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to be more rigorous.
These difficulties arise from the use of a classi-

cal ion trajectory in the SP calculation. In gen-
eral, such a treatment is invalid at the low ener-
gies which the ion attains during its interaction
with the surface. A quantum-mechanical treatment
of the problem is necessary in order to correctly
assess the probability of plasmon excitation using
the SP interaction Hamiltonian.

The corrections for ion recoil given in Ref. 2

are furthermore difficult to accept since they re-
sult from the artificial insertion of an abrupt on-
set of the potential at some time after the actual
creation of the ion. Such an onset is responsible
for inducing transitions and thus corresponds to
the creation of the ion at some z & zo. This pro-
duces a smaller transition probability but is not
an estimate of the effect of recoil.

The above discussion implies that the time scale
is not given by the ion acceleration time relative
to the plasmon period, since the rate of ion re-
moval does not affect the predictions of SP. In
this regard, a further factor to be considered is
the ratio of the atomic lifetime for ionization (given
approximately by 0. 005Ee in atomic units,
where E is in V/A) to the plasmon period (about
3 a. u. ). Since this ratio is large under experi-

mental conditions, the possibility that ionization
in this case is adiabatic with respect to plasmon
excitation should be considered.

It is unclear why the results of the RT model
should be doubted. The calculation is straight-
forward and simple. The pseudopotential model
of the atom-metal potential configuration on which
RT relies has been used extensively for calculating
surface properties. While additional refinements
are always desirable for specific situations, only
the most rudimentary features of the pseudopoten-
tial model need be retained in order to predict the
existence of secondary structure. Specifically, the
potential near the surface need only decrease
appreciably (compared to the energy of the tunnel-
ing electron) within a distance less than the elec-
tron wavelength. This will produce a region of
appreciable ref lectivity for the electron waves
and consequent resonance conditions. The small
electron reflection coefficients calculated by other
models are sufficient to produce the effect as
calculated by the RT theory.

While it is possible that plasmon excitation
occurs during field ionization, evidence indicates
that the main aspects of the observed structure are
adequately predicted by RT and the results of the SP
model do not correspond with experimental results.
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The equilibrium requirements for a static ionic crystal impose a number of constraints on the short-range
forces which become increasingly more important when one is dealing with complex structures. These
constraints are presented and discussed for a general rigid-ion lattice, and a specific discussion is presented
for the wurtzite structure.

In a lattice composed of rigid ions we have two
types pf forces: the long-range Coulomb interac-
tions between the constituent ions and the short-
range forces acting between relatively close neigh-
bors which are essential to prevent the structure
from collapsing. If we assume central short-range

forces then, for any structure, we must ensure
that the static lattice is in equilibrium, both with
respect to any macroscopic strain and also with
respect to relative motion of the constituent sub-
lattices (i. e. , internal strain). For the more com-
plex crystal structures this leads to a number of
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constraints on the short-range forces which can be
effectively used to determine certain short-range
force constants. ' Surprisingly, these constraints
have not been explicitly included in some earlier
lattice-dynamical calculations.

It is true that these authors do not make the as-
sumption of two-body forces and our arguments are
not directly applicable to their work. However,
the use of arbitrary tensor force fields to simulate
covalent bonding is questionable, since the resul-
tant potential functions are often not rotationally in-
variant. One can overcome this problem by postu-
lating terms in the potential which resist bond bend-
ing, but if this is done then the equilibrium condi-
tions will still provide constraints on the force con-
stants which must be satisfied.

Strictly speaking, anharmonic effects may modify
the constraints. However, these modifications are
usually small and are neglected.

A general discussion of these constraints (static-
equilibrium conditions) is given by Born and
Huang,

' but they do not separately treat the Coulomb
and short-range interactions, and therefore their
treatment is not very useful when applied to ionic
crystals. On the other hand, Keffer and Portis
have treated these Coulomb contributions, but they
do not explicitly ~elate their results to stability
conditions involving the short-range interactions.
Here we present in detail the static-equilibrium
conditions for a general rigid-ion crystal.

Consider a lattice of point charges each labeled
by a combined index (l, k), where l denotes a par-
ticular cell and k labels the ions within that cell.
I et the lattice vectors be given by

) ( 1& 4s 8) 1 1+ 2 2+ 3 3

where a„a~, and a3 are the primitive lattice vec-
tors and lg lp and l, are integers. Basis vectors
are denoted by x(k). For convenience we establish
the following notation:

x(l, k)=x(l)+x(k), x(l, kk')=-x(l, k) —x(0, k'),

x(aa') = x(O, kk'),

where l = 0 means that l, = l~ = l, = 0. We also adopt
this notation for r and u, where r(l, k) is the posi-
tion of the (l, k) ion displaced from its equilibrium
position x(l, k) by an amount u(l, k).

For any pairwise potential, the energy per unit
cell is given by

U = —Z ' g(r(l, kk )),2

where g(r(l, kk')) is the potential energy (Coulomb
and short range) of the bond between the (l, k) and
(0, k') ions, and r(l, kk') is the distance between
them. The prime on the summation sign in Eq. (1)
indicates that the (0, kk) terms are omitted, and

the factor & avoids double counting.
Expanding U to first order in the displacements,

we have

U= —Z '
g(x(l, kk'))+ P'(x(l, kk'))

x.(l, an')
x Q

(
',

)
u„(l, kk')

For a homogeneous deformation the displace-
ments may be written as a sum of the contributions
due to internal and external strains [u (k) and s,z]:

u, (l, k)=u, (k)+ps, ~x~(l, k). (8)

Substituting Eq. (8) into (2), we have

kk'
U= —Z g(x(l, kk'))+g '(x(l, kk'))Q

tao' Q x

x I kk' + g exp l, kk'

The stability conditions BU/ Bu, (k') = 0 and
BU/Bs~l= 0 give

k

and

Z 'g'(x(l, kk')) ', ' =0. (6)

Equation (5) ensures that the crystal be stable
against the internal strain u(k'), while Eq. (6) en-
sures stability against the external strain s z.
Evidently Eq. (5) is equivalent to the statement that
the net force on any given sublattice in the crystal
is zero, while Eq. (6) requires that the total mac-
roscopic stress is zero.

Writing the Coulomb and short-range contribu-
tions to P separately, Eqs. (5) and (6}become

Z 'y'(x(i, aa')), ', '+F.(a')=O
kl x l, kk'

1 g t pg( p))
~(l kk )xg(l kk )

x(l, kk')
(8)

where P denotes the short-range potential and
E,(k') and f,~ are derived from the Coulomb con-
tributions to g. Explicitly, F (k') is the force on
the k' ion due to all the Coulomb interactions and

f~~ is the Coulomb contribution to the macroscopic
stress. Notice that for the Coulomb potential Po(x)
we have Qo(x) = —Q o(x)/x, which leads to the result
that g f„=—Uo, where Uo is the Coulomb energy
of the unit cell. Thus, for cubic crystals, Eq. (8)
reduces to a single equilibrium condition which is
identical to that obtained by minimizing the unit-



cell energy with respect to a uniform dilation if the
Coulomb energy is written in the usual Madelung
form fjc= —n e /r, where n is the appropriate
Madelung constant.

More generally, the Coulomb contributions to
E,(k') and f„~ may be put into a rapidly convergent
form using the Ewald technique with the following
results:

Em(k )= Z zyryi Z 3
———

p ~yge8 ' + — —

i — 1Z exp —
2 +fQ x(kk )

, x„(l, kk') 2 „~(,,„~.„a erfc[x(l, kk')e] 4v r.iQ Q
4q

(9)

lr ~, |:,(l, M'le~(l, M ) 1,t, .),s e|t'c[x(t, Ak')aj)

~ —Z — — —+ exp — iq x(aa'))I (M)4m, 5g qgq 2 1 Q
,

Q' q' q' 2~' 4~'

a, =r(U2, 0, 0),

a, = —,
' r, (0, 0, Hs),

a, =-~,(v2, V6, O),

and four basis vectors x(k), k= 1, 2, 3, 4,

x(1)=(O, O, O),

where z, is the charge of the kth ion, Q is a reci-
procal-lattice vector, erfc is the complementary
error function, e is the volume of the unit cell, and

g is a convergence parameter. The prime on the
summation over / means that for k = k' the E = 0 term
is omitted, and the prime on the summation over Q
means that the Q= 0 term is omitted for all values
of Q and@

Equations (9) and (10) are easily programmed
for the computer to accommodate anarbitrary crys-
tal lattice, and for the proper choice of the conver-
gence parameter (1/c is approximately equal to
the lattice constant) the sums over both real and

reciprocal space are rapidly convergent. We have
computed F(k) and f„z for the wurtzite structure for
comparison vrith the results of Keffer and Portis.

The wurtzite structure is specified by three
primitive lattice vectors

x(2)=-', ~,(3~2, W6, Ws),

x(3)= —,
' ~,(3&2, &6, 4'),

x(4)=-,' r, ( ,OO, —3&3).
(12)

We take the charge of the ions to be z& =as =+ e and
z2=-z4=- e, where e is the electronic charge.

The resultant sublattice forces are along the
preferred n = 3 direction with

E, (1)=E,(3)=C,

E,(2) =E,(4) =- C,
(ls)

where C=0. 0198173 (e /xo). The Coulomb tensor
f ~ is diagonal with

f„=f„=l. 23' 266 5 (8'/r, ),
f33 = 1.31593V0 (e /ro).

(14)

The values of f„are positive with f33 & f», in-
dicating that the Coulomb forces tend to compress
or collapse the structure, and this compr ession is
strongest along the preferred z =3 direction. These
results are in agreement with those of Eeffer and
Portis.
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