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Nuclear-quadrupole-resonance frequencies are shown to have a T' dependence which becomes
dominant at sufficiently low temperatures; the mechanism is discussed using a diatomic linear-chain
model. The uniform-translational character of the acoustic phonons is shown to produce a T'-dependent
Doppler shift which is too small to account for the experimental results. The nonuniform q-dependent
character of the acoustic branch is shown to induce modulations of the librational and vibrational
coordinates at the low frequencies of the acoustic phonons. A Debye term is added to the familiar

Bayer expression; both terms are shown to be produced by the modulation of the same coordinates,
except that they occur at different frequencies.

Sixteen years ago Kushida, Benedek, and Bloem-
bergen' predicted a term of the form

AT ' 2+~ ) dx, (1)
"0

in addition to the usual Bayer~ term, for the tem-
perature dependence of the nuclear-quadrupole-
resonance (NQR) frequencies in solids. In that
paper the above term was succinctly ascribed to
Debye waves. T~ is the Debye temperature.

With the detection3 of a dominant T4 dependence
at low temperatures (T(85 'K) in a number of
solids, it is necessary to obtain a clearer under-
standing of the mechanism that gives rise to this
term as well as its importance for the correct in-
terpretation of NQR data in the high-temperature
region.

A more detailed theory4 based on the external-
modes approximation. ' has been developed for the
temperature dependence of the NQR frequencies,
where particular attention is given to the T Debye
term.

It is the purpose of this paper to discuss a sim-
plified model based on the diatomic linear chain in
order to display the essential ingredients of the
problem.

First of all, the Debye waves, i.e. , the transla-
tional acoustic phonons, are unable, by them-
selves, to affect directly the electric field gradient
(EFG) at the quadrupolar nucleus. This fact is a
result of the invariance of the EFG under uniform
translations which are the dominant feature of the

acoustic vibrations in the long-wavelength limit.
The only dA ect effect produced by the translational
acoustic lattice vibrations is a kinematic, second-
order, relativistic Doppler effect wherein the rf
frequency undergoes a shift 4v when absorbed by
the moving quadrupolar nucleus. The instantaneous
Doppler shift~ is given by

where v is the velocity of the nucleus and c is the
velocity of light. Taking into account that the
thermal average (v) = 0, and that

1

0'

where I, is the Fourier component of g of wave-
length 2n/q and frequency &„we find

( v' ) = r Z (riid, )' (u,')1

1 1=——Z 5~, (-,'+n, ) ~ U(T),

where~ (ua) = (,'+ g, )S/Nmi~„—m being the mass of
the unit cell and N the number of unit cells; ~,
is the acoustic-phonon energy and z, = (e""~~'r
—1) ~. As a result (b,v/v)o„„„~(v~) in Eq. (2)
and is proportional to the total lattice vibrational
energy U(T), producing a T4 dependence, corre-
sponding to the well-known Debye T3 law for the
low-temperature specific heat of solids. Actually, .

the Doppler term is too small to account for the
observed frequency shifts. One can show that for
T& Tg) ~

&v 1 m(v') kT,
V

Doping o~ 2 WVC tR C

for a Debye temperature TED=100'K and rn equal
to 20 nucleon masses. Even for v = 100 MHz, one
obtains (&v)o„„„(10' kHz, while the observed
frequency shifts are of the order of 30 kHz for T
& 30'K.

The Doppler effect being discarded, it turns out
that the dominant T4 dependence at low tempera-
tures is due to the association of two factors: (a)
the overwhelming presence of translational acoustic
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FIG. l. (a) Longitudinal-acoustic @rave modulating
vibrational coordinate g„at frequency ~«, (b) transverse-
acoustic wave modulating librational coordinate 8 at fre-
quency ~ ~. The angular coordinate 8 appears in a linear
chain, only if transversal motion is allowed, i.e. , if the
chain ls 1Dlbeded in two- or' three-NwenstonQE space.

Qa ~
uzi~1 u~= o( Z (fa(uzi)q = Zl trod~(u28) ) ( )q @&s q

~here g is a lattice distance, & involves a ratio
between two elastl. c coupling constallts uz (t)
= Ccos(qxz, —(a„t) represents the oscillations of
frequency (g„and wave number q, and e, is the
velocity of sound in the solid. For the vibrational
coordinate u„, one can write u„=u2„1 —uz, [Fig.
1(a)j or, from Eq. (3),

phonons of long wavelength at low temperatures T
«To and (b) the fact that the acoustic phonons pres-
ent in the solid induce forced l.ibrations and vibra-
tions at the very low frequencies &,y„of the acous-
tic branch.

The factor (a) is a well-known result. The ratio
of the number of phonons present in the solid be-
longing to the acoustic Rnd nonacoustic branches is
given by n, /nz =(tzT/tt(~~)e""&~'r»1, where (~z is
the frequency of the lowest, nearly flat, nondis-
persive, librational, vibrational, or translational
optical branch. One can show that the amylitude
of the indirect effect (b) is proportional to the
small difference in the disylacements from one
site to the next. In other words, the amplitude of
induced libration ox vibration is proportional to the
smRQ "nonuniform" character present in the trans-
1RtionRl Rcoustic bx'Rnch,

In terms of acoustic waves of momentum q, one
can show that, in the long-wavelength limit,

all((u2 +1 2 ) )+ alZ{(uz() 1 u2 -1) )

+ azz{ (uz~ —uz 1) ) + (5)

It is important to realize' in Eq. (5) that the
NQB frequency shifts involve two different and for-
mally independent problems: (a) the quantities a11,
g&2, and g22 depend exclusively on the gegsiIipjgy
of the EFG tensor Vto the various changing coor-
dinates, and (b) the thermal averages are related
to the yhonon spectrum, i.e. , to the lattice Hamil-
tomae HI, involving the elastic coupling constants.

Now, each term in Eq. (5) presents the same T4

dependence at low temperature. For this reason
let us concentrate out attention on the &gtygmolecu-
lRx' distRnce gq = gp +g —ga~, Considering neRrest-
neighbor forces only, the equations of motion, for
the model of Fig. 2, are given bye

mzuz, + 1 = K(uz, —uz, + 1)+ b(uz„z —uz„1),

m,u„= b(uz, 1 —uz, ) + Ã(u„., —u„) .
Assuming harmonic solutions

get (QXQ8+f~ t)Of )
as+i y

f(qx2 - et)
~S y

(5)

where xz, = e(a+ b), xz, +, = xz, + b, and b is the
equilibrium distance A.&A~, while g is the distance

and g„coordinates vary, and these coordinates un-
dergo forced oscillations at the frequencies of the
acoustic phonons. The result is that all thermal
averages (82), {8u„), and (uz) present a tempera-
ture dependence similar to the total vibrational en-
ergy U(T) of the lattice, with a dominant Tz be-
havior at sufficiently low temperatures, as con-
firmed by experiment. 3

In order to clarify the essential elements for this
T4 dependence, let us consider a simple model,
that of a diatomic li.near chain (Fig. 2). Taking
into account only nearest-nei. ghbor interactions,
assume an Agtzgmolecular coupling constant K and
an jgteymolecular coupling jp. Assume also that
the EFG at the moving quadrupolar nucleus-say,
A&-depends only on the modulation of the intra-
IQoleculRr dlstRnce ga, ~

—ga . TI1is is Rn unneces-
sary assumption; in the more general case, the
change in EFG produced by the lattice vibrations
would depend also on g~, —g2, » which may be con-
sidered as the change of jggeymolecular distance;
neglecting more distant molecules, the NQB fre-
quency shift is of the form

which is a result similar to Eq. (2) and results in
the same form of temperature dependence as the
total vibrational enexgy of the lattice.

For a librational coordinate 8 =(1/b)(uz„1 —uz, )
[Fig. 1(b)], one again obtains an expression simi-
lar to Eq. (2). The EFG is modulated when the 8

I"IG. 2. Diatomic one-dimenskonaE (no transversal mo-
tion) linear-chain model; A.~ at site 2s and A, 2 at site 28+ l.
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A&A» one obtains

(m,~ —K —k)A'+ (K+ ke"""')B=0,
(K+ ke ""'"')A'+(m~~ —K- k)B=0,

(8)

where A'=Ae'". The eigenfrequencies are ob-
tained from the determinant of the linear set of
Eqs. (8) resulting in two branches, M~=K(i+a)x(lagan)/2M,

where 4 =1-8(M /m~m2)n(I+ a)
x (1 —c)q with M= mgm2/(my+ m2)q n = k/Eq and

c= cosq(a+ b). In the limit q(a+ b) «1, one obtains,
for the optical frequency «, and the acoustic fre-
quency & ,

(9a)~, =[K(1+n)/M] t

~ =~,[M'/(m, m, )]'"a"'(I+n) 'q(a+ b) = c,q=o), ,
(9b)

where the sound velocity is

c, =[k/(m, +m, ) (1+n)]'t'(a+ b) .
The ratios of (complex) amplitudes A'/B are given
by

(A'/B) = I+ i&(I+ &}-'q(a+b), (io)

(A'/B), =-(,/, )[1. (I )
' ("b)],

(ii)
for « = «and = «„ respectively, as one can see
by placing Eq. (9a) or (9b) in Eqs. (8). Noting that
u»+& and u» are the real parts of the right-hand
sides of Eqs. ('1), one obtains, for q(a+b) «1,

[(u, , -u„)/B] =- a (I + a)-' (qa+ )b

x sin(qx2, —~ t), (12)

[(u2g+g u2, )/B]+ =- (1 + m&/m~) cos(qxa, —~+t)
(18)

for the acoustic and the optical branches, respec-
tively. In Eqs. (12) and (13) we have assumed,
without loss of generality, that B, and B. are real.
In Eq. (12), there is a -', w phase difference between

(u„) and (uz, ) = B cos(qxz, —~ t); this fact provides
the meaning for the imaginary term in Eq. (10).
It can be noted also in Eq. (12) that the internal vi-
brational coordinate (u„).= (uz„~ —uz, ). osci.llates
not at its "proper" frequency «„but at « = « .
Introducing the complex factors P„we write Eqs.
(12) and (13) in the form

(u„,~ u„) =in—(1+ct) 'q(a+ b) (u„) = p (u„)
(14}

(u~„q —u„),= —(1+mq/m~) (u~,), = p, (u~,), .
(i6)

It is seen that for q(a+1) «1, the coefficient I p I

in Eq. (14) is quite small compared to IP, I in Eq.
(15), but this is more than compensated by the in-
equality ((uz, ) }»((ua,)+), corresponding to the
fact that it is very much easier to excite oscilla-
tions at frequency « =«„ than at «. The last
statement results from the expression ((uz, },)

=[-,+n(~,)] k/Nm~, . Note also that thermal aver-
ages of the type ( (u„).(ua, ) }are equal to zero be-
cause the plus and minus components correspond
to different frequencies. The final result from
(14) and (15) is that the temperature-dependent
parts obey

&(u„„-u„)'}»((u„., -up ).'& (16)

((u") }=((u") }+((u")',), (18)

where the first term on the right-hand side con-
tains the T dependence and the second term cor-
responds to the usual exponential Bayer term. The
final result may be written in the form

—(v —po) = Ap+ A T, Z(xn)
d «&)

1 1
+p ~Bi(q) s,rtar

where

&(x,)=f 2(e-I) 'dx, x,=T,/T,

A, o contains the zero-point contributions from all
phonon branches. The T term corresponds to the
forced oscillations induced by the acoustic phonons
over all lattice coordinates, and the sum over / is
to be extended over all nonacoustic branches. N
is the number of unit cells in the solid. It is im-
portant to realize that the Bayer term and the De-
bye term are both produced by the modulation of
the same coordinates, except that they are modu
lated at different frequencies. In Eq. (19), the
dispersion or q dependence of the nonacoustic
branches has been included, a necessary precau-
tion at least for the lowest branches. The expres-

for T «Ta and T «5'&o~/k, corresponding to the
dominance of the T term over all other contribu-
tions to the NQR frequency shift at sufficiently low
temperatures.

The above discussion can be formulated most
conveniently in the external-modes approximation
by decoupling the equations for the center-of-mass
motion u', = (m~ u2„q+ mqu2, )/m from those of the
other coordinates, as, for example, u,"=u&,q —u2, ,
in the limit q(a+ b) «1. Equation (12) results then
as a perturbation. In other words,

u" = (u"), + (u"),

where (u"), oscillates at its proper natural fre
quency e„and (u") represents the induced com-
ponent oscillating at the frequency co of the "ex-
ternal field. " Noting that ((u"),(u") }= 0, one ob-
tains from Eq. (1'7),
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sion for J(xn) is an approximation, in that certain
details of the three acoustic branches are not in-
cluded. For high-precision work a theory4 conve-
nient for computer calculations has been formu-
lated, with particular emphasis on the lowest ex-
ternal modes. In this way, all calculations and
computer programs already available for the ex-
ternal-modes approximation' may be used.
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Nominally pure SrTi03 crystals show, after irradiation with fast neutrons, paramagnetic-
resonance (EPR) spectra arising from Ti ' ions on Sr ' sites. Because of its smaller radius,
the Tis' sits "off center". In the tetragonal low-temperature phase of SrTi03 (T & Tc= 105 K)

it moves towards one of the twelve surrounding oxygen ions roughly 0. 03 A in a direction
perpendicular to the domain axis. This is proved by the response of the EPR spectra to the

application of external electric fields. For T & Tc simultaneously another Ti ' spectrum is
seen, which results from a partial averaging of the low-temperature spectrum. The coex-
istence of both types of spectra is attributed to the critical dynamics of the fluctuations of
the order parameter y near T~. For T =(T~+4) a 0.5 K a frequency spread of hv =3. 5&&10

Hz is obtained corresponding approximately to the width of the central mode.

I. INTRODUCTION

In this paper, paramagnetic-resonance (EPR)
spectra of a Ti center are reported which are ob-
served after fast-neutron irradiation of undoped
pure" SrTi03. They are identical to those pre-

viously observed by van Engelen and Henning' in
one sample of reduced SrTi03. These authors,
however, did not give a definite interpretation of
the spectra. VYe show here that they result from
a Ti ' ion on a Sr ' site. The titanium ion is not
found at an ideal lattice position but is moved off
center towards one of the 12 surrounding oxygen
ions. The assignment of the center was accom-

plished by investigating the spectra above and be-
low the cubic-to-tetragonal phase transition of
SrTi03 at T', =105 K and by observing the change
of the EPR spectra when external electric fields
were applied.

It is seen that the orthorhombicity of the centers
observed in the tetragonal low-temperature phase
is caused by the tilting of the oxygen octahedra.
However, in contrast to the response of all other
paramagnetic centers in SrTiO, , this orthorhombic-
ity does not follow the order parameter p but
changes to zero at T, in a rather abrupt manner.
This is a consequence of the more indirect coupling
between center and lattice and gives the opportunity


