.0090

0.0130
0.0198

—0.0248
—0.0152

0.0076
0.0067
0.0036
0.0135

—O. 0119
—0.0048

Model E

0.0080
0.0561
0.0646
0.0642

—0.0110
0.0096

—O. 0186
—O. 0081

0.0130
0.0202

0.0130 + 0.0024
0.0570 + 0.0029
0.0611 + 0.0036
0.0611 + 0.0087

-0.0124 + 0.0020
0.0083 + 0.0014

—0.0181 + 0.0013
—0.0110+ 0.0018

0.0137 + 0.0028
0.0222 + 0.0038

0.0039
0.0745
0.0632
0.0581
0.0018
0.0014
0.0209
0.0178
0.0147
0.0159

0.0000
0.0001
0.0001
0.0015
0.0032
0.0003
0.0000
0.0004

0.0055
0.0746
0.0622
0.0582
0.0026
0.0019

—0.0202
—0.0175

0.0148
0.0158

0.0027
—O. 0172

0.0022
0.0056

—0.0126
0.0071
0.0018
0.0088

—0.0018
0.0038

—0.0248
—0.0153

0.0075
0.0082
0.0068
0.0139

—0.0119
—0.0044

0.0026
—0.0185

0.0024
0.0060

—0.0136
O. 0077
0.0016
0.0094

—0.0018
0.0044

—0.04—
(b)-0.06—

I

O. I

I

0.2
I

0.3 0.4
sin8

(Ao

FIG. 3. Comparison between experimental and calcu-
lated magnetic structure factors: (a) model H, (b}model E.

(41o)
(411)
(33o)
(42o)
(421)
(422)
(43o)
(431)

—0.0258 + 0.0056
—0.0152 + 0.0026

0.0119+ 0.0020
0.0064 + 0.0011
0.0042 + 0.0016
0.0147 + 0.0024

—0.0082 + 0.0063
-0.0050 + 0.0011

—0.0269
—0.0161

0.0084
0.0064
0.0037
0.0138

—0.0125
—0.0050

O. 0000
0.0002
0.0002

—0.0015
—0.0032
—0.0004

0.0000
—0.0050

—O. 0269
—0.0163

0.0082
0.0080
0.0069
0.0142

—0.0125
—0.0045
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spherical and aspherical contributions to the total
structure factor of the cell,

(32)
with

&~y=fo(&) loo(&)woo~ (pap e I + 0, e I- ) ~

~ w21, 0fol, o (~) yot, o (~)~ e
NO i

The I', term arises only from molecules with
ellipsoidal rotational symmetry. This contribu-
tion is essential in order to account for the reflec-
tions for which the spherical contribution alone
would be rigorously zero by symmetry arguments
as can be seen from Table I.

For the limit T- ~, ge, m should be zero for $,

F40, as discussed qualitatively in Sec. ID. In
this limiting case, the magnetic structure factor
E is simply equal to I'„, as can be easily seen
from Eq. (32) by setting wo, o=0 for f40.

VI. CONCLUSIONS

The polarized-neutron-diffraction data from
paramagnetic y-O~ have been explained by a simple
model which takes into account the different sym-
metry of the molecules present in the unit cell.
The approximately ellipsoidal symmetry around the
d sites introduces an aspherical contribution to the
structure factor, which does not appear in the cal-
culation for gaseous oxygen.

Thus the directional dependence of f(k) is due
not only to the electron motion but also to that of
the molecule as a whole. In the spherical mole-

cules the asphericity due to the electron motion is
averaged by the molecular rotation, but in the
others both contribute.

We have seen that only the 1= 2 and 4 terms con-
tribute significantly to the fit. This situation is
similar to that predicted and observed in the d
transition metals and alloys having cubic sym-
metry

The b parameter of our Gaussian wave function
is larger than the one used by Meckler for gaseous
oxygen. This is an indication that the wave func-
tion is more contracted in the solid as compared to
the free molecule, although a Gaussian wave func-
tion is probably not the best choice. However, we
have not attempted to use a better one, since the
agreement with experiment over the first 18 re-
flections is quite satisfactory and gives useful
physical information on the system in a simple
way. The model used involves a probability func-
tion w(a) related to the rotational motion of the
molecule as a whole. For this reason it may
depend on temperature and we have discussed its
qualitative behavior in this respect.

ACKNOWLEDGMENTS

We wish to thank D. E. Cox, E. J. Samuelsen,
and K. H. Beckurts for supplying us with their ex-
perimental results before publication, and also M.
Blume for many valuable discussions. One of the
authors (F.L. ) thanks the Gruppo Nazionale di
Struttura della Materia and Consiglio Nazionale
delle Ricerche, which made possible his stay at
Brookhaven.

*Work at Brookhaven performed under the auspices of
the U. S. Atomic Energy Commission.

~D. E. Cox, E. J. Samuelsen, and K. H. Beckurts,
preceding paper, Phys. Rev. B 7, 3102 (1973).

A. S. Borovic-Romanov, M. P. Orlova, and P. G.
Strelkov, Dokl. Akad. Nauk SSSR 99, 699 (1954).

E. Kanda, T. Haseda, and A. Otsubo, Physica 20,
131 (1954); Sci. Rept. Res. Inst. Tohuko Univ. 7, 1
(1955).

M. F. Collins, Proc. Phys. Soc. 89, 415 (1966).
R. A. Alikhanov, E. B. Vul, and J. G. Fedorov,

Acta Cryst. 21, Suppl. A92 (1966); R. A. Alikhanov, Zh.
Eksp. Teor. Fiz. Pis'ma Red. 5, 430 (1967) [JETP Lett.
5, 349 (1967)).

C. S. Barrett, L. Meyer, and J. Wassermann, J.
Chem. Phys. 47, 592 (1967).

T. H. Jordan, W. E. Streib, H. W. Smith, and W.
¹ Lipscomb, Acta Cryst. 17, 177 (1964).

H. W. Smith, Ph. D. thesis (Harvard University,
1966) (unpublished) .

~T. H. Jordan, W. E. Streib, and W. N. Lipscomb,
J. Chem. Phys. 41, 760 (1964).

A. Meckler, J. Chem. Phys. 21, 1750 (1953).
~~R. A. Alikhanov, I. L. Ilyina, and L. S. Smirnov,

Phys. Status Solidi B 50, 385 (1972).
~ G. T. Trammel, Phys. Rev. 92, 1387 (1953).
SW. H. Kleiner, Phys. Rev. 97, 411 (1955).

14J. L. Powell and B. Crasemann, Quantum Mechanics
(Addison-Wesley, Reading, Mass. , 1962).

15A. R. Edmonds, Antulax Momentum in Quantum
Mechanics (Princeton U. P. , Princeton, N. J., 1964).

6S. W. Lovesey, J. Phys. C 2, 470 (1969).
7D. F. Johnston, Proc. Phys. Soc. 88, 37 (1966); D.

F. Johnston and D. E. Rimmer, J. Phys. C 2, 1151
(1969); S. W. Lovesey and D. E. Rimmer, Rept. Progr.
Ihys. 32, 333 (1969).

R. E. Watson and A. J. Freeman, Acta Cryst. 14,
27 (1961).

~SA. Paoletti, Rivista Il Nuovo Cimento 2, 451 (1970).


