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Analytical expressions for the sixth and eighth moments of the magnetic-resonance lines of a
dipolar-coupled rigid lattice are obtained by performing the commutations of angular momentum

operators and the necessary reductions by means of a computer. The expressions are used to derive

numerical values of the moments for a simple cubic lattice for varying numbers of interacting

neighbors. The sixth and eighth moments predicted from Abragam's trial function for the

free-induction-decay curve are compared to the corresponding exact moments reported here. We also present

a straightforward method for the algebraic computer calculation of traces of angular momentum

operators.

I. INTRODUCTION

In 1948 Van Vleck' studied the dipolar broaden-
ing of the magnetic-resonance lines in crystals by
the method of moments. He gave general expres-
sions for the second and fourth moments.

The higher moments, which are difficult to cal-
culate due to the larger number of noncommuting
spin operators, are important in determining the
character of the line shape~ and in investigations
of the accuracy of experimentally determined line
shapes. The moments also play a dominant role
in the error-bound theory of magnetic-resonance
line shapes. This theory allows calculation of the
error bounds of the line shape from the known mo-
ments, and the usefulness of this approach is there-
fore increased as higher moments become known.
Furthermore, knowledge of the moments are of
importance in various recent expansion theories '

for the line shape. Parker has recently described
an expansion of the free-induction-decay curve in
spherical Bessel functions. The nth expansion co-
efficient is a function of the first n moments of the
line shape. Parker' has rearranged the expansion
to yield Abragam's trial function for the free-in-
duction-decay curve as the first term. In this form
of the expansion knowledge of the second and fourth
moments suffices to determine the first term only.
Thus an evaluation of the usefulness of the expan-
sion in describing the free-induction-decay curve
in the time region where Abragam's trial function
is inadequate, requires a knowledge of the moments
of order higher than four.

In this paper we present analytical expressions
for the sixth and eighth moments. The expressions
were obtained by letting a computer perform the
necessary algebraic operations.

In Sec. II we describe the procedure employed,
and in Sec. III we give the expressions for the mo-
ments. Numerical values are given for the sixth

and eighth moments for a simple cubic lattice in

Sec. IV, and in Sec. V we derive the sixth and
eighth moments from Abragam's trial function and
compare them to our exact values. Finally, in
Sec. VI we discuss our expression for the sixth
moment in relation to some recently published re-
sults. "

II. THEORY AND METHOD

8»= —,'(l —3cos e»)/r~, (j&k),

S~~
——0.

The magnetic resonance spectrum G(+), where
w is measured relative to the center of the line, is
given in the high-temperature approximation by

G((u) = (l/2m) f„E(t)e'"'dt, (3)

where E(t) is the autocorrelation function for M„,
the x component of the magnetization;

Z(t) = Tr(m e'" ""M )/Tr m'

M„=ya ZI„'.
j

(4)

Qle consider a system of N identical spins I'
= (I, , I, , I',) in a rigid lattice subject to an external
magnetic field Bo. The spins are coupled by a
dipolar Hamiltonian, and we assume that tBO) is
so large that only the terms of the truncated dipolar
Hamiltonian influence the line shape significantly. '
The truncated dipolar interaction is

II= ZZ (3I,'I,' —l'I )
ygk

N N

-=y'a'PZ a» Z C,I', I,',
q=Xqy y Z

where 8;~ is the angle between Bo and the vector
r, ~ connecting the jth and 0th spin. y is the mag-
netogyric ratio of the nucleus, C„=C,= ——,'C, = —6,
and

2910



Ma„= &u "G(&O)d&u=(-1)" lo I (7)dt"

since J"„G(~)ds& is unity. The 2nth time derivative
of E(l. (4) evaluated at i=0 is

= (-)f-')" Tr(M„(H")'"M„)/» M„'.
pcs D

(6)

Since

Tr(M„H"A, ) = —Tr((H" M„)A),

where A, is an arbitrary operator, we get

M .= (-0 ')"Tr([(H")"M„]')/TrM„'. (10)

It is difficult to evaluate E(l. (10) for n& 2 manually
due to the large number of terms arising from non-
commuting spin operators. We have therefore uti-
lized a computer to perform the commutations,
the squaring of the commutator and the necessary
reductions ~

The computer is "taught"' the simple commuta-
tion rules for angular momentum operators:

[I.', I.', ]=P»I»;,I», 6I»

/

i for (qlq~q, )=(xys), (ysx}, (sly)

p. .. = -i for (qlq~q, )=(xzy), (yxz), (gym)

0 otherwise.

The general term in (H")"I„is

q'")f'" Z E [c,a„I',I,',
Ssk & g s ~ e ~ t/ff

x a E(I'„.~ .,I„}I,',I".I,' ]. (l2)

Hel'e E(il I ~ ~ ~ ji„)is a product of BTB [E(l. (2)],
where g and s belong to the set of summation vari-
ables Q„...,j„]and D is a product of C, and

P„»» accumulated through the first n —1 commuta-
tions. We express E(l. (12) as

p(s f haft]s l

x [1,1 ]Is]sI, ),% /+1

+Z g I,' [I,', II.] g I,'- I', (16)
Pe 1 tnei ftt~P+1

and use the commutation rules in E(l. (11) to re-
duce Eq. (13).

The number of terms appearing in (H")"I, may be

8" is the superoperator corresponding to the txun-
cated dipolar Hamiltonian in E(l. (1),

(6)

G((()) is an even function of &o. The even moments
of G((o) are

reduced by commuting I, ~ I, ~ in the terms which con-
tain the factor 8&,& and compaxing terms.

The final expression for (H")"I„ is s(luared and

3f becomes a sum of traces having the form

Tr rs B(j, , ...,j„)ls,' Iss)
5j e see eg Ilf

Z E(il " ia)T (I"~ ~ I') (14):
Jf g s ~ e e s 9 yg

where A = 28+ 2.
The sum in E(l. (14) is an unrestricted sum, i. e. ,

all summation variables take on all possiMe values
independently. This unrestricted sum may be trans-
formed into a sum of restricted sums, restrictedin
the sense that no pair of summation variables may
take on the same value simultaneously. This trans-
formation is given by

P(i„..., i„)= Z Z '
P&(I„...,a„,},

6 lgseee Skgc
(16)

where P011 ~ &III) =@211~ ~ ~ Ii]I)I» ' ' 'I»j,"
prime on the summation sign indicates a restricted
sum. In the 6th restricted sum the variables
jj, ..., jI, are divided in g+ groups, and aQ variables
in a group are substituted by a single new variable.
P (jt„...,k„) is obtained by malring this substitu-
tloll 111 P(gl I ~ ~ ~ Iij) ). Tllus 'tile 811111 (so ls a suln
over all such groupings of the summation variaMes

jf p I 0 ~ p jQ»
Using the transformation [EIl. (15)], in EIl. (14)

gives

@A " i])»(I"., "'I,'„I')
ggyeeeegg

Qp

=Z Z B'(B„.. . , T..)Tr Ilo,"s)
0 Ajs skgg, . P 1

=SO)1s()s "s(11 Tr(Os))

x' E Bs(Ts, . ..,B.,)). ((8)
kf ~ ~ QQ sag

All the spin operatoxs belonging to the summation
variable A~ are collected in the operatox g~~'~&.

The trace Trg~ is a one-spin trace of the one-spin
operator O~. In E(l. (16) we omit all restricted
sums where Eo(k„.. ., k„) contains a factor of
&a

o illustrate this procedure we perfox'm the ex-
pansion EIl. (16) on a term from the fourth mo-
ment:

Tr Z Bs,s Bs I Bs s Bs I ls'IJsIssIsslssjss)
1""&8

= (2I+1)""Tr(I„') Tr(I,') Tr(I.') Q' H,',,H', ,
&~43])f3
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+(2I+1) Tr(I, I, )Tr(I„) Q B»» . (1V)
0 gEtg

In the first sum we have collected the terms with

j,=j~ = k), j3=je= k2, and j4= jq = k3 and in the sec-
ond sum we have set j,=j2=j4=j,=k, and j,=je=ka.
All other combinations of the indices yield traces
equal to zero.

The splitting of a product of spin operators into
different groups is greatly simplified by using the
fact that Tro~ vanishes unless 0~ contains all the
operators I„, I„and I, in even numbers, or all
three operators in uneven numbers.

All the necessary traces for the evaluation of
the moments uy to Ms may be found in Ref. S or
they may easily be evaluated algebraically on a
computer as described in the Appendix. The traces
are polynomials in X=I(I+1).—

We can therefore express the moments as

(18)

by multiplying the traces according to Eq. (16).
8'j" is a combination of the restricted sums in Eq.
(16). These sums are reduced to sums which in-
volves summations over the smallest possible num-

ber of indices by using relations such as

where all summation indices are different.
When we use relations as Eg. (19) we can no

longer identify the lattice terms as terms arising
from interaction of 2, 3, . . . , n, +1 syins in the
sense of Bersohn and Das. ' However, the total
number of terms is substantially reduced and the
numerical calculation is simplified.

It should be pointed out that the time require-
ment rises sharply when going to higher moments,
for example, the calculation of M, uses approxi-
mately 1200 times as much computing time as Me.
The major part of the computation time is used in
performing the expansion in E(1. (16).

III. ANALYTICAL RESULTS

The obtained analytical expressions for M, and

Me are given in terms of the following quantities:

S =N 5 B~„,
jgk

(20)

I
R~»(pq) = Z Bf, B'8» (j 0-'k), (21)

q(Pqr)=N ' Z' B,', B,', B, B„B, B", ; (22)
jsk, l sm

I 2

N Z B' B' = N'gB'
ky&~ k2 &3 pjk

a,~a n3 P~A2 A)03

(19)

VV244V () 147573, 2804121 4 437V9481

2S2 S81
B~» R)»(32) + 1360B)»RJ»(41)R~»(11) + 2240B)»R~»(32) R(»(11)+ 3344B)»Rq»(31) R~»(21)

+ 632B~»R~»(22) R~»(21) 1720B~»R~»(21)R(»(11)+ 1640B~»» R~~»(11) 30 480B»R~»(31)R~»(11)
2

—8848B1 Rq (22)Rq (1 )+ 5(8qR00q B(81)—1(40(E B; R1 (ll) +4228B1 Rq (21)Rq (ll)

—6780Bq»Rq»(11)+ 3690R~»(22) Rq»(11) + 2512Rq»(42) Rq»(11) —1 720Rq»(21) R)»(11)

—2744RJ2»(31) + 1640R~»(31)Rq»(22) —2498Rq»(22) + 6370S» B~»R~»(11) —8220S» Bq»Rq»(11)

—1V92S2 B~»R~» (21) —20 550S» B~»R)» (22) + 1076SSB~~R(»(11) 664S3 B~» R)»(21)—
1822SQ B~» R~»(l 1) + 24 300S2 Bg»Rg»(l 1 ) 3320S» B~» R~»(21) R~»(11) 28 VOS»Rq»(21)

920B~» B~8 B»(R~»(ll)R~8(11) + 12 960B)»B~(B»)Rq)(ll)R»'8(ll) 4480B~»B~8 B»)R~»(21) R~((ll)

1820B~qB»)R~»(11)R~)(11)+180B~»B~)R»8(21)Ry)(11) 2000B »B»(R~»(21)R. ~8(21)

—50B~ R~, (22)R„((1)—240B B (E B~ RB 0B, )+244Q(221)+4224Q(811) —8458Q(212) —20008, Q(ill)

—420B;»R&»(ll) B&8 B& B» B» B8 —720B»R&8(21)B& B»(B» B,

—1000B~ B~, B»~ B», R„(ll)B, —580B~»B;8B~ R»8(ll) B» B)
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X 5 866 291 2 13063 987 39390 2 2 17 172 019 10 521 907

358 809 () 2 012 851 5 2 990 131 k 47 674 521
896 Jk 9 k 224 Jk» 448 gk jk +

8g6 jk»
5 875 507

B)kk R)k(32) + 3360B»R~k(41) R)k(11) + 8940B)kR)„(32)R»(11)+ 4044B(k R»(31)R~»(21)

+ 1782B»R)»(22) R»(21) —44 760Bqk R»(31)Rqk(11) + 192BqkR»(22) R»(1 1)+ 816DB~»R)kk(21)

+10 728Bqk»R»(21) Rqk(11) —7845B)»R)k(11)+ 3732R)k(42) R)k(11) —6324R)k(31)

+ 3210R)k(31)R»(22) —1818R)k(22) + 3630S» B)kR )k(11) + 9528S» B)kR»(21) —23 715S»B)kR)k(22)

+1416SsBIR, (I,I)+2 94 6S~B IRI (21) —11827iB~ RI (11)+2784Q(221)+4704Q(311)-110'18Q(212))

X
.+ [4 906 137SQ 5 706 547SQ+ 9 260 697S()S» 3 880 396SSS» 1 65V497B)»R)k(11) 3 612 211B~»R~»(21)

—5660881B) RI (31)+ 6)97036OiBRI (22)-5869768Bi~ RI„(32)]—X S~), (23)

12h 6 X3
M() =

3
— S()+40S»+ 1145S» —1220S»S» —232B)»R»(ll) —192B)»R)k(21) —370B)kR(k(22)

+52(S~B~~ R~ (11)+420B R~ ( I~~)(+20 BBRI(21)RI (11)-40RI,(21)-40Q(lll))

+— S()+ IDS» —115S4S»- 3B~»R~»(11)+ 2B»R)k(21) —40Bqk R»(22) +X—S() . (24)
X2 1982 2 4 3 2 68

The summation signs have been dropped except in
the cases where it is not obvious which indices we
are summing over. All indices must be different
and one of the indices is supposed to be fixed. For
the sake of completeness we also list M4 and M2,
which were first given by Van Vleck':

M4 $3 I )f [X [$Sk g Sk+ () Bg»Rgk(1 1)] XS4 jS
(25)

(26)M2= 3y 5 S2X.4 2

IV. NUMERICAL RESULTS

In this section we report numerical values for
the lattice terms W&" appearing in Ma and Me for
the case of a simple--cubic lattice of identical spins.
8'&" is dependent upon the number of neighbors in-
teracting with a given spin and upon the direction
of the external magnetic field B0.

The calculation of 5'&" involves in principle sum-
mations over an infinite lattice. .However, it is of
interest to see how many neighbors to a given spin
is required to produce a good approximation to M8
and Me. Accordingly, we place a cube around a
given spin and consider for that spin only the in-
teractions with the spins in the cube in the evalua-
tion of W&". The cube has the length 2I.r0, where
r0 is the lattice parameter of the cubic unit cell
and L is an integer. Each cube contains (2L+1) —1
spins interacting with the central spin. Since all

spins are equivalent we may keep one of the indices
fixed and drop the factor N ' in the calculation of
W&". It is seen from Eqs. (23) and (24) that W&"

consists of three types of lattice terms, involving
1 (for example, Sk), 2 [for example, B&k»R»(ll)],
and 3 [for example, Q(221)] summation indices, re-
spectively. We have evaluated the lattice terms
as a function of I.. They are listed in Tables I and
II. In this calculation we have reexpressed M2„as

2 2n rt

(2V)
+0 g"-1

to facilitate the comparison with other results. '"
Tables I and II demonstrate that the most important
contribution to W&" comes from sums involving one
summation index and that the terms involving three
indices play a negligible role only. This is in
agreement with the conjecture made by Gade and
Lowe' '" that the largest contribution to M2„comes
from terms involving @+1spine, since the reduc-
tion of such terms will reduce to lattice sums such
as $2 which are the largest of the terms appearing
in Me and MB. It should be pointed out that we get
the same numerical (and analytical) results for
M4 and M2 as found previously. ' However, our
numerical results for Wk and Wk for the magnetic
field along the [100] direction do not agree with
those reported by Glebashev. ~2 The reason for
this discrepancy is not obvious, as Glebashev lists
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() g (-1) Mm„t
(2n)!

(30)

The results are given in Table ID for the case of
a simple cubic lattice in the classical limit I
and with the interaction restricted to 26 nearest
neighbors. This table shows that Abragam's Me
and Me are smaller on the average than the corre-
sponding exact theoretical moments by 30% and
10%, respectively. The moments in Table HI may
be compared to those reported in Ref. 3. In Table
IV we make the same comparison for a spin--,'
system. In this case the number of neighbors in-
teracting with a given spinwas taken as 342 [i.e. , (2
x 3+ 1)L —1j in order to obtain realistic values for
M3 and M& to be compared to experiments. Table
IV shows that Abragam's Ms and M6 are smaller on
the average than the exact moments by 15 and 3%,
respectively.

VI. DISCUSSION

+)hen this paper was in preparation two papers
were published~'~ which both deal with the sixth
moment M~. The first, one by Cheng and Memory
(CM) reports Ms, and the second one by Wurzbach
and Gade (WG) presents the four-spin contribution
M, to M6. To facilitate the comparison of the re-

sults we write our M~ without making the reduc-
tions leading to Eg. (24):

the numerical values of W&6 only.
All the computations have been performed on the

CDC 6400 computer at RECAU, The Regional Com-
puting Center at Aarhus University.

V. COMPARISON OF Ms AND Ns PREDICTED FROM
ABRAGAM'S TRIAL FUNCTION WITH THE EXACT

MOMENTS

Abragam has proposed a trial function for the
free-induction-decay curve [Ec!. (4)j which is giv-
en by

E(t) = e ' ' ~'sin(bt)/(bt).

The parameters a and b are adjusted to give the
correct values of M4 and M~ for the corresponding
spectrum G(&u) [Eg. (3)j. The trial function has
shown a remarkable ability to reproduce experi-
mental data (at least for short times), and it is
therefore interesting to check the agreement of
Abragam's Me and M~ with the exact M8 and Me.
M, and M8 are found by expanding. Eq. (28) as

F(t)=1 —(a + ,'b )t /2—!+(3a +2aabL+ ', b )t4/4!-
—(15a +15a b +3a b ++Vb ) t /6!

+ (105a'+ 140aebL+42aLb4+ 4aab6+!j-b') t'/8!

+ ~ ~ (29)

and comparing the expansion with the exact expres-
sion
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TABLE II. Numerical values of the lattice terms appearing in I&——(3v tf/2vop)s g &

g&x~ for a simple cubic lattice. Each
spin interacts with (2L+1) -1 neighbors. 1', 2', and 3' indicate the number of indices summed over.

Direction of Bo

[100]
[100]
[100]
[100]
[100]
[100]
[110]
[110]
[110]
[110]
[110]
[110]
[111]
[111]
[111]
[111]
[111]
[111]

1
2
3

9
10
1
2
3

9
10
1
2
3

9
10

10

1.900
1.900
1.900
1.900
1.900
1.900
0.0333
0.0333
0.0333
0.0333
0.0333
0.0333
0.000 43
0.000 43
0.000 43
0.000 43
0.000 43
0.000 43

—54.326
-56.702
—57.166
—57.313
—57.433
—57.437
—1.6557
—1.7943
—1.8218
—1.8305
—1.8377
—1.8379
—0.060 47
—0.071 07
—0.073 14
—0.073 81
—0.074 35
—0.074 36

20

-0.302
—0.729
—0.749
—0.754

—0.0585
—0.0733
—0.0743
—0.0746

—0.004 63
—0.006 10
—0.00620
—0.00623

511.992
579.710
593.615
598.063
601.709
601.824
26.6857
33.7352
35.2901
35.7950
36.2118
36.2249
1.993 18
3.164 60
3.449 95
3.544 52
3.623 35
3.625 85

TVg

20

5.071
26.193
29.465
30.431

0.9412
2.7374
3.1279
3.2519

0.031 31
0.202 30
0.266 62
0.289 09

-0.052
0.020
0.012
0.011

—0.0096
—0.0103
—0.0107

0.001 03
0.002 19
0.002 31

Ms= y tlsN 28350 (2582X —1693X +408X) D B~» + 2430 ' (1220X —345X ) Z B(~~a,
jtk y,a, l

+(232X —9X ) Z B)»B),B», +(192X +6X ) 5 B)»B),B», +(-80X +30X ) Z B)»B),j skt l St&s& gek tl

+(370X —120X ) Q B,»Bi, B») +729 X
i

128 Z B)»B,B~ +116 Z B)»B~,B) B»
),n, l g, a, l, m jtQt l tm

—12 — Z Bg»B,~Bq, Bq~+101 Z 2P)»B~, B»„+84 Z B)»Bq, B)„B»,B»„+4 Q B(»B),B;~B»,Bi„
g, a, l.,m ]elf, t l, m j,lt ~

'l, ttt

—32 r BiB 8) B +N r „BlqBlBB., -,8 Z Bg B),B) B,B '8,
)

. (Sc
jthtltm y,a, l,m jtkt l, m

Equation (31) contains the same fifteen lattice sums
as obtained by CM [their Eq. (3. 18)]. However,
the numerical coefficients of the following seven

3 2 3 3 2 2 2lattice sums B»B»B», B»B&„B»B,l Bpl,
2 2 2 2 2 2

gm t BgABg l Bym Ifm t Bylaw By l gm Bp lBlfm &

B»B»B& B»B, differ from those of CM. %e
have made a straightforward manual calculation

of one of the above mentioned terms (B&»B&,B&~„),

and this calculation confirms the result obtained
with our computer program.

The four-spin terms of Eq. (31) are identical to
those of WG except for the coefficient to
B»B,„B»B&, which WG find to be —1/729 where-
as we get —12/729. We have also recalculated
this term manually and again have confirmed the

TABLE III. Comparison of M3 and M6 predicted from
Abragam's trial function (A) with the exact moments for
a simple-cubic lattice (B). Each spin interacts with 26
neighbors and the moments are evaluated in the limit
I ~, S 0, while IS remains finite. M2„ is given in units
of (2yo/3y ip, ))" ".

TABLE IV. Comparison of M8 and Mq predicted from
Abragam's trial function Q) with the exact moments (B)
for a simple cubic lattice with spin-a. Each spin inter-
acts with 342 neighbors (L=3). M2„ is given in units of
(2+3/t'3~2S) ~2tt

Direction of Bp

[1oo]
[110]
[111]

7085.48
160.116

4.71962

B A ' B

10 443. 19 472. 422 517.011
206.935 26. 1075 27.6173

6.890 04 1.846 76 2.025 52

Direction of Bp

[ioo]
[11o]
[111]

M8
A B

2614.86 3056.33
76.8808 86.0181
3, 558 04 4.443 08

224. 377
14.8532
1.450 15

231.714
15.1614
1.52459
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We want to outline a straightforward method for
algebraic computer calculation of a trace of a prod-
uct of angular momentum operators.

We consider a product K of n angular momentum
operators, all operating on the same variables:

(Al)

where q&= x, y, z. I„,I„and I, appear as factors
n„, n„and n, times, respectively, in Eq. (Al).

I„and I, are expressed as

I„=,'(I, +I ), -
I,= -,'i(i I,). -

(A2)

(A3)

We substitute the right-hand side of Eqs. (A2)
and (A3) for all the operators I„and I, in Eq. (Al).
The trace of K may then be written

R'
Trif=(-,')""".(i)"~ Z (-1)'&TrZ„ (A4)

where K& is a product of the operators I, , I„andI, 5& is the number of I, operators substituted for
I, in K&, and R'=2"&'"3. Since TrKJ is zero unless
Kz contains equal numbers of factors of I, and I,"
we may replace R' by

R = (n„+n, )!/([-,' (n„+n,)]!P. (A5)

We number the operators in E& from the right and
denote the kth operator as I, , where sk is the step
value. I„I„andI have the step values sk=0, 1,
and —1, respectively. Each operator is assigned
a level number dk defined as

result of our computer program. Furthermore,
CM get the same result as we do for this lattice
term. Accordingly, we have reason to believe
that our expressions are correct.

Thus, the moments reported here may serve to
expand the basis for further theoretical develop-
ments in the field of magnetic-resonance line
shar es of rigid lattices.

Note added in proof. Professor J.D. Memory
[J.D. Memory (private communication)] has kindly
informed us that he and Professor S. Gade [J.D.
Memory and S. Gade, Phys. Rev. 8 (to be pub-
lished)] have confirmed that the correct form of
the sixth moment is the one presented here, Eq.
(31).

APPENDIX

k 1

d, = Zs„
j=1

d1= 0.

The trace of K& may now be written.

Tran, = 5 (m~ II I,, ~
m&

fft= I ~1
n

= Z II im+d~, ~t, ~m+d, &,
m=-r P=i

(A6)

(A7)

(A8)

TrZ,. = QW„Z m",
P m=-I

(A13)

where A@, contains X and the level numbers.
Q .zm» may be found in Ref. 14.

Accordingly, the computer calculation requires
a representation of the product of the angular mo-
mentum operators [Eq. (Al)], which is split into
a sum of products K& of operators Ip, I, , and I 1

[Eq. (A4)]. The computer assigns level numbers
to the operators in each E&, determines the pairs
of I~and I, , and evaluates the product in Eq. (A12).
The final step requires substituting the expression
for/ -zm

where we have set d„1=0 We note that if the
operator I,k

is I, thenwe can findan operator I&ksk1 1 k 1
=I„1 su,ch that

dk1+ 1 ~ (A9)

The product of the matrix elements of the k,th and
k,th operators is

(m+d», —1~I &~m+d», &(m+4», +1~i, (m+d», &

= I(I+ 1) —(m+d», + 1)(m +d, ), (A10)

where we have used Eq. (A9) and the relation

I ~ ~
m) = [I(I+1) —m (m + 1)] 't

~
m + 1). (A11)

We may now write Eq. (AS) as

n ( +d,,))
m= I kp

x II[X-(m+d, +1)(m+d, )], (A12)
1

1 1

where X=I(i+1). In Eq. (A12) we have collected
all matrix elements of Io(s» = 0) into one product
and all matrix elements of pairs of I,(s„=1) and
1„,(s» = —1) into another product. Carrying out the
multiplication in Eq. (A12) we obtain
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We have made a comparative study of the electric-field-induced g shifts in paramagnetic resonance

for tetragonal Nd'+ sites in CaF, and SrF„and for tetragonal U'+ sites in CaF2, SrF„and BaF,.
Approximate estimates for the shifts in CaF, are given, and the variation of the shifts through the
series of host lattices is discussed.

I. INTRODUCTION

%e have made a comparative study of the linear
electric field shifts in paramagnetic resonance for
the ions Nd~' (4f~) and U

' (5f3) in C4„F charge-
compensated sites in the fluorite lattice. U3' has
been studied in CaF&, SrF2, and BaF& and Nd ' in
CaF& and SrF&. Measurements were not made for
Nd3' in BaF& since the tetragonal sites could not
be found in this material.

II. EXPERIMENTAL

The measurements were made by the electron-
spin-echo method at a frequency of 9.4 6Hz and
at a temperature of 4. O'K. As in an earlier study
of Ce ' involving fluorite host lattices, ' the obser-
vations proved to be difficult to make because of
deep nuclear modulation of the echo envelope and
short phase-memory times. The U3' samples
showed particularly striking modulation effects,
including inversion of the echo signals. Because
of these difficulties the accuracy was not as good
as that which is usually attainable by the spin-echo
method.

The electric field effects for Kramers-doublet
ions in C4„sites can be fitted by the relation

5(g ) = E,B» sin28 + E„(B~~sin 8 + 8~3 cos 8), (1)

TABLE I. g values and linear electric-field-effect
parameters for F compensated tetragonal Nd+ and Ue'

sites in fluorite lattices. The 8;& give changes ing per
10 V/cm of applied fieM t.Eq. (1)] and are related to the
g-shift parameters T&& [Eqs. (2) and (3)].

CaPp. Nd '

SrP2, Nd+

4.412a
+ 0.008

4.289'
+ 0.008

1.3O1'
0.002

1.505'
+ 0.002

133 ~ 13 -17+ 2 181+ 18

210 + 22 -47 *9 230 + 23

+ EgI Tsg(H„S„+H~S~) + T33Hp, ] (2)

by the equations

Bl5 T15(gll+gJ)& BSl 2Tslgis B33 2T3$git ~

The z axis is here the C,„axis; the sandy axes
lie in the perpendicular plane.

The results are given in Table 1 in units of g
shift per 10 -V/cm applied field. The absolute
signs of the B,&

could not be determined, but it was
vexified that 8» and B» were of opposite sign. The

g values for the CaF~ and SrF~ lattices are those
given by Bleaney, Llewellyn, and Jones. 3 The g
values for U

' in BaF3were determined during the
present work,

where E„, E, are electric fieMs applied parallel
and perpendicular to the C4„axis and 8 is the angle
between the Zeeman field and this axis. 2 The pa-
rameters B;& are related to the T,&

in the electric
effect Hamiltonian

CaP, :U"

SrP2, U '

BaF2.U3'

3.501a
+ 0.008

3.433
+ 0.008

3 233
+ 0.008

1.866
+ 0.002

1.971
+ 0, 002

2.1O8b

+ 0.002

48+ 5 -28+ 3 213 + 21

34~4 -22+ 4 275~27

78+ 8 -35+ 6 350+ 35

3Ce~„=E„T~5(H„Sg+HP„) + E~ T)5(H~Sg+ HP~) aFrom Ref. 3. "From present measurements.


