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In the present paper we have determined the temperature dependence of the three-phonon relaxation rate,
which is valid for the entire temperature range (2-1400) °K for Si and is expressed as 73;—10: Tm(T) =0 [ oT

h

The exponent m, which depends upon temperature, is determined with the help of Guthrie’s expression
as given in the Sharma—-Dubey-Verma model. Using the SDV model we have calculated the lattice thermal
conductivity of Si in the temperature range (2-1400) °K and found excellent agreement between experimental

and calculated results.

Recently Sharma, Dubey, and Verma (SDV)!*?
proposed a model for the phonon conductivity of
insulators. Inthe SDV model the three-phonon re-
laxation rate is of the form 73}, & g(w) 7™ (™ ¢70/27,
The exponent m is a continuous function of temper-
ature, This idea is borrowed from Guthrie’s®:*
work. Guthrie has also shown that both normal and
umklapp processes are bounded by the same tem-
perature dependence. In the SDV model there is
no explicit distinction between normal and umklapp
processes, However, in the present model, a
distinction is made between longitudinal phonons
and transverse phonons and also between class-I
and class-II processes. In class-I three-phonon
scattering events, the carrier phonon is annihilated
by combination, and in class-II the annihilation
takes place by splitting, Following Klemens, ®
g(w) = w? for longitudinal phonons and g(w) = w for
transverse phonons, For the sake of simplicity of
calculation, the same frequency dependence is
taken for both class-I and class-II scattering pro-
cesses. As a matter of fact, in the high-tempera-
ture region phonon conductivity is not very sensi-
tive to the frequency dependence of T;éh. However,
it is very sensitive to the temperature dependence
of r;ﬁh. Class-II events occur only for longitudinal
phonons and are more frequent in the high-tem-
perature region., For high-frequency phonons, the
phonon-density space available for splitting events
is larger than for events which consist of annihila-
tion by combination., Thus in the high-temperature
region, [31.]; 11 >[755,), 1 in the combined expres-
sion [r3l, ], = 75 ), 0+ [75n)s x -

The lattice thermal conductivity of Si has been
described recently by Joshi, Tewari, and Verma®
and by Joshi and Verma,” Detailed references of
earlier work are given in these articles. Holland®
distinguished between longitudinal and transverse
phonons and used the following form of three-pho-
non relaxation rate:

[73h.], = BLw?T® for the entire temperature
range up to 1300 °K,

7

[Taih]’l‘u =0
[5lndra = Bry [w?/sinh(fiw /ky T)] for wy <w <w, ,
[T.:i};h]TN =BrywT*

Guthrie drew attention to the fact that in the
high-temperature range, the three-phonon relax-
ation rate should be proportional to T both for
longitudinal and transverse phonons, i.e., Tsy
« T, Fulkerson® also pointed out that his experi-
mental results in the temperature range (100-
1300) °K cannot be explained by the Holland formu-
lation, For the phonon-phonon scattering relax-
ation rate, Joshi and Verma’ used the following
expressions:

for w <w,; ,

for O<w<w,; .

Top=Taon+Tapn -
The frequency and temperature dependences of 'r;,l,,,
are given in Table I. The frequency and tempera-
ture dependence of four-phonon processes is given
by

Tom=Buw? T2,

In the .present model we have used the following
expressions for the phonon relaxation rates (Dubey!’?
etal):

-1 -
[T5n] = Bp,jw T T3¢ gm0 /oT
-1 -
[Tsph]L =By w2 TML T gm0 [aT
+'BL - szmL'n(T) e-a/olT .
’

With the present expressions for three-phonon re-
laxation rates, which are based upon Guthrie’s
ideas, it is possible to explain the phonon-conduc-

TABLE I. Temperature dependence of T3k, in the dif-
ferent temperature regions.

'rg},h Transverse Longitudinal Temperature
BrwT* By o? T® T <43
BpwT® By o? T3 43 < T <190
BpwT? By, o T? 190 < T < 280
BrwT B, ' T 280 T
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tivity results without invoking four-phonon pro- dispersions may be expected to approximate to
cesses. N some degree the g proportional to arcsinw relations
Joshi and Verma used 4 = (w/V)(1 +7w) for re- found in simple linear lattices, and the Taylor’s
placing V,/ V,,z in the conductivity integrals. Here expansion of arcsinw consists of a sum of odd pow-
V, is the group velocity and V, is the phase ers with positive coefficients for even terms. It
velocity. In the present model we have used a may be argued that if dispersion is included in
cubic term’ instead of a quadratic one, i.e., § terms of modified phase and group velocities,
=(w/V) (1+7w?). The latter expression gives a some allowance should also be made for the effect
better representation of a dispersion curve.!' Real of dispersion in the frequency dependence of re-
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laxation times. However, this effect has not been
considered in the present model.

The values of the parameters which have been
used to calculate the phonon conductivity of Si in
the temperature range 2-1400 °K are given in
Table II. It may be seen in Fig. 1 that except near
the conductivity maximum, i.e., in the tempera-
ture range 40-100 °K where there is some slight
discrepancy, the agreement between theory and ex-
periment is excellent, At high temperatures the
contribution of longitudinal phonons is 1% to 5% of
the total conductivity, and the rest is due to trans-
verse phonons. This result is in agreement with
the high-temperature results of Hamilton and
Parrott'? for Ge at 400 °K. At low temperatures
the contribution of longitudinal phonons is as high
as 25% of the total conductivity, which is correct
in the sense that there are two transverse modes
of each longitudinal mode and that the velocity of
transverse phonons is nearly half of that of longi-
tudinal phonons.

In cases where the relaxation is principally due
to boundary scattering, the thermal conductivity
should be proportional to the product of the heat
capacity and the group velocity, or k is proportion-
al to V,x(T/®p)°. For small wave numbers, V,
is proportional to ®},, so that « is proportional
to ®2 or to V2, Klemens has also shown in his re-
view article that « is proportional to ®;2 7°, Thus
in the temperature range where boundary scattering
of phonons dominates over other phonon-scattering
processes, the contribution of longitudinal and
transverse phonons towards phonon conductivity is
approximately in the ratio 1:5, In the temperature

|
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|
1400

range 15-100 °K, the longitudinal phonons and
transverse phonons make comparable contributions.
The values of m(T) at different temperatures for
transverse phonons and longitudinal phonons, as
well as for class-I and class-II events, are shown
in Figs. 2—-4, These values of m in general lie in
the neighborhood of the upper bound of m obtained
on the basis of Guthrie’s relations.

The success of the SDV model in explaining the
phonon-conductivity results of silicon is quite
significant in the sense that four-phonon processes

TABLE II. Parameters which are used in the calcula-
tion of phonon conductivity of Si in the temperature range
2-1400 °K.

(Vp) (0<w<w)=5.86x10° cm/sec
(V) (wi<w<wy)=2.0x10° cm/sec
(V) (0<w<wy)=8.48x10° cm/sec
(V1) (wg< w<ws)=4.24x10° cm/sec

6,=180 °K 6,=350 °K
6,=210 °K 6, =570 °K
L =2.600 mm (theor.)
L =0.295 cm (expt.)

A=0,247x10"4 sec®
By, ;=1.43x107 deg™
By,11=3.90x10"1 sec deg™

For [100] direction
71=6.3897x 1028 sec?
75=1.934x1072" gec?
7y=0
73=5.588x1072° gec?
=658 °K, a=1.3
a=5.4307x10"% ecm!
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FIG. 4. Temperature dependence of the exponent m (T)
for longitudinal phonons for three-phonon class-II events.
Mmax 18 the maximum limit obtained by Guthrie, and myg,
is the average of upper and lower bounds of Guthrie.
my,1r(T) is the value of exponent m(T) used in the present
calculation.
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are not invoked in the high-temperature region.
This is notable since the latest calculation of Joshi
et al.%" for Si indicated thatfour-phononprocesses
must be included to explain the high-temperature
behavior of silicon. Thus the present calculations
establish that if one takes the temperature depen-
dence of three-phonon scattering events properly
into account, one can interpret the results quite
successfully, Such a temperature dependence is
bound to lead to a T dependence for longitudinal and
transverse phonons in the high-temperature re-
gions. In the low-temperature region, one has a
Tt dependence for transverse phonons and a 72
dependence for longitudinal phonons, in keeping
with Herrings’s relations, The transition from T
dependence to 7'* or T2 dependence is continuous
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with the same three-phonon scattering strength ad-
justed for the entire temperature range, from 20
to 1400 °K. The use of a dispersion relation q
= (w/V)(1 +7w?) in calculating the group velocities
for the different regions of the dispersion curves
and replacing V,/ Vf in the conductivity integrals
makes the whole calculation more realistic.
Although there is no explicit distinction between
normal and umklapp processes in the SDV model,
this is unlikely to create difficulties when umklapp
processes dominate over normal process, which
is generally the case except for isotopically pure
materials at low temperatures. *=* For example,
in Ge and Si it has been shown that the correction
term due to normal processes inthe Callaway theo-
ry, i.e., the Bterm, is negligible. However, nor-
mal processes are also included in the expression
for the combined relaxation time 77, At tempera-
tures beyond the conductivity maximum, 7°1>77},
while at temperatures near the maximum and be-
low the maximum, 773 + T;: >7%. Thus in sub-
stances such as Ge and Si, 77! makes a dominant
contribution towards thermal resistance. The um-
Klapp processes are characterized by the exponen-
tial temperature dependence e‘”"‘T, and this is the
reason that the present expressions for three-
phonon relaxation rate in the SDV model are so
successful in fitting the experimental results.
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