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We have calculated the diamagnetic susceptibility of lithium using an expression derived by

us recently, since no reliable theoretical result is available.
available experimental and theoretical results.

The diamagnetic susceptibility of lithium was
first calculated by Kjeldaas and Kohn.! They used
a generalized effective-mass theory and took into
account fourth-order terms in the expansion of K
-K,. However, their result is only of limited use-
fulness, since they considered the very special
case of electrons confined to the vicinity of the
top or bottom of an energy band. Furthermore,
the ratio of the second to the first term in the ex-
pansion in powers of k; is 0.6 for lithium, so that
higher-order terms may also be important in their
calculation.

Fletcher and Larson? calculated the diamagnetic
susceptibility of lithium by applying the Landau-
Peierls® formula to the equilibrium quasiparticle
energy calculated in the Bohm - Pines? theory of
electron correlation, and by modifying their Cou-
lomb-gas calculations by using a band effective
mass. However, their result is not reliable since
there are other contributions to the diamagnetic
susceptibility which are of the same order of mag-
nitude as the Landau-Peierls term® and further,
as evident from Kjeldaas and Kohn’s result, ! the
effective-mass formalism does not yield correct
results for lithium. Glasser® calculated the dia-
magnetic susceptibility of lithium by subtracting
from his result for the magnetic susceptibility the

We compare our result with

result for the paramagnetic susceptibility calculated
from Abe’s expression.” However, it has been
shown® that the difference between Glasser’s ex-
pression for magnetic susceptibility and Abe’s ex-
pression for paramagnetic susceptibility is identi-
cally equal to Misra and Roth’s® expression for dia-
magnetic susceptibility obtained by using nondegen-
erate perturbation theory. Therefore, Glasser’s
result is not reliable, since, because of the strong
pseudopotential, the nondegenerate perturbation
theory is not valid for lithium.

Misra and Roth® calculated the diamagnetic sus-
ceptibility of the alkali metals from their general
expression for diamagnetic susceptibility of sim-
ple metals, which was derived through the use of a
pseudopotential formalism and degenerate perturba-
tion theory. However, we have recently shown®
thatthereis a difficulty inusing Misra and Roth’s ex-
pression for metals for which either the Fourier
components of the pseudopotential are strong, or
for which there is a neck in the Fermi surface.
From the model-potential form factors calculated
by Animalu and Heine and tabulated by Harrison, °
we note that the pseudopotential is strong for the
(110) and (200) G shells of lithium while the pseudo-
potential for the other G shells of lithium, as well
as the pseudopotentials of all the other alkali met-
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TABLE I, Diamagnetic susceptibility of lithium
(x in 1078 cgs volume units).

Xo EGDG Xa
—0.266 —0.6503 -0.093

als, are weak. Therefore, while Misra and
Roth’s® calculations of diamagnetic susceptibility
are accurate for the other alkali metals, they are
not accurate for lithium.

Recently, the diamagnetic susceptibility of lith-
ium has been calculated by many other authors.
Timbie and White*® and Brown et al.* have calcu-
lated the diamagnetic susceptibility of lithium from
Misra and Roth’s expression obtained using non-
degenerate perturbation theory. Pappadopoulas
and Jones!? derived an expression for x using a
propagator method, but their result, up to the sec-
ond order in the potential, is identical to the
Misra-Roth nondegenerate calculation.® Therefore,
it is not surprising that the results of Timbie and
White, ! Brown et al., *! and Pappadopulas and
Jones!? are in good agreement with each other.
Unfortunately, these results are not reliable,
since, because of the strong pseudopotential, the
nondegenerate perturbation theory is not valid for
lithium. Isihara and Tsai!® have obtained an ex-
pression for the diamagnetic susceptibility of an
interacting electron gas, and then replaced the
free-electron mass by the effective mass to cal-
culate the diamagnetic susceptibility of lithium.
However, as evident from Kjeldaas and Kohn’s re-
sult, ! the effective-mass formalism does not yield
correct results for lithium. Therefore, since no
reliable theoretical result is available, we have
calculated the diamagnetic susceptibility of lithium
using the expression recently derived by us.®
We also compare our result with the other theoreti-
cal results and the available experimental results.

The expression for the diamagnetic susceptibility
Xq derived by us® is

— Ve = Y-
xd—Xo§1 +Z; [*27;7?

36321 1<N )]}
e e\t W

)

where y, is the diamagnetic susceptibility of free
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electrons appropriate to the density of conduction
electrons in the metal, v, y,, N, a, and I are func-
tions of the pseudopotential, the c_I;lemical potential,
and the reciprocal-lattice vector G, the expres-
sions for which are given in Eqs. (13), (17), (18),
(20), and (36),- respectively (with a replaced by

ap) in Ref. 8. Also, N, is the total number of elec-
trons per unit volume and G, is the magnitude of
the component G which is perpendicular to the mag-
netic field. We have used the model-potential form
factors for lithium obtained by Animalu and Heine
and tabulated by Harrison.® We have calculated

Xq from Eq. (1) which we may write as

Xe=xo(l 42 D). (2)

We have evaluated the D;’s and these were summed
over the neighbor shells until distinct convergence
was obtained. In Table I, the result for the dia-
magnetic susceptibility of lithium is tabulated. In
Table II, we compare our result with the available
experimental and theoretical results. We note
that our result, which depends sensitively on the
choice of the pseudopotential, is in good agreement
with the available experimental results.®* Un-
fortunately, there is a large uncertainty in the ex-
perimental results.

Finally, we shall discuss the role of many-body
effects on the diamagnetic susceptibility of lithium.
There have been a large number of calculations!®
of many-body effects on the diamagnetism of Cou-
lomb gas in the limits of very high or very low
densities. However, these results are not valid
for metallic densities. Further, there is the prob-
lem of departure of an actual system from a uni-
form electron gas, a consequence of the lattice
potential which leads to the band structure. Recent-
ly, Philippas and McClure'* have calculated the
effect of the electron-electron interaction on the
diamagnetic susceptibility of Bloch electrons using
the Green’s-function formalism in the Hartree—
Fock approximation. They have shown that the
result for the diamagnetism can be divided into two
terms. The first term, which they call the quasi-
particle term, is the diamagnetism calculated
treating the self-energy as a one-particle nonlocal
pseudopotential, and is easily evaluated by our
theory.® The second term is an explicit many-
body correction to the orbital paramagnetism which
has the same form as, but opposite sign from, the

TABLE II. Comparison of y, with available results (x in 10~% cgs volume units).

X expt X theoret
Present
(Ref. 5) (Ref, 14) (Ref. 1) (Ref. 2) (Ref. 6) (Ref. 5) (Ref. 11) (Ref. 13) cale.
-0.14+0.15 ~0.06+0,16 —0.074 —0,31 -0.13 —0,233 -0,174 —0.150 -0.093




2874 S.

many-body correction to the spin paramagnetism.
This term is, in general, difficult to evaluate but
they estimate that, for lithium, this term is about
15% of the diamagnetic susceptibility and is of the
same sign. Therefore, we estimate that the orbital

P. MOHANTY AND P. K. MISRA 1

paramagnetism of lithium is approximately equal to
—0.014 cgs volume units.
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The second-nearest-neighbor-electron (SNE) interaction is discussed in comparison with the
nearest-neighbor-electron interaction. In tetrahedral crystals, the bond length of the nearest-neighbor
electrons is 0.82d,, where d, is the distance between two atoms. Using this value and the assumption
of the Morse-type potential for the SNE interaction, the conclusion is reached that the interaction
length I, for SNE interaction is in the proximity of the inflection point of the Morse-type curve.

In a recent paper! concerning the theory of the
piezoelectricity of zinc-blende-type and wurtzite-
type crystals, the author introduced the concept of
the second-nearest-neighbor-electron (7 electronic)
interaction in tetrahedral crystals. The main re-
sults were that the second-nearest-neighbor-elec-
tron (SNE) interaction energy has the Morse-type
potential, and that, in tetrahedral crystals, the
interaction length /, for SNE interaction is in the
proximity of the inflection point of the Morse-type
curve, But a clear discussion for these situations
was not given. This note attempts to answer the
question why the SNE interaction in tetrahedral
crystals is in the proximity of the inflection point
of the Morse-type potential.

Figure 1 shows the idealized electron model for
the ionicity f; = 0 tetrahedral crystals (only one
pair of second-nearest-neighbor electrons is
shown). f; =0 means that the covalent electron

stands on the center of the two atoms. ? In this
case, the bond length [, of the SNE interaction is

Covalent
Electron

FIG. 1. Electron-
structure model for f; =0
crystals (homopolar
crystals). Open circles
show the ion core and
cross-hatched circles
show the covalent elec-
trons. V; shows the
ordinary covalent-bond-
ing energy and V, shows
the second-nearest-neigh-
bor electron bonding.
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