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A comprehensive description is given of rigorous Hartree-Fock calculations for cubic atomic-hydrogen
crystals. All energy and overlap integrals are reduced to reciprocal-lattice sums. The exchange eA'ects are
treated exactly. The Bloch functions and Fermi surfaces are optimized. The near-Hartree —Fock results

indicate essentially spherical Fermi surfaces and strong atomic-orbital behavior of the Bloch functions. The
energetic effect associated with the atomlike inhomogeneities is about 1S%. Good agreement is found

between Kohn —Sham and Slater local-exchange potentials and exchange potentials deduced from our
Hartree —Fock results.

I. INTRODUCTION

Modern band theory has had generally great suc-
cess in describing the electronic properties of
solids. Diff erent approximation schemes have been
developed, and their ranges of validity are quite
well understood. ' However, all these methods
have in common the use of one-particle crystal
potentials in Schrodinger-type equations for the
band functions. Perhaps most seriously, the ex-
change and correlation effects are described by
local potentials, and parametrization of the theory

is hampered by nontransferability of the param-
eters. Nevertheless, band theory has given con-
siderable insight into the properties of a large
number of crystals of varying complexities.

It would be highly desirable to have accurate
Hartree-Fock results for at least some represen-
tative crystals. Such results might be of assistance
in the choice of optimum basis orbitals and ex-
change potentials, and might help in the systematic
inclusion of correlation effects. Hartree-Fock
results would also enable the definitive evaluation
of exchange and correlation effects upon the cohe-
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sive energy and the magnetic and electric proper-
ties of crystalline solids.

Recently we have proposed a formulation for the
exact solution of the Hartree-Fock problem for
crystals. 4 We introduced Fourier-transform for-
mulas for the crystal integrals, and showed how a
systematic exploitation of lattice orthogonality
relations entirely eliminates the multicenter inte-
gral problem usually encountered in conventional
all- electron calculations. The formulation ther e-
fore involves reciprocal-lattice summations re-
quiring Fourier transforms of basis atomic orbitals
only. The exchange contribution is evaluated ex-
actly, and we arrive at a natural and precise un-
derstanding of the cancellation of long-range con-
tributions to the electrostatic energy. We have ob-
served a far more rapid convergence than may
have been expected. '

In the first payer of this series (hereafter re-
ferred to as I) we have applied the Fourier-repre-
sentation method to the Madelung problem. Veri-
fying known Madelung constants, we showed the
mathematical and numerical steps to be correct
and useful. We also calcolated lattice-structure
constants as they appear both in the Madelung
problem and in our Hartree-Fock formulation.
Reports on numerical aspects and results for dif-
ferent atomic-hydrogen crystals have appeared
recently. '

We now wish to present a more complete account
of the formalism, numerical techniques, and re-
sults of Hartree-Fock calculations for the simple-
cubic (sc), body-centered-cubic (bcc), and face-
centered- cubic (fcc) atomic- hydrogen crystals. In
Secs. II-VI we describe the theory, working for-
mulas, and numerical techniques. The organiza-
tion of the computer programs is briefly sketched.
Sections VII and VIII comprise the results and their
analysis, It is indicated that we have reached p.

near-Hartree- Fock limit, with Hartree-Fuck
Bloch orbitals that exhibit considerable atqmic-
orbital behavior. Remarkable agreement |.s found
between local-exchange potentials and potgnti@ls
derived from the exact exchange operator as found
in our work.

other quantities, have been summarized in Table I.
The Bloch functions If) are assumed to take the

form

&2»&a"~Pc rQ C, (r (2)

C, (P')= 5 P, (r —as ).

dZZ ~r, —ap,
' —as,

~

'
3' m'=1

The Hamiltonian of Eq. (4) is exact except for
terms which are of order less than

¹
The last

In Eq. (1) the summation is over basis Bloch or-
bitals (k&) defined by Eqs. (2) and (2). Additional
f dependence is introduced through the expansion
coefficients in (k). In Eq. (2) the sum is over N
compound-unit-cell basis functions 4& which in
turn are the sum of the basis atomic orbitals P,
centered at the nuclear positions as in the com-
pound cell [Eq. (3)]. Vectors designated by Greek
letters, such as p, refer to the origin of a unit
cell; in the unit system used here the components
of such vectors are integers and k is dimensionless.
A prime on a Greek vector summation will be used
to indicate that the origin point is to be omitted.
The )k, ) differ from our initial work, 4 and may be
regarded as modulated plane waves rather than as
conventional tight- binding Bloch orbitals. Any
inadequacy in the k dependence of the ) k, ) can be
corrected through the f dependence of the coeffi-
cients c&(f).

The nonrelativistic Hamiltonian H can be cast in
the form (in atomic units)

M
H= Z (--,'V', )+ Z h(r„rq),

II. FORMULATION OF PROBLEM

Consider a cubic lattice of hydrogen atoms at
0 'K, with a proton fixed at each lattice site and an
equal number of electrons distributed through the
crystal. The electrons are assumed to doubly oc-
cupy Bloch functions constructed from ato~ic or-
bitals. The lattice is considered to bg built up
from N cubic unit cells with sides a. The number
of atoms per unit cell is denoted by 4, and their
position vectors relative to the cell origin are as
(m = 1, .. . , d), with I, = 0. The d values and s vec-
tors for sc, bcc, and fcc structures, along with

TABLE I.

Lattice d

Parameters for cubic atomic-hydrogen
crystals. a

~FS B

(0, 0, 0) 8 913633

bcc (o, o, o); (-,'-, —,', —,'-) 1 —11.432 989

fcc 4 (0, o, 0); (y»o»2) (2»2, 0); (o»4»2)

d is the number of atoms per compound cell. (cubic, of
linear dimension a). s,„are position vectors (in units a)
of atoms in compound cell relative to its origin (n =1 ~ ~ ., d);
Vps is the volume in reciprocal space enclosed by the
Fermi surface, in units (27r/a); D is the lattice-structure
constant as defined in Eq. (29).
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summation of Eq. (5) should be omitted if d = 1
(simple-cubic case). With the assumption of double
occupancy of the crystal wave functions and the
antisymmetry requirement of the Bloch orbitals,
the expectation value of the energy takes the form

&k i
- —,'v'( f)E =- 2N dk —— ---—————
(fii)

, (ff' ~@~kf')--,'(ff'ir»'~f'k)
(k[k) &k'(f ')

(6)
In Eq. (6), and for the remainder of this paper, the
integrals of k and f ' are over the reciprocal-lattice
space enclosed by the Fermi surface, with volume
—,'d in units (2w/a)'. The Bloch orbitals can be
scaled accol ding to

(fif) = Z c, (f)(f, if, )c,(k)=boyd.

With Eq. (V) the total energy reduces to

E= — df Z c,*(f)(k,
i
—2v'if~)c~(f)

d~

+ —, dk dk ' Q c,*(k)c)(k)c*(k ')c„(k ')
i1m'

x ((f~f.' I
&

I rjk.') —-'&fcf
I r» I

f„fs)) . (8)

The Hartree-Fock equations are now obtained by
minimizing E by variation of the c,(f) and the form
of the Fermi surface, subject to the scaling re-
strictions of Eq. (V) and to the requirement that
the Fermi surface enclose a volume &d. Using
Lagrangian-multiplier methods, we consider the
variation 6[E- (2/d) fdf e(f)(ktf)], with e(f) the
Lagrangian multiplier. The result is

F Z„(f)c,(f)=e(f)Z S„c,(k), (9)
j

xc.*(f')c„(f')(&f,f.'II If,f„')

8„=(I/Xd)(k, ik, ),
e (f~) = const, f~ on the Fermi surf ace.

(11)

(12)

%e now reduce the matrix elements appearing in
Eqs. (9)-(11). Using the Fourier-representation
method, we express these quantities using Fourier
transforms of lattice sums of orbital products:

C&, (q) =~ &C ~(r) Ie"' ""IC&(r-eu)), (»)

where the transform variable q is in dimensionless
units. The overlap integrals can now be reduced to

(k, iki) = 2 (e"" "'"C,(r —ap)ie"" "C~(r —a7))
Xy@

=iVZ(C, (r)IC, (r-ap, ))=XC„(0). (14)

Thus 8&& satisfies

S,~ = (1/d)C „(0).
The kinetic-energy integrals involve a form more
general than C &&(q). Writing

2

-2v'If )=e"" "'"Z(-2v')c (r-e~)+ 2
—Ik&)

e"' "'Z f vC (r-e ) (16)
0

wb find

3 2mbS, ~--. V ~ZI) nr„+-, S„)=, .

TI J = (1/d)(C, (r) i- —,
' V'i C, (I'- ap)) . (16)

The last term in Eq. (16) gives no contributions as
its summation is antisymmetric in F.

Next we reduce the matrix elements of A, to re-
ciprocal-lattice summations. This is done by the
aid of Fourier representations of the one- and two-
electron integrals. First the rj2 integral is cast
into the form

Equation (12) corresponds to Koopman's theorem
but it is here exact because of the continuous vari-
ations in k as N approaches infinity.

III. MATRIX ELEMENTS

(k k ' ir»'ikqk„') = Z (C, (r, —aX)C' (r, —aX')Ir, ,'I CI(r, —ap)C„(r2- ap '))
f~p p~

= —
~

—
z Z e ""' "'Q [C,*(r,)C~(r, —ap+aX)] (q)Z [C*(ra)C„(r,—ap, '+at')] ( —q)

p pt

dq Q e-8&$0'(x f )C («)C ( «) (19

Here and henceforth the superscript T denotes
Fourier transform. The last identity holds since
the summations over p, and p

' are independent of-

X and A. ', respectively. %e then invoke the lattice-

f

orthogonality r elation

(2O)
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where 5(q) is the Dirac 5 function. Temporarily
ignoring any questions arising from the singularity
at v=0, Eq. (19) reduces to

&k,k' lr„'lk, k„') = —2 v 'C „(v)@ .(- v) . (21)

q Q e 2«&r)'(f "& Q e"««o' )oC (~)c, (0)
mrna q Xp /=1

(22)

where &k
'

] k „') has been replaced by f(iC „(0). If
we now define the structure factor S(q) as

2«k r) ~ or (23)

Using similar Fourier representations, the one-
electron terms of h reduce as follows:

d

&k,k.'I —„~ & ~ Iran-~F-~s(l 'I~~@.'&
/=1

s

p 2$ p 4 0 @ p 2q
V

We now have to discuss the v=0 and q= 0 singulari-
ties ignored in deriving Eqs. (21), (24), (25), and

(2V). It is shown in Appendix A of I that these sin-
gularities arise from the interchange of the summa-
tion of Eq. (20) with the q integration in a region
near q =0 where the uniform convergence needed
to justify the interchange is lacking. It is also
shown that a more careful analysis leads to the con-
clusion that a correct result is obtained if the v = 0
terms are dropped from all summations in Eqs.
(21), (24), (25), and (27). We then obtain

(«rrr
' I" lrrrrr ') = 2 '

'(orr(O)o ( ")

o„( )o .(o)-o„(o)o .(- ) )

and again apply Eq. (20), we obtain

d

&k,k.'I „,Z ~ Iran- ~v - ~s) I 'Ikey.'&
7t l=1

— —Q v 'S(v)C „(v)C„„(0) (24)

Similarly,

4)g 0 4~„0

where
d

'q g ) -)r Q 2«(rr ~ I~

= —6. 913 633 ~ ~ ~ + E v fS(v) —I] ~ (29)

„Z Z lr, —ap '-~s, . l
'l&&k„'&

Mf Tf s

Z v'4„(0)C „(—v)S( —v) . (25)

Again we ignore the singularities at v = 0.
The last term of h is handled by introduction of

the Fourier representation of the inverse distances:

&«r« .' I „., ( ~
I
o —o 'I '
~ & r.

I
rr - o «,

I ') I«,«'-: &

PyP

&q Z -2«a ~ (7-7')
2

1TCfCl

, Z Z « ""'""' "')o„(o)o .(o)
gg p i=2

I —«( Z «-""'"-"'o(rT)-)«)o„(o)o.„(o) .

(26)

The quantity D may be thought of as a lattice-
structure constant, as it depends only upon the
crystal structure and not upon the details of the
electron distribution. The number —8. 913633 ~ ~ ~

is the limit of the difference of the individually
divergent sum and integral enclosed in parentheses
in the preceding line. Details of the evaluation of
D for various lattices are given in Appendix B of I.
The D values for the lattices used in this paper are
included in Table I.

For the reduction of the exchange matrix ele-
ments, we proceed analogously„Now the complex
exponentials in k and k do not cancel, and the v =0
point leads to no singularities. The matrix element
has the value

&k,k l~„lk k,&=„'—Z - -, p C,„(v)C, (- v).
V

(30)
In order to analyze the nature of the exchange ener-
gy, we write Eq. (30) in the form

The last identity is obtained by adding and subtract-
ing the terms with p, = p, '. Once again we invoke

Eq. (20), ignoring singularities at v=O and q=O,
reaching

+ —Z 'v '4, „(v)C~ ( —v)
V

( ) ( )

&«r«.
'

I „„.( r« I

i- r

'
I

'

d

~ r 5 lo-o'-«,
I ') l«r«.'&

1=2

1 1
+ Z

( p ~~ ~~ p p
— Y C'&„(v)C)y~( —v) . (31)

V

Equation (31) shows that the exchange energy con-
sists of a free-electron-like contribution arising
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from overlap charges, a Coulomb-like contribution
arising from the nonuniformity of the charges, and

a "correction" term. For the basis orbitals we

found to be optimum, the free-electron part is sig-
nificantly larger than the Coulomb and "correction"
part. Since I v+k —k 'I approaches p rapidly as
v increases, we have a useful check for determin-
ing the computational precision of the exchange
contribution to the Fock matrix. '

IV. VfORKING FORMULAS

We are now in a position to use symmetry to
simplify our expressions and write our working
formulas in a more compact form. If we define

—4 „(v,)y.„(0)—4 „(O)y.„(-~,)]

+ —D4 (g(0)4 .(0) ~ (36)
Xd

(k~k' l~is lk.'k~) = —„~i,-,k k (2 4(.(~)A.J(- ~).

Finally, we summarize the working formulas for
the computational process:

2m' k
Fqi(k) = To+ —~ 8,)+ V(~

1 8(v, )+ Z gt 2 Z Pmngig(vt)4 mn( ~g)Fa tel vt mn

4(, (q)=Z Z Q, (r)le'"' '"ly, (r ap. ——as )),
(32)

Z g, S(v, )Z Q'„(k)P,„(v,)P ~(- v, ),2' t mn
(38)

then we can write

c'~g(q)

Z (p, (r —as )le "' "lp&(r ap —a—s .))
fa gin =1

1 ~ 8(v)
a A i(&g),

ma tq& vt

P „=(2/d) fe*(k ')e„(k ') dk '

2 c*(k ')c„(k ') dk '

4

(38)

(40)

or

xQ Z (y, (r)le"" "ly, (r —ap —as, )),
p m'=1

where ( ~ ~ ~ ), indicates that v is to be averaged over
members of star t.

Equation (7) becomes

Q c*(k)g „(0)c„(k)=:1, (42)
C „(q)= 8(q)e„(q) .

Now that we have established that C,&(q) is only
needed for reciprocal-lattice vectors q = v, we may
verify that 8(v) is either 0 or d. For the sc case,
8(v)=1 for all v. Since 8(0)=d for all symmetries,

Sq~ ——d '4, ) (0) = P,~ (0) . (34)

Similarly, T&~ of Eq. (18) reduces to

d

T&~ =+ Q (P, (r)l- & v lPz(r —ap —as )). (35)

Furthermore, we note that the P,&(v) are the same
for the set of all vectors v that are interrelated
through the operations of the point group of the lat-
tice. This set of equivalent vectors is called a
star of vectors, and the number of these vectors
within star t (t =1, 2, .. . ) is denoted by g, , Letting
vt be a representative vector from star f, , we order
the stars according to ascending values of vt. In
cubic crystals, g, can have values 1 [for v,
=(0, 0, 0)], 6, 8, 12, 24, or 48, the last value oc-
curring when vt has an asymmetric relation to the
symmetry directions.

Now, using Eq. (33) and the notion of stars of
vectors, we can write for Eqs. (28) and (30)

Xd 8(v, )
(k, k '

I
~ I krak„') = 2 g, , ' [P,&(v, )P „(—v, )

wa tgy vt

and P&&, 8,&, and T&& are given by Eqs. (32), (34),
and (35). By comparison of Eq. (10) with Eq. (38),
one observes that terms proportional to 8,&

and in-
dependent of k have been dropped. These can be
accounted for by an additive change in e(k). An

energy expression consistent with Eq. (38) is

E=N idk+ Cr(f)(F&r(k) T&s

2m' k Dd
+ ~ 8(~+ V(t c~(k)+ . (43)

2 ala

If the Hartree-Fock equations are satisfied, we
can also write

E=N ~dke(k)+Q ~
dke&+(k)

2m' k Dd'
Tgg+ —

2 Sg~ + V(~ e~(k)+a 2wa

V. NUMERICAL TECHNIQUES

Our formulation of the Hartree-Fock method for
atomic hydrogen crystals presents three major
computational problems. These are (i) the calcula-
tion of the Fourier-transform quantities P,z(q) from
Eq. (32) and T,&

from Eq. (35); (ii) identification of
suitable forms for c, (k), e(k), and the shape of the
Fermi surface as functions of k, such that the k
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and k ' integrations are manageable and the itera-
tions needed to solve the Hartree-Fock equations
can be executed efficiently; (iii) the calculation of
Q'„(k) from Eq. (41).

Let us first consider the P»»(q). We could pro-
ceed by calculating term by term in Eq. (22). In
fact, for le Slater-type orbitals (STO's) we de-
veloped a numerically stable method for the evalua-
tion of these Fourier transforms of two-center STO
products. However, we can take full advantage of
the lattice sum through the use of the Fourier-con-
volution theorem. We write, therefore,

4»&(q)=~ ~ [e»*(rN, (r-a) -aN. )]'(q)
71 m~1

Here k and Q are the radial and angular coordinates
of k, and K(n) is the radial coordinate of the Fermi
surface in the direction Q. The angular-momentum
quantum number of T„ is l„, and the Tg are ordered
according to ascending values of l„. The cubic
harmonic T„ is constructed from completely sym-
metric homogeneous polynomials, all of (even) de-
gree /„ in the coordinates x, y, and s. For details
of the construction we use for the T„, we refer to
Appendix I of Ref. 5.

In k integrations the c occur as products c*c„.
When multiplied together and using the cubic-har-
monic equivalent of the Clebsch-Gordan expansion,
we get

=a Q dp&jh»* (p)4&(q —p)S(q-p)e "'

Again invoking Eq. (20), and noting that S(- v)
= S(v), we obtain

y»»(q) = a 'Z S(u-) y»*'(q+ u)y,'( u) . -
Similarly, we derive

T =~ ~ &e ( ) I
- l &'

I e, ( — ) - &.) &

7t m=1

(45)

c*(k)c„(k)= E Z Z c~„*c~i„.D .„k+'~~ T„(n),
ggsy p&lg p~&igt

(50)
where Dg„.„ is the cubic Clebsch-Gordan coefficient
given by

r„(n)r„.(A) =Z D„„.„r„(n).

In Eq. (50), l„and l„i are the angular-momentum
quantum numbers of T„and T„., respectively. In
actual calculations we condense Eq. (50) into

= a 'Q S(» )»t; (»')[- —,
' V'P, (r)] (- v) c*(k)c„(k)=g Z c~„"Amer„(n).

g p
(52)

or
772

T»& —— s Z A»»S(v»)$» (v»)PI ( —v») .0 (45)

The quantity P„„[Eq. (40)] requires the evaluation
of integrals like

(48)

We refer to Appendix A for explicit formulas for
»t»»» and T,J when specific choices for the»t »

are
made. Note that Eqs. (45) and (46) now involve only
the knowledge of the Fourier transforms of indi-
vidual »f»». We thus have the remarkable result that
all crystal integrals are expressed in sums that
require one-center Fourier-transform integrals
only. We found these sums to converge very satis-
factorily for typical choices of P, .

Next we discuss the analytical representations of
c, (k) and s(k), and the description of the Fermi
surface. We note that the restricted Hartree-Fock
scheme we adopted necessitates that c»(k) be total-
ly symmetric under the cubic-point-group opera-
tions. Evidently the &()t) and the shape of the
Fermi surface should have this symmetry as well,
Therefore we found it convenient to introduce ex-
pansions in k and normalized cubic harmonics
T„(u = 1, 2, . . . ) of the totally symmetric represen-
tation of the cubic point group:

c,(f)=Q Z c'u"T„(n), (47)

e(f)=Z Z e~„k'~r„(n),
g p

~(n) =Z f.r.(n). (49)

k(A)

dkI»+T„(n)= dnII dkk ~' T„(n)
"0

dn[a(n)]2p+3„ (55)

Repeatedly using Eq. (51) and noting that only the
integration over T, = (4»»)

'~~ survives, we obtain

(4~0/2
Au"T„(n) = ' ' (E"")g 2p+3 gi y

where E is a matrix with elements

Z„„.=Q f„D„,. (55)

We can now write for P „
4»»

'

g p&l„2p+ 3 (55)

Finally, the evaluation of the quantity Q' „(k) pre-
sents the additional difficulty of the factor Is+ k
-k'j and the averaging over the star t. If p,
& k+ 0', it is natural to use an expansion involving
)»/v and k '/v, and T„(n», ) and T„.(Q.). The expan-
sion is5
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16~' tlag ~ ~ r'+~'
G„"„„» — — T„(Q„)T„(Q„)T„»(Q),.)+ less-symmetric terms,)v+k —k I v u 'v s'=0 v v

(57)

where

(2s+2s +f+f ' —L 1)!—!(2s+2s'+l+l'iL)!!
""" (2s + 2l + 1)!!(2s )!!(2s '+ 2l '+ 1)!!(2s ' )!! (56)

and l, l, L, are angular quantum numbers of T„,
I'„., and T„, respectively. The less-symmetric
terms in Eq. (57) vanish on integration over k ' and
the averaging ( ~ ~ ~ ), in Q'„(k). Except for v = (0,
0, 0) and (1, 0, 0) in the sc case, and v = (0, 0, 0)
in the bcc and fcc cases, Eq. (57) can be used for
all star vectors v, . Since this formula is symmet-
ric in the orientations of v„ the directional aver-
aging in Q'„(k) can be dropped. After applying Eq.
(54), we obtain the following expression for v, & 1:

«..(«)-(-')("'.')z z L z

(57), the less-symmetric terms do not survive the
integration over k' and the v orientation averaging.
The integration in Eq. (61) is done analytically,
whereas the angular integration in Eq. (62) is per-
formed numerically. The v directional averaging
is done directly. For mathematical and numerical
details in the calculation of the I~~ and the numeri-
cal integration over Q~, we refer to Appendix B.
Expression (62) is completely general. However,
the numerical integration and the necessity of di-
rect averaging over v directions make this method
considerably slower than that described for large
v. We therefore use it only when necessary.

(2p 2~« $
I 3)vl«) «2«+28» «)))

(59)
Here Q„denotes the angular coordinates of v, .
This expression looks terrifying because of the in-
finite summations and the (p, r()) summations for
the proper representation of c*c„. In practice,
however, only a small number of terms need to be
retained to give the exchange energy to four sig-
nificant figures. In addition, for large v, we are
helped by the convergence of the quantities multi-
plying the Q'„(!r) in the expression for the Fock
matrix. We refer to Hef. 5 for a detailed numeri-
cal analysis of Eq. (59).

For the small star vectors v, we had to resort to
an entirely different expansion':

+ less-symmetric terms, (60)

where Q~ is a Legendre function of the second kind,
Q' is the direction of v+k, I, is the angular-mo-
mentum quantum number of T, and («) =0 '/! v+k! .
We define

ld
p

p~y !~+(d
Ipz((()) = (() Qr

~

—; (f(d»
2(d

with ()) = k(Q~. )/! v+ k I . Combining now Eqs. (41),
(52), (60), and (61), we find

(..(«) =(-„') z z .;:, ,", ,—. , z r.(. )

XD
~

g Qg Iap I, (d CjQ)!, ~ 62

where l and L, are the angular-momentum quantum
numbers of T„and T„respectively. As in Eq.

It is appropriate at this point to summarize the
successive operations involved in a typical com-
plete Hartree- Fock calculation. In practice we
used dif ferent programs for diff erent lattice struc-
tures. The programs involved the following steps;

SteP 1. Heading andprinting of input data. These
data are the lattice spacing a, specification of basis
orbitals Q;, number of stars in v, sums, and num-
ber of radial and angular expansion terms for
e;(k), e(k), and k(Q) [Eqs. (47)-(49)] and for Q'„(k)
from Eq. (59). Additional input data are necessary
for iteration control and least-squares-fitting pro-
cedures to be discussed below.

Step 2. Calculations of quantities preparatory to
Hartree- Fock iterations. These quantities are the
list of star vectors, the (f),r(v, ), T,z, V,z, cubic
harmordcs T„(Q) and related quantities, expansion
coefficients for Q„'„(k) according to Eq. (59), and
initialization of c, (k) and the shape of the Fermi
surface. We usually started with full occupancy
of one of the basis Bloch orbitals, and a spherical
Fermi surface. Finally, the k vectors are speci-
fied for which the Hartree-Pock equations are to
be solved. The radial values 0 are placed at equal
intervals in k from 0 to k~, where k~ is the Fermi
sphere radius in units (2v/a). The k orientations
are taken to be those of independent star directions.

Step 3. Construction of E&z(k) matrix for a set
of k vectors. The reciprocal-lattice summations
in Eq. (38) are extended so as to ensure accuracy
to four significant figures. In the current problem,
this involves about 143 stars of v, vectors (v, ~ 10).
We usually considered twelve radial k values and
ten directions, totaling 120 k vectors.

Step 4. Solution for eigenvalue e(k), coefficients
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FIG. 1. Total energies per atom
E/Nd (in hartrees) vs lattice spac-
ing a (in bohrs) for a sc atomic-
hydrogen crystal. The Bloch orbital
is built from one 1s STO with screen-
ing parameter f =1.2. The dashed
part of the curve is not calculated
but graphically extrapolated.

-0.5

c, (k) for each k vector [Eq. (9)].
Stej 5. Conversion of e(k) and c, (k) to analytical

expressions by a least-squares-fitting process [Eqs.
(4V) and (48)]. This involves a fitting to functions
k ~T„(A). In order to achieve an accuracy of four
significant figures, we found it to be necessary to
perform this step in double precision.

SteP 6. Calculation of new Fermi surface [Eq.
(49)]. From the e(k) expansion, the requirement
of constant energy at the Fermi surface and recip-
rocal-space volume —,'d in units (2v/a), a simple
nonlinear problem for the coefficients f„ follows.
Because the Fermi surface has only a slight distor-
tion from a spherical shape, the coefficients f„
may be obtained by a rapidly convergent iterative
procedur e.

SteP 7. Check whether Hartree- Fock conver-
gence criterion has been met. If the relative dif-
ference between current and previous values for
fe(k)dk is less than 5xlo ', we stop the iterations.
If not, another cycle beginning at Step 3 isperformed.

Step 8. Calculation of total energy and printing
of final results when calculation has converged.
With Eq. (44) and the analytical forms of c,(k) and

s(k), E/Nd is computed, and it and the expansion
coefficients in Eqs. (47) to (49) are printed.

We excuted the calculations on Univac 1108 equip-
ment. With our current programs, typical calcu-
lations take 3, 2, and 1 min. for sc, bcc, and fcc
structures, respectively, when two P& per lattice
site are used.

VII. RESULTS

All results to be described here were obtained
by numerical methods yielding at least four signif-

lim (E/Nd) = (2 f —L')+k(8 L). (64)

The curve in Fig. 1 has been graphically extrap-
olated to this limit from approximately a= 6 bohr,
where our numerical methods begin to exhibit in-
adequacy. Additional detail regarding results at
this approximation level may be found in our earlier
work.

We sought to minimize the energy under varia-
tions of the screening parameter and lattice spacing
with one 1s STO per lattice site. The best results
are summarized in Table II. Table III typifies the
s(k) values obtained as a function of k for fcc crys-
tals. Harris and Monkhorst give similar data for
the sc case. Both sets of data have in common the

icant figures in the band energies e(k).
Our first calculations involved the use of one 18

STO basis orbital P, per lattice site. Numerical
details involving these P, are given in Appendix A.
In Fig. I we present a typical plot of E/Nd values
as a function of lattice spa, cing a. The curve shows
the familiar flaw of the restricted Hartree-Fock
method in that the forced double occupa, ncy of the
Bloch functions introduces unphysical electron-
repulsion terms in the total energy at large lattice
spacings. In fact, when only one P, per lattice
site is used, the double occupancy leads to an easily
calculable energy in the limit of infinite lattice
spacing;

Iim (Z/i'd) = (y, ~

--,', V'- I/~
~ y, )+ -.' (y, y, ~ ~;,'

~ y, y, ) .
g Q

(68)

For ls STO's with screening parameter f, Eq. (63)
can be evaluated to yield
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2.56
2.66
2.76

1.20 —0.2925
0.00 —0.4045
0.00 —0.4052
0.00 —0.4048

2.77
2.87
2.97

l.35
0, 00
0.00
0.00

—0.2278
—0.4143
—0.4149
—0.4144

l. 30
2.85 0.00
2.95 0.00
3.05 0.00

—0.2519
—0.4143
—0.4148
—0.4144

very small k-orientation dependence of e(k). This
invariably leads to nearly spherical Fermi sur-
faces, the largest distortions coming in the [100]
direction for the sc lattice.

In the next serie." of calculations, two 1s STO's
were taken per lattice site, starting from the best
single-g results. We did not observe any signifi-
cant lowering of E/Nd values, nor did we find no-
ticeable changes in the Bloch functions. We sus-
pected a near-linear-dependence problem between
the basis Bloch orbitals. This was suggested by
the near equality of S»S,3 and S,3 values, where S&&

are the overlap integrals from Eg. (34). The over-
lapping of the Is STQ's possibly washes out the dif-
ferences between the basis Bloch orbitals. A
similar problem sometimes arises in tight-binding-
type calculations. '

We tried to circumvent the possible linear-depen-
dence problem by introducing so-called "cutoff"
basis orbitals. These orbitals have Is STQ behav-
ior inside the Wigner-Seitz (WS) cells centered at
each lattice site, and are zero outside. For nu-
merical details we refer to Appendix A. We found
for the sc structure that two of these orbitals lead
to Hartree-Fock results that are virtually indis-
tinguishable from the results obtained with the con-
ventional STQ's, Relevant data can be found in
Harris and Monkhorst. Addition of a third "cut-
off" orbital again left the results essentially un-
changed.

This finding led us to presume that the Bloch
orbitals I k) based on the conventional STD's and
the cutoff orbitals are very similar, and indeed,
we found this to be the case. The two Bloch func-
tions for a sc lattice have been plotted in Fig. 2.
In view of this and the results above, we did not
pursue the use of cutoff orbitals for bcc and fcc

TABLE II. Total energies per atom E/Nd (in hartrees)
for atomi. c-hydrogen crystals of nearest-neighbor dis-
tances g (in bohrs), based on one ls orbital per lattice
site with screening parameter f. The entries with &=0
correspond to the use of plane-wave orbitals.

Sc bcc fcc
6 f E/Nd 6 f E/Nd t5 P E/Nd

2.68 1.20 —0.4610 2.90 1.25 —0.4653 2 ~ 90 1.25 —0.4641
2.68 1.30 —0.4629 2.90 1.2 8 —0.4655 2. 90 1,30 —0.4647
2.68 1.35 —0.4610 2.90 l.30 —0.4653 2, 90 1,35 —0.4636

2.78 l.20 —0.4621 3.00 1.20 —0.4638 3 ~ 00 1.20 —0.4639
2.78 1.25 —0.4631 3.00 l.25 —0.4655 3.00 1.25 —0.4653
2.78 1.30 —0.4622 3.00 1.30 —0.4640 3 ~ 00 1.30 —0.4650

2.88 1.20 —0.4620 3.10 l.18 —0.4639 3.10 1.20 —0.4645
2.88 1.25 —0.4621 3.10 1.23 -0.4646 3.10 1.25 —0.4651
2.88 l. 30 —0, 4599 3.10 1.28 —0.4634 3.10 1,30 —0.4639

The optimum crystal structures predicted from
our calculations for the atomic-hydrogen crystal
are in general agreement with previous studies.
Wigner and Huntington, ' and later Kronig, De
Boer, and Korringa, ' using the WS method, ob-
tained a nearest-neighbor distance of 2. 81 bohrs
for the bcc structure, reasonably close to our value

TABLE III. Band energies ~(k) (in hartrees) and radial
coordinates k(Q) [in units (2m/a)] of the Fermi surface in
reciprocal-lattice directions [Ivory], for an fcc atomic-
hydrogen crystal of linear unit-cell dimension a. The
Bloch orbital is built from one 1s STO per lattice site
with f= 1.30 and nearest-neighbor distance g = 2.99 bohr.
If spherical, the Fermi surface would have k = 0.78159.

[100] [11OI [111) [210] [211]

0.217
0.375
0.485
0.574
0.650
0.718
0.782

—0.7221
—0.5780
—0.4306
—0.2788
—0.1206

0.0483
0.2509

—0.7221
—0.5781
—0.4308
—0.2792
—0.1213

0.0471
0.2474

—0.7221-0.5781
—0.4309
—0.2794
—0.1217

0.0464
0.2472

—0.7221
—0.5780
—0.4307
—0.2790
—0.1210

0.0477
0.2509

—0.7221
—0.5781
—0.4308
—0.2792
-0.1214

0.0469
0.2471

O. 7812 0.7817 0.7819 O. 7815 0.7817

structures.
Finally, we wanted to investigate whether our

results had approached the Hartree-Fock limit.
The essential equivalence of the results obtained
above with the two types of g& already strongly sug-
gests that we are very close to that limit. The in-
clusion of higher ns STQ's in the basis does not af-
fect the results. These would only influence the
behavior of lk) in the internuclear regions, but

this can be accounted for by the 1s STQ's. We
analyzed the effect of a P& with angular dependence.
The simplest such function compatible with the A„
cubic symmetry is a 5g STO. We performed cal-
culations using Is and 5g STO's. For numerical
details, see Appendix A. We concluded that no f
value can be found at which the 5g orbital contrib-
utes significantly to )k) or E//Nd. Numerically
this is caused by the small Is-5g off-diagonal Fock
matrix element, combined with a large 5g diagonal
element. The latter contains a large kinetic-energy
contribution arising from the g angular symmetry.

Concluding, we can state that we essentially
reached the Hartree-Fock limit for all cubic atom-
ic-hydrogen crystals. The Fermi surfaces are
practically spherical. The Hartree- Fock Bloch
functions are well represented by a single basis
Bloch orbital built from Is STQ's. The relevant
data defining the wavefunctions, energies, and lat-
tice spacing are given in Table f. (See Note added
in Proof. )

VIII. DISCUSSION
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FIG. 2. Magnitude of crystal
orbitals Ik) (with k=0) as a func-
tion of position (units of lattice
spacing a) in the [100] and [110]
directions of a sc hydrogen crystal
with a=2:.75 bohr. These orbitals
are normalized over the %'S cell.
Also shown is the normalized free-
hydrogen-atom 1s orbital. Curve 1:
crystal orbital built from one con-
ventional 1s STO with &=1.20.
Curve 2: crystal orbital built from
three "cutoff" orbitals with f~= 0.17;
&2=1.0; &3=3.0. Curve 3: free-
hydrogen-atom ls orbital.

0.7 0.6 0.5 0.4 0.5 0 2 O. l 0.0 0 I 0.2 0.5 OA 0.5
(~2/2)(r/a) in [I 10] r/a in [100]

of about 2. 9 bohr. Our energies are not directly
comparable with theirs, since the latter contain
estimates of the correlation energy which are not
considered in Hartree- Fock calculations. The mo-
lecular-orbital (MO) calculations of Calais" can
be compared with our work. We agree qualitatively
with his results. Though the equilibrium nearest-
neighbor distance for the sc structure is quite dif-
ferent from that for the bcc and fcc structures,
their densities are nearly the same, namely, ap-
proximately 0, 05 atoms/bohr'.

For all three of the cubic structures we con-
sidered, the Hartree-Fock energies per atom were
found to be above the free-atom value of —0. 5 har-
tree. Even after our estimates of correlation en-
ergy are included we find no stability relative to the
isolated atoms. If we tentatively make the re+son-
able assumption that the correlation energies are
comparable in the three structures, we conclude
that the bcc and fcc structures are stable relative
to the sc structure. However, the energy differ-
ence between the bcc and fcc struct8res is sq sm jll
that it would be imprudent to take seriously the in-
dication that the bcc structure is the more stable.
Taken alone, our data do not provide information
as to the stability of the atomic (metallic) crystal
relative to a molecular (insulating) solid. However,
our work may presumably be used in connection
with other studies to refine recent estimates relat-
ing to this stability problem. " We note tPat tPe
situation for the hydrogen crystal is quite different
from that found for lithium. Our prelimjnary
studies on lithium crystals' already shrew that at
the Hartree-Fock level an atomic crystal would be

stable relative both to Li~ molecules and to isolated
Li atoms. The significant difference between the
hydrogen and lithium crystals may be due to the
s-P near degeneracy in the lithium valence shell,
permitting neighboring Li atoms to form bonding
electronic structures which are not possible for H
atoms.

Turning now to the wave functions, we note (cf.
Fig. 2) that the Hartree-Fock crystal orbitals
possess nearly the same degree of spatial inhomo-
geneity as do the free-atom wave functions. Since
the crystal orbitals deviate significantly from plane
waves, we regarded it as of interest to identify the
energy contribution associated with the inhomo-
geneity. We therefore calculated the energies for
each crystal structure using plane-wave orbitals.
These energies may be obtained from our present
formalism by setting g = 0, where g is the screen-
ing parameter associated with a STO. If we as-
sume also a spherical Fermi surface, we have

~6~',
E& o Ndl ~ "~z

2
~——z+ 2Ii, 5a 2a 2@a) ' (65)

with kz= (3d/Bv)'~ . The first term arises from the
kinetic energy, the second is the exchange term,
and the last term describes the potential energy of
the nuclei and the uniform distribution of the elec-
trons. As before, a is the dimension of the com-
pound unit cell containing d atoms.

Values of E& o are included- in Table II. It may
be seen that the accurate Hartree-Fock energies
are 0.05-0. 06 hartree, or about 15% below the en-
ergies based on plane-wave functions. This energy
difference is large enough to suggest that accurate



2860 HARRIS, KUMAR, AND MONKHORST

0.0-

O. I—

0.2—

0.5—

04—

0.5-

FIG. 3. Comparison of effective-
exchange potentials cbartrees) cal-
culated in different ways for a bcc
atomic-hydrogen crystal of lattice
spacing a = 3.3 bohrs. Crystal or-
bitals built from one 1s STO with
g =1.30. Curve 1: direct evalua-
tion of potential by Eq. (Ce). Curve
2: evaluation by Eq. (C9), by
method involving use of Hartree-
Fock equations.
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functions should be used not only to obtain the
Hartree-Fock energy but also in correlation-ener-
gy calculations. To date correlation energies in
inhomogeneous systems have generally been esti-
mated perturbatively using plane-wave unperturbed
states. "

The existence of accurate Hartree-Fock wave
functions also provides an opportunity to assess
the effect of spatial inhomogeneity upon the elec-
tron-exchange energy. One way to examine this
question is to obtain the effective-exchange poten-
tials necessary to reproduce the Hartree-Fock re-
sults and to compare these with approximate poten-
tials predicted from studies of the homogeneous
electron gas. Exchange potentials in so-called
"statistical approximations" have been put forth
by Slater, ' Gaspar, "and Kohn and Sham. These
formulations involve use of the expression for the
exchange energy of a homogeneous electron gas,
replacing the (constant) electron density by the local
density p(r) of an inhomogeneous system. The
Slater and Kphn-Sham potentials can be written in
the common form

V» (r) =- (Sn/2w)[3m'p(r)]'i',

where n = 1 yields the Slater formula and n = 3 that of
Kohn and Sham. This so-called Xn potential is being
used extensively in approximate atomic, molecular,
and solid-state calculations. '3 According tp a
discussion by Hohenberg and Kohn, ~s a formula of
this sort should be appropriate when the density is
sufficiently slowly varying. The value z= 3 cor-
responds to the application of the variation theorem
to the "statistical" total energy, while the value
e = 1 is obtained by substitution of the approxima-
tion into the Hartree-Fock equations. We may note

that the inherently nonlocal nature of the exchange
operator has been suppressed by the absence of any
k dependence in the formula for V» (r).

We generated effective potentials from our Har-
tree-rock calculations for comparison with Eq.
(66) by methods described in some detail in Appen-
dix C. For ease in interpretation we averaged
over the direction of k so as to obtain real poten-
tials. We derived two alternative expressions for
the exchange potential which would be identical if
the Hartree-Fock equations were exactly satisfied
for all r. The expression resulting from direct
evaluation of the exchange energy, Eq. (C8), is that
which should be used for comparison with other
work. The expression using the Hartree- Pock
equations, Eq. (C9), is of interest because its com-
parison with the other expression gives an indica-
tion of the exactness with which the Hartree-Fock
equations are satisfied. As shown in Fig. 3, these
two expressions give exchange potentials which are
in close agreement over most of the WS cell, but
which diverge strongly from each other close to the
nuclei. The discrepancy arises because the cusp
conditions are not exactly met at the nuclei, and
corresponds to energy errors below the four-sig-
nificant-figure level claimed in our calculations.
The comparison indicates that Eq. (C8) generates
an exchange potential which may reliably be used
in further discussion.

Figure 4 gives the results of a comparison of the
accurate direction-averaged exchange potentials
with the Kohn-Sham and Slater approximations.
We see that at k = k~ the accurate potential agrees
well with the Kohn-Sham result in the region of
greatest density homogeneity, but differs system-
matically in the highly inhomogeneous region near
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(A12)
where 0;, = ,'g—(f«+f'») and q„ is the»«th Cartesian
component of q. The integrations in Eqs. (All)
and (A12) are done numerically using Simpson's
rule. The F(f ', q„) values are computedfor spec-
ified t and q„values and stox'ed as a matrix. Since
the q vectors are reciprocal-lattice vectors (in
units 2««/g), the q„are integers. Therefore the
computation of the «t ««,.' for the different q requires
reference to that single I' matrix only. Conse-
quently it only takes a few seconds on a Univac
ll08 to calculate P,',.' for 150 star vectors to five
slgnif icRnt figures.

Turning now to the evaluation of T&z', we note
that the definition in Eq. (A8) introduces into Eq.
{A2) a, discontinuity in the gradient of the lattice
periodic factor at the WS ceD boundaries. There-
fore Eq. {A2) should be writtenls

T,' =-.'(~e,'"( )Ivy,'"( ) &,=-,'l, ~,e,',"(o) . (»2)

mls(rr') (g3/ )1/2 e- «'P'

and Eqs. (Al) and (A2) take the form

«,)~ 8 g (5«6»)'/'S(«)
4«» q) r (i q~+~&i 8+ 68)8 ( 2+ 68)2

(6«»)" 'S(~)
«» F l««( 1+68)R ( 8 63)8

with 5« = f;g/2««.
A 5g STO can be written in the form

(2g )11/8
gl&(r) = —— '

1/r y e-1«"Ta(fl)

(As)

(A4)

(As)

+ less-symmetric terms, {A6)

where Tz is the normalized cubic harmonic with
1=4. The less-symmetric terms in Eq. (A6) van-
ish when the Fourier transform of P, « is introduced
in the cubic-lattice summations of Eqs. (Al) and

(A2), and it therefore suffices to give the Fourier
transform of the totally symmetric part. The ap-
propriate P«» and T«» between le and 5g STO's can
then be obtained, using

Finally, we describe an analytical-summation
method for the calculation of Q«",.' and T«",. '. Equa-
tions (Al) and (A2) involve three infinite summa-
tions. Though the convergence is satisfactory, the
computation time involved is appreciable. In fact,
their calculation takes most of the time preparatory
to the Hartree-Pock iterations. We found that one
summation could be performed analytically. It has
been. our experience that the remaining summations
converge much faster. A similar situation was
found with the crystal suIQmRtions in I.

We will exeIQplify the RlgebrRic px'ocess by de-
riving P«»' for a sc lattice. This quantity can be
cast in the form

28 3 r/2
( „)r( )

2 g „„qr, (A, )
««2 ' ( '+6')' {AV)

Next we consider the formulas for Eqs. (Al) and
{A2) when "cutoff" le STO's are employed. These
orbitals «t I

' have le STO character inside the WS
cells about the lattice points at w'hich they are cen-
tered, and vanish outside,

y««3'(r) = ( ',1/)»'//2e'«", r 1'ns»de WS ceil

and we will discuss an analytical-summation method Eq. (A9) reduces to
when STO's are used.

If the p, are ls STO's with screening parameter «t «» (q) = 12« f«»(

Because of the definition of 4««"', only the terms
vr ith p, = 0, ng = 1 survive in the first expression for

Tlllls

e,',"{q)= (~,~, / ')"'[."' '"]:.(q), (A9)

where [ ]» indicates that the transform integration
is to be taken over the %8 cell only.

We considered the cutoff functions for the sim-
ple-cubic crystal. Its VY8 cell is a cube. In order
to evaluate Eq. (A9), we writers

e '"=(g/ "')f exp[--,'r.'f' —( '+y'+ ')/f']dt.
(AiO)

Since the integrations in Eq. {A9) are for ——,'g& x
&-,'g; ——,'g&y(-,'g; ——,'g&z& —.'-g, Eq. (AIO) enables
independent integration over gy p~ and g. If we de-

finee

1/3
F(v, I/)= f e cos2x»»/xdx,

e«»'(q) = ~ (6«&»)'"

Q =Q+5+5gp
p' = («« —x)'+ (»» —y)'+ 5»',

and g, y, z are the components of q. The inner
suIQXQRtion cRn be written

z, P, z, AjI6
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A=n —p —z; B=n —p +z2. 2 2 (A19)

Since in our case z is always an integer, the last
term in Eq. (A18) vanishes. When n = P, and z = 0,
we have a special case with result

Now the sum in Eq. (Al'l) can be evaluated analyti-
cally by the residue method'7:

cothmP cothma.
A2 4 2 2

p

+ g sin2mz csch2m P A18

(L+ 1)q2„)(x)—(2L+ 1)xq2(x)+ Lq2 q(x) = 0,
(a2)
(83)d—„[q . ( ) —q ( )]=(2L+1)q,( ),

q...(x) —q, ,(x) =(2L+1)~, ( ),
(Ii (x) = (x' —1)'i'qi (x) .

Applying Eq. (82), we derive

(a4)

(86)

(L + 1)Ip 2, q+ LIp ~ q
—(I + 2) (Ip, g 2 + Ip g 2 ) = 0 .

(86)
Let z = (1+(d )/2~, then dz = -,'(1 —(d ') d(d. Applica-
tion of Eqs. (82) and (83) leads to

7T 7r'
S(n, n( 0) =

2 coth7(n+ 2 csch n'n .
2Q 2Q

(A20)
z(Ip+i, 2 Ip j, l, ) =

t2l=o

(gP" 'q2(z) dz

The working expression for (t(,.'~'(q) can now be ob-
tained easily by straightforward, though tedious,
algebra.

The numerical benefits we obtained are quite
considerable. To obtain five significant figures
for (t(,'~', the triple summation normally required
(u, v, zo) values from —10 to +10. However, when
the w summation is performed analytically, the
same accuracy is obtained from a range of u and g
values between —5 and + 5. This causes a great
reduction in computation time; on a Univac 1108 the
triple-summation method for P,'~" takes about 210
sec for 143 star vectors q per ij pair. The analyti-
cal method reduces this time to about 12 sec.

We do not, however, expect many numerical ad-
vantages with the analytical method when higher
STO's are used. In that case higher derivatives of
S(n, P, z) will be needed, and this leads to very
clumsy expressions. These complications prob-
ably offset the advantage of better convergence of
the remaining double sum.

Using the technique described above, we derived
formulas for T,",'and Q,.'~'(q„) f.o.r all cubic struc-
tures considered. These are available on request.

APPENDIX B: Qf~„|'k ) FOR SMALL STAR VECTORS

The major numerical effort for the exchange-en-
ergy contributions to the matrix consists of the
calculation of the quantities q' „(k) [Eq. (41)] for
the star vectors v = 0 and v = (1, 0, 0). In Eq. (62)
we reduced their evaluation to an analytical cal-
culation of the integrals

(81)
0

with (z =T(,, (A„)/I v+kI, followed by a numerical in-
tegration over Q„. Here we will describe how the

I~~ are calculated, and how the Q~, integration is
performed.

In order to derive recurrence relations for the

I~~, we use

1
pp Cd= f(L)

(2L+1) ~

Q3 Qi, +y 8

—(2L+1)Ip ~ 2+ (p+ L+3)Ip l, , q
—(p —L+2)Ip 2 q

= ~"[q2.l(z) —qz 1(z)]

(2L+ 1)I, + (P —L+ 1)I,, —(P+ L+2)I

[qi. i(z) —qi i(z)] (89)

In all these equations, the argument of I~ ~ is g.
Starting with values for Ioo and I, „and re-

peated use of Eqs. (88) and (89), we can generate
all I». Ioo and I » are given by

I00((0) 3 [q2((0) 'q0((d)]+ 2(0 (

I y g((d) = pI (Q0)0)
—(d + A((d) &

(810)

(811)

1 "dt 1+t
A((g)= — —ln — = Z . 2, (~&12J I 1 —f, 0 (2q+1)' '

2 ~ —-2g-1
7T ~ Q)4,. 0 (2 j+1) (812)

The evaluation of A(x) for x= 1 is troublesome be-
cause of the slow convergence of the sum in Eq.
(812). We note that dA(x)/dx approa, ches infinity
as x approaches 1. This behavior should be prop-
erly reproduced in any algebraic representation for
A(x). After some numerical experimentation, we
decided to use the following set of expressions:

or

(L+ ~z) (Ip„) 2 —Ip ~ 2 ) + (p+ 2) (I, 2, , —Ip 2,)

=(~"'[q,.g(z) —qg &(z)], (87)

with z = (1+(d )/2(d. Adding and subtracting Eqs.
(86) and (87), we finally have
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ac = —2. 19772V,

a2= 1.673 11V,

bl = —2. 308 838

b2 = 1.889 655,

A(x 1+2 a, x" 1+2 r~x"), 0 x O. rr'r2

x i=2 j=1
(813)

(82). The starting values are

qo( ) =-1;

q, (x) = —,
' (x' —1) ln

(815)

a3 = —0. 5149340, 53
———0. 6529503,

a4 -—0.055 416 V1, 54
——0.08V 154 04,

a5 = —0. 001 038 0, b~ = —0.002 928 433,

For x= 1 we have a special case for which q, (1)
= —1. For x~ 1. 5, Eq. (82) is numerically unsat-
isfactory. In each recurrence step we lose several
significant figures. Instead we used a downward-
recurrence relation. If we define

= 0. 815276 5 [1 —(1 —x )
' ]+0. 419 633 6,x r~ (x) = q~, ,(x)/qz, (x) (816)

0. 97 & x & 0.99 (814a) then, using Eq. (82), we have the downward-recur-
rence formula

=0.9006413[l —(1 —x) ' ]+0.3330597,
x

0. 990 & x & 0. 995 (814b)

L+1
(2I.+1)x- I.r, (x)

(817)

= 0.964949 7[1 —(1 —x )o'7]+ 0.268 751 3,
x

0. 995 & x& 1.000 (814c)

Equation (813) is an [N, N] Pade approximant. The
use of powers of (1 —x ) less than 1 assures the
above-mentioned singularity in dA(x)/dx. The
relative errors in Eqs. (813) and (814) are about
5 x 10-~.

It follows from Eqs. (88)-(810) that the Q~ al-
ways appear in the combination [Q~, , —Qz, ].
Q~ (x) approaches + ~ for x- 1+, but [q~ „,—q~, ]
remains infinite. We therefore calculate directly
the differences Q~, , —Q~ „which are, according
to Eq. (84), proportional to the quantities desig-
nated q~. The q~ satisfy a recurrence relation like

I

From Eq. (816) and the asymptotic behavior of

Qz, (x) for L»x, we find

L+2r, (x) =(2 . , I,»x.2L+3jx ' (818)

By starting with L=50, we found that Q~„—Q~,
for the L values we needed could be calculated in
this way with six significant figures.

This concludes the specification of the computa-
tional scheme for the I~~(rd). In the case of cubic
symmetry we only need I» for even p and L, and
it is therefore numerically advantageous to deduce
recurrence relations from Eqs. (88) and (89) that
involve I, a, (g) only (m, n=0, 1, 2, . . . ). Below
we summarize the working relations we found sat-
isfactory (the Qz, have argument z):

~2n + 2, 2n+ 2 ~2n, 2n '~ 92n+ 1+ 92n+2 s (819)

(4n+2) ( n44+)I „a„a, —
2 (4n+1)(4n+3)Iz„q 2„—(8n+5)Iq„,a„=4n(4n+3)m "' qz„+(4n+2) (4n+3)ra '

qa„,&, (820)

(2m+ 1) (2m —2n+ 3) (2m+ 2n+ 4)Ia~, & a„—[4(2m+ 1) (2m+ 2) (2m+ 3) —(2m+ 1) (2m+ 2n+ 3) (2m+ 2n+ 4)

—(2m+ 3) (2m —2n) (2m —2n+ 1)]I2~ q„+ (2m+ 3) (2m —2n) (2m+ 2n+ l)I2~ 2 a„

=4(2m+1) (2m+ 3) (2n+2)(g "
q2„, q

—4n[(2m+ 1) (2m+2n+4)(g + (2m —2n) (2m+ 3)]rg
' qa„. (821)

We replaced the angular integration in Eq. (63)
by a weighted sum over integrand values for M in-
dependent star directions Q, . If g(Q) were the
function to be angularly integrated, then we write

r
r„(Q)dQ =5 ~, r„(Q,) = (4~)"'6„,

(u=1, 2, . . . , M). (823)

g(Q) dQ=A w, g(Q, ), (822)

where the sum is over independent star directions.
The zg, are determined from the requirement that
Eq. (822) be exact if g(Q) were a, linear combina-
tion of the M lowest-order cubic harmonics T„.
This implies the equations

The M, are easily determined from Eq. (823) once
M and the independent star directions 0, have been
decided on. In our calculations we used M= 7,
which means that Eq. (822) is exact up to a cubic
harmonic of order 12. Since we found nearly
spherical Fermi surfaces, this integration scheme
was found to be sufficiently accurate.
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APPENDIX C: EXCHANGE POTENTIAL

The exchange operator in the Hartree-Fock
method is intrinsically nonlocal, but if it is as-
sumed that the functions 1 k) are already known,
it is possible to describe the effect of the exchange
operator on Ik) by a k-dependent multiplicative
operator.

If we write the Hartree-Fock equation in opera-
tor form,

elk&=. (k)lk&, (cl)

The expression for V,' can be readily evaluated;
we proceed here for the case that u(k, r) is based
on a single STO per lattice site and is therefore
actually independent of k, and that the Fermi sur-
face is spherical. We then have u(k, r) =&,aC&(r
—au), and using the techniques described in Secs.
III and IV, we obtain

V„'(k, r) = — Z S(v),
O)

cos(2wa 'v ~ r)
v 4tt'(O

y +, C10
and introduce the notation

l
k &

= e'"' '" ' "u(k, r),
we have

(c2) where S(v) and (II&,~ are defined in Eqs. (23) and

(32), k„ is the Fermi radius in units 2w/a, and

E= ——'V +++ &, (c3) E(vi) = —+ ln
1 1 —q2 1+g (cl1)

where C and X are, respectively, the Coulomb and
exchange operators,

C(r) = (2/d) f d"f dk'
I
u(k', ') l

'
A'(r, "),

xlk&=—822 ka" 1PF r"

dr' dk'u*(k', r')

(c6)
An effective-exchange potential for operation on

Ik) may now be defined as

v„(k, r) = xlk&/lk& . (c6)
Owing to the nonlocal nature of X, V„' will in gener-
al be complex and dependent upon k. By angular
averaging, we may obtain a real-valued approxi-
mation to V„which will be more convenient for
comparison with approximate exchange potentials:

V„- V„(u, r)-={V„(k,r))„, . (cv)

A further averaging over occupied jp values would
lead to a local approximate potential.

Numerically we can proceed in two ways to cal-
culate V„(p, r). We may make a direct evaluation,
starting from Eq. (C6),

o!(),, c) =(x(~i&y)i&) . , (c6)

or we may avoid the explicit use of the operator X
by using the Hartree-Pock equation, thereby ob-
taining

~V Ik
Os(S, c) = (c(ic) — '-„—C(c)

"I
(co)

The quantities V„and V„would be identical if the
Hartree-Fock equation were exactly satisfied for
all r. As shown in the main text, a comparison of
these quantities can yield an indication of the exact-
ness of our solutions to the Hartree-Fock equa-
tions.

cosyu) cosh [n{w —y)j
gg + Q Q slnh'tt'Q2 2 ='It' (c13)

cosyu)/u) = i& w —a wy+ —'y
'%= 1

cosyu) coshny
zg + ~ ~ sinhp~2 2=7r

(c14)

(cl6)

%e thus obtained the following expression for the
bcc case:

—D S(v)e"" '"' = ~+-'(y —w)' —-'w'
2 V

+ w Z cos2wia 'uxcos2wia 'vy
tgy vA Op 0

cosho(s —S)s(-1)"'"cosoy)
(X z sinhmz

(c16)
where g, y, and z are the Cartesian components of
r, and y=2wz/a, n=(u +v') ~ . As with the analyt-
ical summations developed in Appendix A, we ob-
served considerably improved convergence in the
remaining double summation.

A parallel analysis on V„' leads to the result
2 1 V2

( )
2w p u(k r)

-2S(~) -aaga-&v ~ r ~u(v)
e„(o)

——Z v 'S(v)e""'"'' . (C12)
ma „-

The term in Eq. (C12) involving V u(k, r) may be
evaluated by noting that u(k, r) is a linear combina-
tion of STO's (t, of screening parameter g„and
that ——,

' V Q~(r) = (f&/r ——,
' f,')(t), (r). The last term

in Eq. (C12) is most efficiently evaluated by per-
forming the summation analytically in one of the
three dimensions, using the formula, s
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