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Existing formulations for systems with complete translational invariance relate the dielec-
tric function to the scattering probability in characteristic-energy-loss experiments. We have
extended this relationship to the case of periodic systems. Energy-loss vs momentum-trans-
fer measurements are of value because they provide a probe of the system for momentum
transfer not accessible to optical measurements. Periodicity is shown to cause the formation
of plasmon bands, and the possibility of long-lived higher-band plasmons is discussed. It is
concluded that materials with a strong crystalline potential are the best candidates for such
higher-band plasmons. The effect of the crystalline potential on the dispersion and damping
of the lowest plasmon band, whose existence is well established experimentally, can also be
obtained from the formulas that have been derived (which include the effects of local field).

I. INTRODUCTION

At the time when characteristic-energy-loss
experiments on thin films were first being per-
formed, ' the theoretical apparatus for their inter-
pretation was just being developed. Results ap-
plicable to the free-electron gas and its collective
excitations, the plasmons, were modified in order
to explain (in a qualitative fashion) the experiments
which were being performed on real solids. a These
modifications proved highly successful„so much
so, that workers in the area were not forced to
make more detailed studies. However, had such
detailed studies been necessary, they would have
been severely handicapped by two major difficul-
ties. First, in most of the early experiments one
could not be sure that the thin film was a single
crystal, rather than polycrystalline or amorphous.
Second, the calculation of properties of periodic
solids hinged upon accurate band-structure cal-
culations, which were still in an early stage of
development.

Since that time, both experiment and theory have
developed considerably. Experiments on thicker
films have yielded cartographs of energy loss ver-
sus scattering angle which clearly show peaks as-
sociated with diffraction by the periodic lattice. 3

In addition, theoretical energy-band calculations
have been able to explain numerous properties of
periodic solids. However, to our knowledge, no
theoretical work has been directed towards ex-
plaining the details of the characteristic-energy-
loss experiments, including the effects of period-
icity on the local field.

We believe it is now appropriate to make such
detailed theoretical studies of the energy-loss ex-
periments. Neutron- scattering experiments have
revealed much about the vibrations of ions in peri-
odic solids; the analogous electron-scattering ex-
periments should reveal much about the electron
energy levels and wave functions in periodic solids.
Such studies should provide more detailed informa-
tion than, e. g., optical studies. We mention that
the first detailed calculation of the wave-vector-
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dependent dielectric function of a periodic solid
has recently been performed, so it should be fea-
sible to perform the electron-energy-loss calcula-
tions as well.

It should be pointed out that, in practice, multi-
ple inelastic scattering cannot be ignored. ' How-

ever, the derivation we will give neglects such pro-
cesses, as well as multiple elastic scattering, and
elastic -inelastic -scattering combination processes.

Since p1.asmon creation dominates the broad fea-
tures of electron-energy-loss experiments, it is
important to study the behavior of plasmons in
periodic solids. We find that the eigenvalue equa-
tion for plasmons in periodic solids is that
det& cc(q, , ~) = 0, where &c,c (q, &u) maybe calculated
within the random-phase approximation (RPA) by
the prescription of Adler and Wiser. Both the
frequency and the damping rate of plasmons are
affected by the presence of the periodic potential.
For small-momentum plasmons in the lowest plas-
mon band, the dispersion in the frequency and the
plasmon damping will reflect details of the electron
band structure. In addition, if distortion of the
electron energy levels by the crystalline potential
is great enough, some high-momentum plasmons
may be long lived. Specifically, since plasmon de-
cay by particle-hole excitation is dependent upon
the electronic band structure, a material whose
electronic band structure deviates strongly from
the free-electron model might support high-mo-
mentum plasmons with only a relatively weak
damping.

Section II discusses the eigenvalue problem for
plasmons in periodic solids. In Secs. III and IV
we discuss the energy loss of a charged particle
through such a solid. The difference in treatment
of a periodic solid and the free-electron gas may
be seen by comparing Eqs. (3. 15) and (3. 16).
Section V discusses sum rules and Sec. VI contains
a brief summary.

II. PLASMONS IN PERIODIC SOLIDS

A plasmon is a self-sustained charge oscillation:
An oscillating electric potential is set up without
the introduction of an external charge density.
This fact will be used to obtain the condition which
determines the plasmon frequencies.

Since the plasmon is a longitudinal mode, it is
convenient to consider the response of a periodic
solid to an externally applied potential which is
purely longitudinal. We set the vector potential
A= 0, and take (with q inside the first Brillouin
zone) the total potential p(r, t) to be given by

(2. 4)

g(r, t)=
2
—

~ d q Z )' d(ue'"'o" '"' yc(q, ~) .

From the work of Adler and Wiser, it is clear that
one may express the Fourier components of p(r, t)
in terms of those for the external potential P'"'(r, t):

ec(q, ~) =~ &c', c (q, ~) ec"'(q, ~) (2. 2)
CN

Here cc c.(q, &u) is the inverse matrix of the di-
electric matrix &c c, (q, &u). This may be inverted
to give

4G (q~ ~)=~ ec, c (q~ o)4c (q~ ~) (2 3)
C'

If there is no oscillating externally introduced
charge density, then Pc"'(q, &u) =0 for all G. This
can occur for nonzero Pc. (q, u&) only if

detec, c (q, u&)=0 .
For a fixed value of q, this determines the eigen-
values co, Here the reciprocal-lattice vectors G
and G' serve as indices in the determinant of the
dielectric matrix.

To be specific, we present Adler and Wiser's ex-
pression for ec c.(q, oo), which is '

5c,c' Gc, c'(q ~) lq+GI ', (2 5)
where

2

Gc.c (q ~)= ~ OI" le ' 'll'k+q)(I'"+qle' "l fk) ~ fo(&») fo%~ ~")~b(@&u+&~I +~".~) (2 )
ll'

Here V is the crystal volume (which we will take
to be unity), I and I' are band indices, k is summed
over the first Brillouin zone, and

(Ik
l

e 'l I'k+q) =(I/V, ) J dru¹,„(r)e ' 'u, p "(r) .
(2. 7)

The integral is performed over a unit cell, which
has the volume V, , and u»(r) is the periodic part
of the wave function

(r
l
fk) = V u, g(r) e'"' .

In Eq. (2. 6) fo denotes the Fermi function and E,p

is the energy of the state I lk).
By comparison with e(q, u)) as derived by Ehren-

reich and Cohen, we see that

eo, o(q, ~)= e(q, ~) . (2. 6)

In the usual treatment of plasmons in real solids,
one replaces the dielectric function of the free-
electron gas by e(q, &u), and then finds the zeroes
of o(q, ~). As Eq. (2. 4) shows, this is not strictly
correct. Physically, Eq. (2.4) arises because the
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charge density responds at wave vectors q+5, for
all G, to a disturbance with wave vector q, thereby
producing the so-called "local field. " The crys-
talline potential causes the formation of plasmon
energy bands, just as it causes the formation of
electronic energy bands.

It is instructive to consider Eq. (2. 4) in the limit
of a weak crystalline potential. In that case the
off-diagonal elements of ec c.(q, &d) may be ne-
glected, so

detcc c.(q, &c)= co o(q to) ec,c,(q to)

xec,, c,(q, (o). . . = 0 . ,(2. 9)

Here the subscripts 1 and 2 refer to a labeling of
reciprocal-lattice vectors. Further, ec c(q, to)
= eo(@+G, &o) for a weak crystalline potential, where

&0 here denotes the dielectric function of the inter-
acting electron gas. Therefore, Eq. (2. 9) tells us
that the plasmon bands are formed, in the weak-
crystal-field case, by folding the free-plasmon dis-
persion curve into the first Brillouin zone. Clear-
ly, as the crystalline potential grows, band gaps
form at the center and edges of the Brillouin zone.

Of course, this discussion is academic for the
case of the free-electron model, since the plas-
mons in the higher bands, and even high q plas-
mons in the lowest band, will be strongly damped.
As the crystalline potential becomes more impor-
tant, the damping of the plasmons in the lowest
bands will become strongly affected. We note,
however, that just as high-lying electronic energy
bands are very free- electron-like (since the crys-
tal potential is very weak compared to the kinetic
energy of the electron), so high-lying plasmon en-
ergy bands are very free-electron-like, and there-
fore highly damped. This is because the decay of
such a high-energy plasmon involves the excitation
of an electron into a high-energy electronic state.
These states are nearly-free-electron-like, and
thus permit a near continuum of particle-hole ex-
citations, thereby damping the high-energy plas-
mon. Such may not be the case for the lower plas-
mon bands, for which the decay process involves
electronic energy levels which have been strongly
affected by the crystalline potential. For materials
with strong crystalline potentials, it might be the
case that the second lowest-lying plasmon band has
long-lived plasmons with q= 0 (i. e., where there is
an optical band gap). To see if this is the case,
explicit and detailed calculations are necessary.
Strongly covalent and strongly ionic crystals would
be good candidates for such calculations.

We remark that it is probably overly optimistic
to expect truly long-lived plasmons in higher bands
However, it would not be surprising to find diffuse

peaks in the energy-loss spectra which can be as-
sociated with "incipient" higher -band plasmons.
Such peaks would most likely not appear in samples
which are not truly crystalline. This dependence
upon crystallinity may explain why certain energy-
loss peaks are observed by some experimentalists,
but not by others.

In the next sections we compute the energy loss
of a high-energy charged particle when it travels
through a periodic solid, in order to see how these
plasmons might show up in an energy-loss experi-
ment.

III. ENERGY LOSS BY A CHARGED PARTICLE

to= f dr y(r)fp(r) . (3. 2)

Therefore the rate at which this energy is changed
is given by

dV ( - - sp(r) (3.3)

We want only the change arising from the induced
charge density, or

dW " Bp'"
dr/

Bt
(3 4)

It is most convenient to Fourier analyze p and

p
" . Use of Poisson's equation will then exhibit

the relationship of the Fourier components of P and
p" to those of p'"'. We have

sxt
(q ) f d r d -i(t+6) r+i&ot pext(

= —2tie5[&o -V, ' (q+G)] . (3.5)

From Poisson's equation

V Q = —4n'p,

one can show that

y,'"'
(q, ~) = 4o

~

q+ G
~

'p,'"'(q, ~)

(3.6}

(3.V)

We consider here the energy given to a periodic
solid when a high-energy charged particle (an elec-
tron) moves through it. Our calculation in this
section will be classical: We will compute the rate
of work done by a localized particle as it moves
through the solid. The particle, of charge -e, will
be considered to be moving with the constant ve-
locity V, (we neglect momentum loss by the parti-
cle), and is localized at r=0 when t=0:

p'"'(r, t) = —e5(r —V,t) . (3. 1)
p'"' denotes the external charge density,

The change in energy when a charge distribution
is changed is given by
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&&c(q, &d)=4w
I
q+G

I
[pg'(q, &d)+pg"(q, &a)] .

(3 6)
Then from Eqs. (2. 2) and (3. 'I) it is seen that

pc(q, &d) =4wX &g'c. (q, &a)
I
q+ G'

I
'pc".'(q, &u) .

ge

(s. 9)
From Eqs. (3. 8) and (3.9) one may show that

«"(q ~)=- pc""(q ~)+ Iq+& I'~ ec'. c « ~) lq+&'
I

'pc"'«~ ~)

= ~ [-6a'+
I
q+G I'~', c (q )

I
q+&'I 'lp:"'(q, ~) .

C'
(s. io)

Using Eqs. (3. 9) and (3.10) and the Fourier representations of &t and p'", Eq. (3.4) becomes

dS' " 1
dt (2w)'

dqZ d &de Q (q &0) d &z ei &I'+6') r ie'i-pind(q&

J
' '" ef (2w)'

—z

(2w)' „
dqQ ~~~ d&d du& e '&" & &a'yc(q, &a)p a(-q, &a )

G

dq X l, d&a d&a'e ""'""&a' Z &c', g, (q, &a)lq+6'
I

'pc".'(q, &a)

6-c,a' ~ + lq+G
I

e-c,c"( q &d') Iq &"
I ]pc"( q &a') ~ (3 11)

Gee

Use of Eq. (3. 5) simplifies Eq. (3. 11) to
2o

dq Z e ' ~' "6""[zc'c,(q, V, (q+Pi'))V, (-q+5")]
cc'c"

&[- lq+&'I '6c.c" + e-c'' (-q V. (-q+&")) Iq-G"
I
'I q+&'

I
'Iq+& I'] (3»)

The time average of dW/dt is nonzero only when 0"=—G, so

~ ~q+G ~&.
' q+ — q +G

QQI

+. ,', .(-q, -v, (q+G')) Iq+G I'Iq+5
I
"]. (s. is)

Since only the real part of (d W/dt) matters, only
the imaginary part of the term proportional to
5~ ~. is kept. This is because

&a,c~(q, &a)-& c ~ a (- q, —&a)]* ~ (3. 14)

as is shown in Appendix A. Finally,

dt 2w J c I &7+6 I

xlm[-~a', c (q V. '(q+G))1 (3 16)

e V, 'qI= g, dq ~- j Im — ~ ~ ~ ~

2w
I Iq I e(q, V, 'ql

(3. 16)

In the absence of a crystalline potential, this ex-
pression reduces to the standard result for a trans-
lationally invariant system:

In Eq. (3. 16) the integral is taken over all q, not
merely over the first Bri))ouin zone as in Eq,
(s. is).

In Eq, (3.15), 1m[@a a(q, V, (q+5))] takes on

large values in the vicinity of the frequency of
plasmons. If the plasmons are weakly damped,
this peak wil) be quite large, which implies that
the fast charged particle is effective in creating
these plasmons. It is possible that some of the
peaks seen in characteristic -energy-ions experi-
ments are due to the generation of higher-band
plasmons, since the detailed form of these energy-
loss spectra are not mell understood. Application
of Eq. (2.4) and (3. 15) requires a detailed knowl-
edge of the electronic band structure. We have
not yet applied the formalism to any specific ma-
terials.

It should be remarked that Walter and Cohen
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have studied (for Si, and within the RPA) plasmon
energies for the lowest band, with the neglect of
the off-diagonal terms in Eq. (2.4). They have
also studied Im( —[too(q, to)] ] for Si. Their work
will be discussed later. As has just been shown,
the off-diagonal terms in the dielectric matrix
(i. e. , the local field) must be included in an exact
calculation of the plasmon energy and the charac-
teristic energy loss, The effects of including

these terms are not immediately obvious, and

they will most likely not become clear until. de-
tailed numerical cal, eulations have been performed.

IV. ANGULAR DISTRIBUTION OF ELECTRON
ENERGY LOSS

Eq. (2.4), ~Inc�(q»)

ec, g' tqt +j yext( )

Now

&4g(q td) =fI ttg'(q, tc)+&ttgt"(q, to),

&4'c (qt tc)
~g, c'«t tc) —&c,c'+ extr

&yc cq, ar]

since

~4'g~ (qe tc)
Iiyext{q ) c,c'

(4. 4)

(4. S)

(4. 6)

In this section we discuss how one may deter-
mine the angular distribution of electron energy
loss. Our arguments follow closely the work of
Pines and Nozihres. They show that the probabil-
ity per unit time P(q+6, cc) that the electron trans-
fer momentum q+5 and energy &g to the system
(N= 1) xs given by

P&q+6 ~)=2~I I';.0I'~ I&nl p'- (-q) lo& I'

x 5(tc —tc„, ) . (4. 1)

Here I'e.0= -4tte/iq+Vr I' is the sPatial Fourier
transform of the potential of the incoming electron,
pc (q) = -ggt e ' ' ' " is summed over all par-
ticle coordinates r, , and the sum on n is performed
over the exact states I tt& of the system, with the
exception of the ground state, denoted by Io). AI-
so, +„,= +„—z, is the energy difference between
the states In) and I 0). We note that our p- —e
times the p of Ref. 10, and our V- —e times the
Vof Ref. 10.

Equation (4. 1) was derived under the assumption
of single scattering, so it is not applicable to mul-
tiple plasmon excitation, which has been observed
even for films as thin as 200 A. " In addition, no

assumption of crystallinity was made, so our fur-
ther results will be appI. ieable to crystal, s of any
symmetry. Equation (4. 1) is conveniently sepa-
rated into two parts:

Further, from Poisson's equation,

fIpg (qp QP)= 47I'I q+5l 5pg (qt (d) (4. I)

&pc "(q ~)
Xg, c'(qt tc) = &~tete~

~'IH"& (qy (de

then from Ref. 10,

(4.9)

x[(tc+t'9) tcxo] ~ (4 10)

Here q is a positive infinitesimal which has been
introduced so that gag*,t(q, tg) may be considered to
have been turned on adiabatically. gc c, (q, ~) for
Gt 0' is calculated in Appendix B. From Eqs.
(4. 8)-(4. 10) it is clear that

~c,g (q~ ~) = &c,g'+4vl q+txl
Ii ext(q )

(4.S)
This equation has been derived by Martin and
Schwinger, t2 We may calculate 5pgt ~(q, tc)/6Q'xt

(q, tg) using linear-response theory. It should be
noted that only the diagonal elements of &"' will
be needed, so that the calculation of Ref. 10, for
a translationally invariant system, may be carried
over. Denoting

P(q+ 6, tc) = 2v
I Ve,c I

8 S(q+ 6, tc),

where

(4. 2) s g(q, ~)=l+4vlq+cl-'XI&sip"g'(-q)lo&

s(q+6, ~)=e 'z
I

&~ I pt.,'(-q) lo& I'I~(~-~„,)
(4. 3)

is known as the dynamic form factor of the system.
Our purpose is to relate S(q+ 5, td) to zgt c(q, to),
thereby demonstrating that P(q+5, tc) may 'be ex-
pressed in terms of the inverse dielectric function.
The main results of Sec, III may be derived using
P(q+5, tc).

We now display an expression for &g'c, (q) in
terms of the exact states of the system. From

(4. 11)
& +(dgo+ &0

Imac'c (q, td) = -4v'8'Iq+GI '[ S(q+6, (c)

—S(q+6, —(c)]. (4.12)

For &ted & 0 this gives, on comparison with Eq. (4. 3),

S(q+6, (c)= —
4 3, Imeg'c (q, (c), (4. 13)
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so
8 2

P(q+ G, e) = a [ —Im e o o (q, ar)]
) q+(' i

(4. 14)
The rate of energy loss to the medium due to

all excitations is given by ~ ~.ol (nl PJ(q)I0) I'=N(q+@'/2m . (5. 1)

Eq. (4. 11) to obtain the high-frequency behavior
of the dielectric function. Since it is derived for
the exact states of an arbitrary system, it is also
applicable to periodic systems. Specifically,

P=ZZ (uP(q, (u)

1
(2m)'

d'qQ(u P(q+G, (o),
az

(4. 15)

Re have dropped the superscript "ind" on the
quantity pJ(q). Considering Eq. (4. 11) in the high-
frequency limit, use of Eq. (5. 1) enables us to ob-
tain the relation [accurate to 0(o& )]

where += V, ' (q+G). This equation is identical to
Eq. (3. 15), derived from classical considerations.

The equations describing energy loss for a sys-
tem with complete translational invariance go over
smoothly to the corresponding equations for a
periodic system. Therefore P(A, &u)dA, the prob-
ability per unit time that the electron will be scat-
tered into a solid angle dQ=2m sinede, while suf-
fering an energy loss &, can be obtained by only
slight modification of the expression given in Ref.
10. For momentum transfer which is small com-
pared to P„ the momentum of the incoming elec-
tron, P(A, &u) is given by

P(A, &u) = [P,/(2a )'] J dq, ', P(q, &u) 6 (&u
—q'„v, )

(4. 16)
Here q' is not restricted to the first Brillouin zone,
and q'„v, = q' v, . P(q, &u) is calculated using Eq.
(4. 14) and q' = q+ 6.

With Eqs. (4. 14) and (4. 16) one can compare
theory to experiment. The availability of detailed
cartographs of energy loss versus momentum,
providing a probe of the solid for appreciable mo-
mentum transfer, should ultimately permit a more
exhaustive test of our knowledge of energy bands
in solids than optical-absorption data have per-
mitted. (This situation, of course, arises because
the wave vector can be varied in electron-scattering
measurements, whereas it must be near the value
zero for optical-absorption measurements. ) To
our knowledge, no one has yet attempted to calcu-
late such cartographs.

In addition to studying the details of the band
structure by comparison with data for the lowest
plasmon band, such calculations can indicate the
presence (or absence) of higher-band plasmons.

V. SUM RULES FOR PERIODIC SYSTEM

A number of sum rules which apply to a system
with complete translational invariance also apply,
with suitable modification, to a periodic system.
We will discuss two of them because the presence
of plasmons affects the weighting within these sum
rules, causing this collective effect to outweigh
the individual particle contributions.

The f sum rule will be used in conjunction with

&c,o(q& &u) „„„=I+&@&/&u & (5. 2)

where

&u~
= 4mNe /m (5. 3)

(The volume V= 1, so the number density n equals
the number of electrons N which are not in the
core states. By - ~we mean +»valence to con-
duction-band energies. ) In the high-frequency
limit the effect of the off-diagonal elements of
&~'o, (q, &u) can be neglected, so &o'~, (q, &u) may be
inverted simply to give, to O(&u ),

eo c(q& (o) „„=1 —a)&&/(u (5.4)

Using Eqs. (5.2) and (5.4) and the Kramers-
Kronig relations, the proofs given in Ref. 10 carry
over completely, so that we obtain the two sum
rules

J d&u &u Im [eo o(q& &u)] = av (op

J d&u&ulm[eo G(q, &u)] =-', n(o,' .

(5. 5)

(5.6)

VI. DiSCUSSION

We have studied the question of characteristic
energy loss by a periodic solid, including the ef-
fects of the local fields and of the detailed band
structure of the solid. The effect of periodicity on
bulk plasmons has been discussed. It has been
suggested that, in materials with a strong crys-
talline potential, plasmons in higher bands may be
long-lived enough to be observed in energy-loss
experiments.

We note that even in the absence of higher-band
plasmons, the effects of periodicity on the lowest
plasmon band cannot be neglected.

The first of these is a restatement of the f sum
rule. The second is called the "conductivity" sum
rule. It is clear that the presence of a plasmon
will cause these sum rules to have a large contri-
bution from the region in which the plasmon is well
defined; conversely, the presence of a plasmon
causes the single-particle or multiparticle excita-
tions to give a weaker contribution to the sum
rules.
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(i) Plasmon dispersion depends upon the detailed
structure of the electronic energy bands. This can
be seen from the calculations of Ref. 4 on Si, which
[although they are based upon an RPA &00(q, &) rath-
er than the full dielectric matrix] demonstrate the
order of magnitude of such effects. In particular,
the dispersion of the lowest plasmon band is found
to be approximately two-thirds the value one would
predict on the basis of the RPA for the free-elec-
tron model (see Fig. 13 of Ref. 4).

(ii.) Plasmon damping depends upon the detailed
structure of the electronic energy bands, as can
also be seen from the calculations of Ref. 4
for Si.. Even for q=5 and within the RPA, the
plasmon from the lowest band has a finite damping.
This is expected to remain even in calculations
using the full dielectric matrix. In this regard,
DuBois and Kivelson~3 have recently performed a
calculation of plasmon damping for the free-elec-
tron gas, including some electron correlation ef-
fects which are not included in the RPA. They
were interested in making comparison with experi-
ments on Al, ~4 '6 a material whose band structure
is much more free-electron-like than that of Si,
The theoretical damping was found to be, consider-
ably less than that obtained experimentally. Of the
possible additional causes of damping (in addition
to correlation effects not included in Ref. 13, and
in addition to scattering by impurities and by pho-
nons), the effects of the periodic lattice can be de-
termined from Eq. (2.4). We remark that Foo and
Hopfield'7 have studied a simple model, with one
reciprocal-lattice vector, for the dielectric func-
tion of sodium. They found the interesting result
that for a narrow range of momentum transfer q,
the presence of the band gap (and the large density
of states associated with it) caused a large peak in
the energy loss plotted as a function of (d. This
phenomenon can also be expected to occur in cal-
culations on more complex systems. It is not as-
sociated with higher-band plasmons.
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APPENDIX A

P&". (q', ra&') = (2&t) [6(q —q') 5(ta& —ra&') 5z z.

+b(q+q') a(td+~')yo o, ] . (A3)

From Eqs. (2. 1) and (2. 2) this gives

y(r f) g [&-t (q )
et(cad''& r-taat

gt t

+ ~-1 ( «q ) e-t tea@" & r+taat] (A4)

Since Q'*t(r, f) is real, so must &j&(r, f) be real,
from which one may deduce Eq. (Al). One may
similarly deduce that

sG, s (q ~) =[~ a, o (-q -~)1* . (A8)

a„,=Z V(r, -R.), (Bl)

V(rt -R,) = e'/I r,. -R.
l (B2)

Here 5, = V, t is the position of the incoming elec-
tron, and the r, are the positions of the electrons
in the solid. Equation (Bl) may be rewritten

where

t (ca@&~r(rt-%e&( )y (~q)

qSBZ 0
(B3)

y, (q) = f tf'r [(-e)/t]e ""~"= —4&&e/(Iq+Cl')
(B4)

Then

— Z Z p" (-q) y (q) e ""d&'tie
qeBZ G

where

ptnd(q) eQ e t(ea5&rt-

This can also be written

APPENDIX B

In this Appendix we derive an expression for
&to G, (q, ~). This will be done by the use of linear-
response theory, as outlined in Ref. 10.

We must begin with the Hamiltonian describing
the interaction between the solid and incoming elec-
tron. This is given by

We wish to establish the relationship

~,',, (q, (u) =[~:,', , (-q, -~)]" (Al) with

2—p'.&'(- q) 4;"'(q, ~)e '",(B7)
aeBz 0 7l

yext(p a) et tpT+5& r-taat+ e-t (cad& r t(atar, &
—e (A2)

This is obtained by considering an external po-
tential which is real:

4G (q, ~) = » ~ (q) 8[~—(q+ G) &.] (B8)

We note that Eq. (B8) is consistent with Eqs.
(3.7) and (3. 5). Because the interaction is a real
number, we must have

This corresponds to 4o*'(q, ~) = 8-'o'(- q, —~)l*, (B9)
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which may be verified directly using Eq. (86).
We wish to determine

6pa"(q, ~)
Xa, aq(qp (d)= 6~0xt(

'
~) (Bio)

To do this we will consider (t)a".'(q, (d) as a pertur-
bation in Eq. (BV) and find the response to it.

We wish to compute

where H, the Hamiltonian of the solid, satisfies

a In&=E„
I n&, (815)

ly(t)&= Z e„(t)e-""ln & . (816)

With the boundary condition

I t} (t)& is expanded in terms of the eigenstates In&:

Pa"(q, (d) = f «e'"P'a'"(q, t),
where

pa"(q, t) = (k(r, t)
I
pa" (q) It(r, t)& .

(811)

(812)

1, ye=0.(- )=0'

corresponding to the system being in its ground
state at t= —, one may easily show that

As the interaction it will be sufficient to consider

H' = (e"'/2tt)[p "a,(- (T)(t)a*'(q, (o) e '"'+ c.c. j, (813)

where g is a positive infinitesimal which guarantees
that the interaction is turned on adiabatically.

Using

(t)
e" &n IP a'( q) I 0& la*' (q (d) t( „)t-
27 4)-r ('d„p +Z'g

( n P" (q)10) 0"l(—0, rn) rr r)
&)t) + CO&p

—Pj

i
d, l((t)& =—(If+Jf') IS(t)&, (814) Then

(816)

0"'(0 r)=rr (0 lp'"(0)
I

n& 0 (r)n """+( lp"'(0) ID& rr."(r)n' "n}
n

e" ~ &0 I pa" (q) In) &n lp'"„-(-q) Io) (ta*,'(qp (o) .(«&0 Ipa' (q) In) (n Ipa", (q) Io) (t)~'( —q, (d)
23 CO —CO„p + Z7j CO+ CO„O

—Z'g

(n IP" (q) 10) (n IP".(-q) Ill)" 0'",'(q, rn) „, (n IPp" (q) 10) (n IP" (q) 10) 0'*'(-q, —rn) „,}40 —Mzp —Zg 40+ Cd„p+ Zfj

(819)

Note that In) is an eigenstate of momentum (mod-
ulo a reciprocal-lattice vector). Therefore, for
q not on the Brillouin-zone face, (n I pa""(q) I 0) Wo

implies that (n I p'. a". (- q) I 0& = 0, and vice versa.
Hence the second and third terms in the large

(82o)

permits Eq. (819) to be written

parentheses of Eq. (819) are zero. Use of Eq.
(89) and the relation

&nIp'a'(-q) IO&=(0 pa"(q) ln)*

0 .„(-
) + (0 lp"'(q) ln) (0 ip,".'(q'I ln)" (n lp',"'(q) 10)(n I 0,",'(q)10)"}

40 —(dip+ Z'g CO+ (dip+ Zfj

By time-reversal invariance, for each state In)
with reduced wave vector q there is a state I m&

with reduced wave vector -q, having the same en-
ergy and a complex conjugate wave function. This
permits the replacement of

(n I p a '(q) I o& &n I pa"(q) I 0&'
+ &d yt p+ Z"I

by

, &0 I pa "(q) Im& &0 i pa" (q) Im&*

GO+fftp+ Z'g

so Eq. (821) may be written

(i ~+vf&t

pa"d(q, t)= --- Aa'(q, ~) ~&0 lpa"(q) ln&

x&0
I

pa'" (q) ln&* 2~ o/[(&+ i~) —~Do l ~ (822)

Then, using (1/2w) f dt e""" "=6 ((d —~') and Eq.
(810), we have

x, (q, (d)= ~(0 Ip,"'(q) ln& &o lp,",'(q)

x 2(oo/[((d+ itl) —(d~ ] . (823)

Note that n= 0 is excluded from g„, since &0 I pa""(q)
x Io)=0 for q+Gwo. For G=G', Eq. (823)isiden-
tical to Eq. (4. 10) of the text,
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EPR spectra have been observed for SrC1~:Y'+ and SrC1:Sc~+ at liquid-helium temperatures. At 1.2 K
the spectra were dominated by anisotropic hyperfine patterns whose line shapes and angular

dependences were explained using second-order solutions of the eff'ective Hamiltonian for an isolated
~E state split by 1arge random internal strains. Pronounced asymmetries in some of the

strain-produced line shapes for SrC12:Sc'+ are shown to result from second-order terms in the solution

of the effective Hamiltonian. Coexisting with the anisotropic hyperfine patterns are weak nearly

isotropic hyperfine patterns with typical line shapes. Variations in the apparent intensity of lines in

these weak hyperfine patterns as functions of the applied-magnetic-field direction and temperature imply

that these lines result from averaging by vibronic relaxation of a portion of the anisotropic pattern.

This interpretation is further strengthened in the case of SrC1,:Sc'+ by the observation of a predicted

anisotropy in the "averaged" spectrum. The effective-Hamiltonian parameters for SrC1~:La+, SrCl,:Y +,
and SrCl, :Sc + are analyzed in terms of crystal field theory modified to include a weak to moderate

vibronic interaction, i.e., a dynamic Jahn-Teller effect.

I. INTRODUCTION

For a. nonlinear polyatomic complex Jahn and

Teller have shown that the orbital electronic de-
generacy permitted by a symmetric nuclear con-
figuration is incompatible with the stability of the
symmetric configuration since asymmetric distor-
tions remove the degeneracy and lower the energy
of the system. For high-symmetry complexes in
solids, e. g., ions with ad configuration in eight-co-
ordinated cubic sites this lnstablbty is a result of
the interaction between lattice vibrations and the
electrons located on the ions. This vibrational-elec-
tronic or vibronic interaction determines the nature
and the degeneracies of the states of the complex,

both of which will generally be different from the
results for the electronic states in the absence of
the vibronic interaction. This subject has been ex-
tensively investigated theoretically. When suf-
ficiently strong, the vibronic interaction togethex
with internal strains can produce a stable spon-
taneous distortion of the nuclear configuration to a
symmetry sufficiently low to remove aQ orbital
degeneracy, i.e. , a "static" dahn-Teller effect.
However, even when the vibronic interaction is
relatively weak, it produces pronounced effects on
the matrix elements of certain vibronic operators
and hence an certain experimental parameters,
i.e. , a "dynamic" Jahn-Teller effect. Since the
existence of a significant vibronic interacts. on in-


