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Analytical expressions for the sixth and eighth moments of the magnetic-resonance lines of a
dipolar-coupled rigid lattice are obtained by performing the commutations of angular momentum

operators and the necessary reductions by means of a computer. The expressions are used to derive
numerical values of the moments for a simple cubic lattice for varying numbers of interacting

neighbors. The sixth and eighth moments predicted from Abragam’s trial function for the
free-induction-decay curve are compared to the corresponding exact moments reported here. We also present
a straightforward method for the algebraic computer calculation of traces of angular momentum

operators.

I. INTRODUCTION

In 1948 Van Vleck® studied the dipolar broaden-
ing of the magnetic-resonance lines in crystals by
the method of moments. He gave general expres-
sions for the second and fourth moments.

The higher moments, which are difficult to cal-
culate due to the larger number of noncommuting
spin operators, are important in determining the
character of the line shape? and in investigations
of the accuracy of experimentally determined line
shapes.® The moments also play a dominant role
in the error-bound theory* of magnetic-resonance
line shapes. This theory allows calculation of the
error bounds of the line shape from the known mo-
ments, and the usefulness of this approach is there-
fore increased as higher moments become known.
Furthermore, knowledge of the moments are of
importance in various recent expansion theories®'®
for the line shape. Parker® has recently described
an expansion of the free-induction-decay curve in
spherical Bessel functions. The nth expansion co-
efficient is a function of the first » moments of the
line shape. Parker® has rearranged the expansion
to yield Abragam’s trial function for the free-in-
duction-decay curve as the first term. In this form
of the expansion knowledge of the second and fourth
moments suffices to determine the first term only.
Thus an evaluation of the usefulness of the expan-
sion in describing the free-induction-decay curve
in the time region where Abragam’s trial function
is inadequate, requires a knowledge of the moments
of order higher than four.

In this paper we present analytical expressions
for the sixth and eighth moments. The expressions
were obtained by letting a computer perform the
necessary algebraic operations.

In Sec. II we describe the procedure employed,
and in Sec. III we give the expressions for the mo-
ments. Numerical values are given for the sixth
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and eighth moments for a simple cubic lattice in
Sec. IV, and in Sec. V we derive the sixth and
eighth moments from Abragam’s trial function and
compare them to our exact values. Finally, in
Sec. VI we discuss our expression for the sixth
moment in relation to some recently published re-
sults. ™8

II. THEORY AND METHOD

We consider a system of N identical spins i
= (I, ,F) in a rigid lattice subject to an external
magnetic field ﬁo. The spins are coupled by a
dipolar Hamiltonian, and we assume that lﬁol is
so large that only the terms of the truncated dipolar
Hamiltonian influence the line shape significantly.?®
The truncated dipolar interaction is

2p2 NN 1. 2
BT 50 srips- 1 223505
i R

4 Tin

N N
=y*n?2 2 B, 20 CJIiIE, (1)
i &k =%,9,2
where 6, is the angle between §0 and the vector
¥,, connecting the jth and kth spin. vy is the mag-
netogyric ratio of the nucleus, C,=C,=-3C,=-%,

and
B,,=3(1-3c0s%,,)/73, (j#k),
B,,=0.

The magnetic resonance spectrum G(w), where
w is measured relative to the center of the line, is
given in the high-temperature approximation by?

Glw)=(1/2m) [.o F(t)e*“tat, (3)

where F(¢) is the autocorrelation function for M,,,
the x component of the magnetization;

F(t)=Tr(M,e®t/" p1)/Tr M2,

(2

@
N .
M=yn 2 1. (5)
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H* is the superoperator corresponding to the trun-
cated dipolar Hamiltonian in Eq. (1),

H...=[H,...]. (6)

G(w) is an even function of w. The even moments
of G(w) are

d* F(t)

T

Mg, =/$ 0" G(w)dw=(-1)"

since [=, Glw)dw is unity. The 2nth time derivative
of Eq. (4) evaluated at £=0 is

an
d——ggﬁ(t—) o (=73)" Tr(M (H)*M,)/Tr M2. (8)
Since
Tr(M, H*A)= - Tr((H*M,) A), (9

where A is an arbitrary operator, we get
Map= (= 2" Tr([(H*)"M,]?)/Tr M2. (10)

It is difficult to evaluate Eq. (10) for »> 2 manually
due to the large number of terms arising from non-
commuting spin operators. We have therefore uti-
lized a computer to perform the commutations,
the squaring of the commutator and the necessary
reductions.

The computer is “taught” the simple commuta-
tion rules for angular momentum operators:

[I:“I:z]:fgqlazaslajs T (11)

where
i for (q1q2q3)= (xyz), (yzx), (ny)

Bajage,=q~ ¢ for (919293) = (xzy), (yxz), (zyx)
2 0 otherwise.
The general term in (H*)"I, is

YZHh-ZnZ; E

Jok d1yeeerin

[CalezIéIak ’

X'DE(jiy"'!jn)lqjll“'Ig'?]- (12)

Here E(jy,+++,4y) is a product of B, [Eq. (2)],
where 7 and s belong to the set of summation vari-
ables {j;,...,,} and D is a product of C, and
accumulated through the first » — 1 commuta-

3@14203
We express Eq. (12) as

tions.
2n 4.2 3 g 4
Y " "CqDBJkE(jl soeesdn) [E Ig( Hl Iq;?)
ms

x[Iq",Ij;]( 1 )

bl
JrZ)(g1 I’) [z, ’j"]<m,mﬂ'") I"] 13)

and use the commutation rules in Eq. (11) to re-
duce Eq. (13).
The number of terms appearing in (H*)" I may be

reduced by commuting I} L Jm in the terms which con-
tain the factor B;,; and comparmg terms.

The final expression for (H*)"I, is squared and
M, becomes a sum of traces having the form

(] 2 E(]l"”ﬂn)-”l---ﬂ;.)

1reeerip

= D E(yseeeada) Tr (Lo,  Q4)
Jireeesdp h
where h=2n+2.

The sum in Eq. (14) is an unrestricted sum, i.e.,
all summation variables take on all possible values
independently. This unrestricted sum may be trans-
formed into a sum of restricted sums, restrictedin
the sense that no pair of summation variables may
take on the same value simultaneously. This trans-
formation is given by

T Pliyeenin=2 2o

PC(ky,.. kg )s
Fireeerdp G Rppeenshyg

(15)
where P(jiseee,dn)=E(f1,.. .,J,,)I’l- «eIln. A
prime on the summation sign 1nd1cates a restr1cted
sum. Inthe Gth restricted sum the variables
15005 jpare divided in ug groups, and all variables
in a group are substituted by a single new variable.
P®(ky, ...,k,;) is obtained by making this substitu-
tion in P(j,,. ..,],,) Thus the sum §; is a sum
over all such groupings of the summation variables
Jiseeesdn.

Using the transformation [Eq. (15)], in Eq. (14)
gives

Z E(]l,...,]h)Tr(Ifl...IJ;,)
jl""'jh

’ u
=2 L ECGy .., kyg) Tr(ﬁ of"'b
M=l

G Rpsessstyg

=2,@2I+ 1)N-"a<"‘ﬁ Tr (0§ ))
G p=1

x'( b EG(kl,.u,kuG)). (16)

Eireeesk,
Rire 'uG

All the spin operators belonging to the summation
variable %, are collected in the operator 0§ '*».
The trace TrOj is a one-spin trace of the one-spin
operator 0$. In Eq. (16) we omit all restricted
sums where E®(k,,..., k,;) contains a factor of

;f‘(i) illustrate this procedure we perform the ex-
pansion Eq. (16) on a term from the fourth mo-
ment:

Jipiarisriaris e
(h?ﬂje By 4y By, Bigiy Bagsgl BRI LI 15T )

= @I+ V"SI Tr(I) Tr(1f) 20 Bia, Bl
kykoke
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+@I+1)" 2 Te(r2 12)Tr(12) 20 Bis,- (A7)
kyky

In the first sum we have collected the terms with
J1=ja=Fky,js=js=kz, and j;=js;=ks and in the sec-
ond sum we have set j,=j,=j,=j5=k, and j3=jg=F,.
All other combinations of the indices yield traces
equal to zero.

The splitting of a product of spin operators into
different groups is greatly simplified by using the
fact that TrO, vanishes unless O, contains all the
operators I,, I,, and I, in even numbers, or all
three operators in uneven numbers. 8

All the necessary traces for the evaluation of
the moments up to My may be found in Ref. 9 or
they may easily be evaluated algebraically on a
computer as described in the Appendix. The traces
are polynomials in X=I(I+1).

We can therefore express the moments as

n
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a4 Y o2 2 15V 2\ el SV

N kx% ks By By = (N 523’31’32) -N E,Z W
(19)
where all summation indices are different.

When we use relations as Eq. (19) we can no
longer identify the lattice terms as terms arising
from interaction of 2, 3,...,n+1 spins in the
sense of Bersohn and Das. !® However, the total
number of terms is substantially reduced and the
numerical calculation is simplified.

It should be pointed out that the time require-
ment rises sharply when going to higher moments,
for example, the calculation of My uses approxi-
mately 1200 times as much computing time as M.
The major part of the computation time is used in
performing the expansion in Eq. (16).

III. ANALYTICAL RESULTS

The obtained analytical expressions for My and
Mg are given in terms of the following quantities:

_ (2720 2n yrf
Man= (P 21 W7 X 18) Sn=N"' L' B, (20)
ik
byzmultiplying the traces according to Eq. (16). Rup(pg) = Z;’BftB'{k (j #R), (1)
W; " is a combination of the restricted sums in Eq. 1
(16). These sums are reduced to sums which in- and
volves summations over the smallest possible num- -1 ’
=N b npa L
ber of indices by using relations such as Q(pgr) j’gf'm BB} Bjy By Byn Bin;  (22)
i
1648
_ Yk 4, 5101107 ., 47648 . _ 2 2 20015 923 _ 2240717
Ms= 35565 {X“ [18 38553+ —go=— S = Sg = 325205, 87 +22255S, + oz S¢Sz =~z 5553
772447 147573 2804121 431779 481
556~ BB (11) = =g BjuRyp(21)+ =720 B3y R 3 (31) + —moo— Bjs Ry, (22)
292981 .
s Bj,R,;,(32) +1360B,,R,,(41) R;,(11) +2240B,, R ,(32) R ;,(11) + 3344B,, R,,(31) R ;,(21)

+632B,, R;4(22) R;,(21) = 1720B,, R ;,(21) R%,(11) + 1640B%, R3,(11) — 30480B%,R,,(31) R,(11)

- 3648B3,R,,(22) R,,(11) +6500B%, R2,(21) - 1140(?’ B%R,(1 1)) : +4928B5%, R, (21) R,,(11)

- 67808}, R5,(11)+ 3690R ;,(22) R%,(11) + 2512R ,,,(42) R,,(11) — 1720R%,(21) R ;,(11)

- 2744R%,(31) + 1640R ,,(31) R,,(22) — 2498R7,(22) + 637053 B, R ,(11) — 82205, B, R ;,(11)

- 17925, B3, R,,(21) = 20 550S, B2, R ;,(22) + 107685 B, R, (11)- 664S3 B%, R ;,(21)

- 1822S, B3, R,,(11) + 24 300S, B4, R%,(11) — 33208, By, R ;,(21) R ;,(11) — 28705, R%,(21)

- 920B%, B,; By R;,(11)R;,(11) +12 960B2, B, B, R;,(11) R,,(11) — 4480B,, By, B, R ;,(21) R, (11)

- 1820B%, B2, R ,(11) R,;(11) + 18082, B;, R, (21) R, (11) = 20008y, By, R;(21) R ;,(21)
2
- 50B%,R;,(22) Ry, (11) - 240BjkB,,(E'B,mBkmB ,,,,) +944Q (221)+4224Q(311) — 8468Q (212) — 2000S,Q (111)
m

- 420B,, R;4(11) B; B} Byt By yu Bym— 120B;, R ;1(21) B, By i By Bum

~ 1000B%, B, By By, Rym(11) B, = 580B,, By B, Ru(11) B,mB,,,,]
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17172019
448

b'& ( 5866 291
g

358 809
896

- 28T 50T 53, R,,(32) + 33608, R,(41) Ryp(11) + 8940B,, R 4(32) R (1) + 4044B,, R, (31) R 1(21)

+1782B,, R,,(22) R,,(21) — 44 76082, R ;,(31) R, (11) +192B3%,R;,(22) R,,(11) + 8160B%, R%,(21)
+10 728B3, R ;,(21) R, (11) - 784583, R2,(11) + 3732R ;,(42) R,,(11) - 6324R?%,(31)

g2 _ 13063987
448 4 896

2012851
224

10521 907 S.S

Sy - 393005,53 +697252S, + 896 o0

SGSZ -

2990131
448

47674 521

B?kRJk(ll) - 896

B3R ,(21) - B} R;,(31) + B4R ,,(22)

+3210R,,(31) R ;,,(22) — 1818R2,(22) + 3630S, B}, R ;,(11) + 95285, B, R ,(21) — 23 715, B%, R ;,,(22)

+1416S, B}, R, (11) + 29465, B2, R,,(21) — 11825, B2, R,,(11) + 2724Q (221) + 4704Q (311) - 11 073Q(212)>
2

+ %9—2 [4906 13752 — 5 706 5475, + 9 260 697S4 S, — 3 880 396555, — 1 657497B%, R,,(11) - 3612 21185, R ;,(21)

297043
48 Se}, (23)

Sg+40S% + 114553 - 12205, S, - 232B% R ,(11) - 19283, R ,(21) — 37052, R,,(22)

-5680281B%,R;,(31) +16 790 630B], R ;,(22) - 5 289 753B%, R ,(32)] - X

M6=

y‘aw[xs ( 12 844

135 L27\ 35

+520S, B2, Ry,(11) + 420 B3, R%,(11) + 20B,, R, (21) R ;,(11) — 40R%,(21) - 40Q(111)>

x® ('1982

*6 \ 35

The summation signs have been dropped except in
the cases where it is not obvious which indices we
are summing over., All indices must be different
and one of the indices is supposed to be fixed. For
the sake of completeness we also list M, and M,,
which were first given by Van Vleck!:

My=35 V1 X2 [0 52— 2 5, + 8 B}, R 4(11)] - XS, },
(25)
M,=3%7v*12S,X. (26)

IV. NUMERICAL RESULTS

In this section we report numerical values for
the lattice terms W%" appearing in Mgy and Mg for
the case of a simple-cubic lattice of identical spins.
Wf" is dependent upon the number of neighbors in-
teracting with a given spin and upon the direction
of the external magnetic field §0.

The calculation of Wf" involves in principle sum-
mations over an infinite lattice, However, it is of
interest to see how many neighbors to a given spin
is required to produce a good approximation to Mg
and Mg. Accordingly, we place a cube around a
given spin and consider for that spin only the in-
teractions with the spins in the cube in the evalua-
tion of Wf". The cube has the length 2L7,;, where
7o is the lattice parameter of the cubic unit cell
and L is an integer. Each cube contains (2L +1)3~1
spins interacting with the central spin. Since all

6
2222 Sg+108% - 1158, S, 3B%, R ,(11) +2B%, R,,(21) - 4033,,Rj,,(22)) +X 3—2 se] . (29)

[

spins are equivalent we may keep one of the indices
fixed and drop the factor N-! in the calculation of
W2, 1t is seen from Egs. (23) and (24) that w2"
consists of three types of lattice terms, involving
1 (for example, Sg), 2 [for example, Bj,R;,(11)],
and 3 [for example, @(221)] summation indices, re-
spectively. We have evaluated the lattice terms
as a function of L. They are listed in Tables I and
IO. In this calculation we have reexpressed M,, as
2 2n n
M2”=<3T7;31Z> 2w x! (27)
0 j=1

to facilitate the comparison with other results. 3!
Tables I and II demonstrate that the most important
contribution to Wf" comes from sums involving one
summation index and that the terms involving three
indices play a negligible role only. This is in
agreement with the conjecture made by Gade and
Lowe!%! that the largest contribution to M,, comes
from terms involving n +1 spins, since the reduc-
tion of such terms will reduce to lattice sums such
as S, which are the largest of the terms appearing
in Mg and Mg. It should be pointed out that we get
the same numerical (and analytical) results for
M, and M, as found previously.! However, our
numerical results for Wi and W$ for the magnetic
field along the [100] direction do not agree with
those reported by Glebashev. 2 The reason for
this discrepancy is not obvious, as Glebashev lists
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the numerical values of W only. i
All the computations have been performed on the 2
CDC 6400 computer at RECAU, The Regional Com- oy
puting Center at Aarhus University, 2 - - Yys
V. COMPARISON OF My AND M, PREDICTED FROM 7 sleane 388 SZa
ABRAGAM’S TRIAL FUNCTION WITH THE EXACT o dhgg Sao SSa
MOMENTS b [ 1ol
Abragam? has proposed a trial function for the 91"1
free-induction-decay curve [Eq. (4)] which is giv- = © N o SEER
- ™ & M O N ™
en by B w& (RIS N8SE SE3R
a2,2 3 - oSN ] S
F@)=e "t /25in(bt)/(bt). (28) 8 €33 N
I~
The parameters a and b are adjusted to give the % o o o 0
correct values of M, and M, for the corresponding 8 oo oo § § § g g g 3 ; g :"5 § g,
spectrum G(w) [Eq. (3)]. The trial function has oy L |SRBEBAISAEEISISESRS
shown a remarkable ability to reproduce experi- § Y5 gBEEEaS88°RAnAST
mental data® (at least for short times), and it is M SI8Igy
therefore interesting to check the agreement of 3
Abragam’s Mg and Mg with the exact My and Mg. =2 e RS
Mg and Mg are found by expanding Eq. (28) as sy o |ooww S8 S 383
F(t)=1-(a®+3b%)t%/21 + (3a* + 2a° b% + § b*) /4! 2 TYYY 999 TST
3]
- (15a%+15a%p% + 3a2b* +4 %) t4/6 ! 2 £
2 0 Y
+(105a° + 140052 + 42a%b* + 4a%b% + + %) 9/8 £a vgus £83IF
3 o N MW SN > 233
® O o 0 o~ 0N M © 0w b~ B~ o -
+eee (29) g || FN|gdcd aaed Sece
& 8 SIS P P
and comparing the expansion with the exact expres- T g [
sion B s
© (—I)HM t2n ,,,E'g cbmoowgsggg%
F@)=2 n . (30) ] YT A S R Y
o (2! 22| H|lddgodidndisdccsdas
< 5 N H OO MDD ™M 1
The results are given in Table III for the case of S REREEg oy
a simple cubic lattice in the classical limit J — ~§ et
and with the interaction restricted to 26 nearest T 'g o«
neighbors. This table shows that Abragam’s M, se, se2g DA
and Mg are smaller on the average than the corre- = E “|33838 ERR-R] 8883
sponding exact theoretical moments by 30% and 2 =TT °eeee eeee
10%, respectively. The moments in Table III may 5& |
be compared to those reported in Ref. 3. In Table Sor 3P o®ww
. oy =3 Y ¥ oo D WE0DD
IV we make the same comparison for a spin-3 bt oo ooveBl33L3I3IIIIIY
. . . Cr- OO ™M M OMMMFMANNOOOOOC
system. Inthis case the number of neighbors in- E D I N I D
teractingwitha givenspinwas takenas 342[i.e., (2 3 SRINIS
x3+1)% -1] inorder to obtain realistic values for 8
Mj and Mg to be compared to experiments. Table % 523833555 L%%
IV shows that Abragam’s M, and Mg are smaller on o T SRR - - - Be el Ro R ol
the average than the exact moments by 15 and 3%, = SEEEE A A S S
respectively. E P
7]
VI. DISCUSSION :5) NjrNmdtooHanYTRaoHaNY RO
« i
1
When this paper was in preparation two papers 'gt' -
were published”® which both deal with the sixth E ’f
. 7 =] ‘
moment Mg. The first one by Cheng and Memory g tlzsssssssssss555555
(CM) reports Mg, and the second one by Wurzbach Z E|2822332R8RRERRR82RR
and Gade® (WG) presents the four-spin contribution o &
M ¢ to Mg. To facilitate the comparison of the re- M A
sults we write our Mg without making the reduc- g
>

tions leading to Eq. (24):




K SIXTH AND EIGHTH MOMENTS OF THE... 2915

TABLE II. Numerical values of the lattice terms appearing in Mg= Byin/ 249)8 Zii WgX’ for a simple cubic lattice. Each
spin interacts with (2L +1)8-1 neighbors. 1°, 2°, and 3° indicate the number of indices summed over.

N W w$ Wi

Direction of By L 1° 1° 2° 1° 2° 3°
[100] 1 1.900 -~ 54,326 -0.302 511,992 5.071 -0.052
[100] 2 1.900 - 56,702 -0.729 579.710 26.193 0.020
[100] 3 1.900 -57.166 -~0,749 593.615 29.465 0.012
[100] 4 1.900 -~57.313 ~0.754 598.063 30.431 0.011
[100] 9 1.900 -~ 57.433 601,709
[100] 10 1.900 - 57.437 601,824
[110] 1 0.0333 -1.6557 ~0.0585 26,6857 0.9412 -0.0096
[110] 2 0.0333 -1.,7943 ~0.0733 33.7352 2.7374 -0,0103
[110] 3 0.0333 -1,8218 ~0.0743 35.2901 3.1279 -0.0107
[110] 4 0.0333 -1.8305 ~0.0746. 35.7950 3.2519
[110] 9 0.0333 -1,8377 36.2118
[110] 10 0.0333 -~1.8379 36.2249
[111] 1 0.000 43 -0.06047 ~0.00463 1.99318 0.03131 0.00103
[111] 2 0.00043 -0.07107 ~0.00610 3.16460 0.202 30 0.00219
[111] 3 0.00043 -0.07314 ~0,00620 3.44995 0.26662 0.00231
[111] 4 0.00043 -0.07381 -~0.00623 3.544 52 0.28909
[111) 9 0.00043 -0.07435 3.623 35
[111] 10 0.000 43 -0.07436 3.62585

Mg= y‘zh-“N"[ 2835071(2582X° - 1693X 2+ 408X) 2’ BS, +2430™ ((1220)(3 - 345x%) 2 B},B?,
Ik Jakyt

+(232X° - 0X%) ) BYB, B+ (192X°+6X?) 2 B3, BY, By +(- 80X°4+30X%) X B%, B,
7 akyl Jakst kol

+(370x° - 120x?) ,?; B B§,B§,) + 729'1;(3( 128 kZ‘;’m B}, B’ B}, +116 , kZZm B%,B%, B, Bym

’ !
-12. 2 Bkame“Bm+101 ' B?,,Bf,B:m +84 2 BjakBJszmBszkm"'4 12 B?kleBijlelm

Jokelym Jokylym Jakylym Faky'lym

Fokylym Jokslym Jakylym

’ \ ’
-32 %' BYB%B;By+24 L B}BiBuBi—8 2 BJkBthijlekmBlm)] . (31)

Equation (31) contains the same fifteen lattice sums
as obtained by CM [their Eq. (3.18)]. However,
the numerical coefficients of the following seven
lattice sums B}, B3, B,;, B}, B}, B%,B% B:,,
B?kB?lem’ B?kB?IBJmBkm’ szkleBijlekm: and
B3, B;, B, By, By, differ from those of CM. We
have made a straightforward manual calculation

TABLE III. Comparison of Mg and M, predicted from
Abragam’s trial function (A) with the exact moments for
a simple~-cubic lattice (B). Each spin interacts with 26
neighbors and the moments are evaluated in the limit
I—~, g—0, while I# remains finite. M,, is given in units
of @r3/3y 112",

of one of the above mentioned terms (B2, B B2,
and this calculation confirms the result obtained
with our computer program.

The four-spin terms of Eq. (31) are identical to
those of WG except for the coefficient to
B2, B%, B;, B;,, which WG find to be —1/729 where-
as we get —12/729. We have also recalculated
this term manually and again have confirmed the

TABLE IV. Comparison of Mg and M, predicted from
Abragam’s trial function (A) with the exact moments (B)
for a simple cubic lattice with spin-3. Each spin inter-
acts with 342 neighbors (L=3). M,, is given in units of
(2r3/3v%m) 2",

o N Mg Mg . Mg Mg
Direction of By A B A B Direction of B, A B A B
[100] 7085.48 10443.19 472.422  517.011 [100] 2614.86 3056.33 224,377 231.714
[110] 160,116 206.935 26.1075  27.6173 [110] 76.8808 86.0181 14,8532 15.1614
[111] 4,71962 6.89004  1.84676  2.02552 [111] 3.558 04 4.44308 1.45015 1.52459
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result of our computer program. Furthermore, bl
N . dk= Z; sj ) (AG)
CM get the same result as we do for this lattice ol
term. Accordingly, we have reason to believe _
d,=0. (A7)

that our expressions are correct.

Thus, the moments reported here may serve to
expand the basis for further theoretical develop-
ments in the field of magnetic-resonance line
shanes of rigid lattices.

Note added in proof. Professor J.D. Memory
[J.D. Memory (private communication)] has kindly
informed us that he and Professor S. Gade [J.D.
Memory and S. Gade, Phys. Rev. B (to be pub-
lished)] have confirmed that the correct form of
the sixth moment is the one presented here, Eq.
(31).

APPENDIX

We want to outline a straightforward method for
algebraic computer calculation of a traceof a prod-
uct of angular momentum operators.

We consider a product K of » angular momentum
operators, all operating on the same variables:

n
K= HI, ’ (Al)
j1

where q;5%9, 2. I,,I,, and I, appear as factors
Ny, Ny, and n, times, respectively, in Eq. (Al).
I, and I, are expressed as

I=3,+L), (A2)
I,=%i(_-1,). (A3)

We substitute the right-hand side of Eqs. (A2)
and (A3) for all the operators I, and I, in Eq. (Al).
The trace of K may then be written

2
TrK=(%)"" ()" 25 (-1)% TrK,, (A4)
=1

where K; is a product of the operators I,, I,, and
I., b; is the number of I, operators substituted for
I,in K;, and R’=2"+""y, Since Tr K; is zero unless
K, contains equal numbers of factors of I, and I_, **
we may replace R’ by

R=(m,+ny) /{50, +n)]1 (A5)

We number the operators in K; from the right and

denote the kth operator as I, where s, is the step
value. I,,I,, andI_have the step values s,=0, 1,
and -1, respectively. Each operator is assigned

a level number d, defined as

The trace of K; may now be written

I n
TrK;= 27 n| HIsp'm)
p=1

m=wl

ZI) 1 (m+d,,+1[Isp‘m +d,, (A8)

m=al p=1

where we have set d,,,; =0. We note that if the
operator Isk, is I, thenwe canfindan operator Isk_l
=I_, such that

dyy=dp +1. (A9)

The product of the matrix elements of the k,th and
k_ith operators is

(m+dy = 1|Li|m +d,_ ) m +dy +1|1;|m +dy,)
=II+1) - (m +dy, +1)(m +dy, ), (A10)

where we have used Eq. (A9) and the relation

Iy|m)=[IT+1)—=mOn £1)]V/2|m + 1). (A11)
We may now write Eq. (A8) as
TrK;= mé}(g (m +dk0))
><<E [X = (m +dy +1) om +dk1)])., (A12)

where X=I(I+1). In Eq. (A12) we have collected
all matrix elements of Iy(s,=0) into one product
and all matrix elements of pairs of I,(s,=1) and
I_i(sp=—1) into another product. Carrying out the
multiplication in Eq. (Al12) we obtain

I
TrK;= A, 20 m?, (A13)
b4

m==I

where A,, contains X and the level numbers.
ey m>? may be found in Ref. 14,

Accordingly, the computer calculation requires
a representation of the product of the angular mo-
mentum operators [Eq. (Al)], which is split into
a sum of products K, of operators Iy, I, and I_,
[Eq. (A4)]. The computer assigns level numbers
to the operators in each K;, determines the pairs
of I;and I_,, and evaluates the productin Eq. (A12).
The final step requires substituting the expression
for 31 __,m®.
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We have made a comparative study of the electric-field-induced g shifts in paramagnetic resonance
for tetragonal Nd* sites in CaF, and StF,, and for tetragonal U3* sites in CaF,, SrF,, and BaF,.
Approximate estimates for the shifts in CaF, are given, and the variation of the shifts through the

series of host lattices is discussed.

I. INTRODUCTION

We have made a comparative study of the linear
electric field shifts in paramagnetic resonance for
the ions Nd** (47°) and U** (5f%) in C,, F~ charge-
compensated sites in the fluorite lattice. U3* has
been studied in CaF,, SrF, and BaF, and Nd3* in
CaF,; and SrF,. Measurements were not made for
Nd* in BaF, since the tetragonal sites could not
be found in this material.

II. EXPERIMENTAL

The measurements were made by the electron-
spin-echo method at a frequency of 9.4 GHz and
at a temperature of 4.2°K. As in an earlier study
of Ce®* involving fluorite host lattices, ! the obser-
vations proved to be difficult to make because of
deep nuclear modulation of the echo envelope and
short phase-memory times. The U%* samples
showed particularly striking modulation effects,
including inversion of the echo signals. Because
of these difficulties the accuracy was not as good
as that which is usually attainable by the spin-echo
method.

The electric field effects for Kramers-doublet
ions in C,, sites can be fitted by the relation

6(g %) = E,By5 5in20 + E, (Bs, sin% + Bgg cos?s), (1)

where E,, E, are electric fields applied parallel
and perpendicular to the C,, axis and 6 is the angle
between the Zeeman field and this axis.? The pa-
rameters B;; are related to the T; in the electric
effect Hamiltonian

Herec= ExT15(Hxsl + stx) + EyT15(Hysz + sty)

+ E:[Tsl(Hxsx + Hysv) + T33Hesn] (2)
by the equations
Bys=Tis5(gu+g1), Bs1=2T3181, Bsy=2Tgg:. (3)

The z axis is here the C,, axis; the x and y axes
lie in the perpendicular plane.

The results are given in Table I in units of g°
shift per 10°-V/cm applied field. The absolute
signs of the B,; could not be determined, but it was
verified that By, and By; were of opposite sign. The
g values for the CaF, and SrF, lattices are those
given by Bleaney, Llewellyn, and Jones.® The g
values for U3* in BaF, were determined during the
present work,

TABLE I. g values and linear electric-field-effect
parameters for F~ compensated tetragonal Nd* and U®*
sites in fluorite lattices. The By; give changes in g° per
10° V/em of applied field [Eq. (1)] and are related to the
g-shift parameters T;; [Eqs. (2) and (3)].

& £ B By Bys

CaF,: Na* 4.412% 1.3012
+0.008 + 0,002

4.289* 1.505%
+0.008 + 0,002

13313 -17+2 18118

SrF,:Na* 21022 —47+9 230223

a a
CaF,: U™ 3.501 1.866 4845

- 2
£0.008  £0.002 283 213=:21

3.433% 1.971*
LT3+ .
Sr¥y:U £0.008 0,002 344

e 3.233° 2.108°
BaF,:U £0.008 0,002 788

—22+4 27527

—35+x6 35035

3From Ref. 3. PFrom present measurements.



