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In this paper, we explore the properties of a model of a semi-infinite nonlocal dielectric to
assess the effect of spatial dispersion on the ref lectivity of the material and on the properties
of surface polaritons. For the model, the nonlocal form of Maxwell's equations may be solved
exactly. The additional boundary conditions follow from Maxwell's equations, and it is not
necessaxy to introduce microscopic considerations to complete the theory. We exhibit closed
expressions for the ref lectivity of the material, for the case where the electric field is paral-
lel to the plane of incidence, and for the case where it is perpendicular to the plane of inci-
dence. At non-normal incidence, when the electric field vector is parallel to the plane of in-
cidence, structure which owes its origin to spatial-dispersion effects appears in the reflectiv-
ity. We show that in the presence of spatial dispersion, the surface polaritons acquire a finite
lifetime even in the case where the dielectric is lossless; i.e. , in the presence of spatial dis-
persion the surface polaritons become virtual surface waves. In the quasistatic limit, we ob-
tain an analytic expression for the dependence of the real and imaginary part of the surface-
polariton frequency on wave vector in the long-wavelength limit. We then present the theory
of frustrated internal reflection of radiation from a prism and crystal configuration similar
to that employed in several recent experiments. In a final section, we present the results of
some numerical calculations of the ref lectivity of the crystal, and the width and position of the
dip observed in the frustrated-internal-reflection method, for parameters characteristic of
the fundamental exciton line in ZnSe.

I. INTRODUCTION

The experimental study of the interaction of
electromagnetic radiation with solids has provided
quantitative information about a variety of ele-
mentary excitations in solids. Quite frequently,
the magnitude and phase of the reflection coeffi-
cient may be studied as a function of the frequency
0 of the incident radiation. If one assumes that
the complex dielectric constant of the medium is
a function only of the frequency 0, and if the medi-
um is isotropic, then in principle one may extract
values for both the real and imaginary parts of the
dielectric constant from such data.

In principle, the complex dielectric constant is
a function of the wave vector k of the radiation in
the medium, as well as of its frequency. Qne says
that in this case spatial dispersion is present in
the dielectric constant. In many instances, when
the incident radiation is in the visible or infrared
portion of the spectrum, the dependence of the di-
electric tensor e;&(k, Q) on it may be safely ig-
nored, since the wavelength of the radiation is
very long compared to the interatomic separation.
The dielectric tensor then becomes a function only
of frequency, and if the medium is isotropic or
cubic, the dielectric tensor e,&(0, Q) is diagonal,
and the material is described by a single scalar
dielectric constant.

However, there are many instances where the
wave-vector dependence of the dielectric tensor
produces striking effects in the ref lectivity, even

when the wavelength of the radiation is long com-
pared to the interatomic separation. As an ex-
ample, we cite the experimental and theoretical
studies of CdS carried out by Hopfield and his col-
laborators. ' In this case, one observes structure
in the ref lectivity at low temperatures from three
sharp exciton series, when the frequency of the
incident radiation is close to the funda, mental ab-
sorption edge of the crystal. The structure in the
ref lectivity differs markedly from that expected
from a model which considers only the frequency
dependence of the dielectric constant in the exciton
regime. A quantitative interpretation of the data.
may be obtained from a model which employs the
wave-vector dependence of the dielectric constant
of the material as an essential feature.

The purpose of this paper is to explore in de-
tail a number of properties of a semi-infinite iso-
tropic dielectric medium with a dielectric constant
that depends on wave vector. For the dielectric
constant, we choose a model form that is applica-
bl.e to cubic crystals that contain a single elec-
tric-dipole-active exciton level or optical-phonon
branch with a frequency that exhibits a quadratic
dependence on wave vector k in the long-wave-
length limit. The model will be described in detail
below. We show that for this model the nonloeal
Maxwell equations may be solved exactly in closed
form. We then study several aspects of electro-
magnetic wave propagation in the material. We
consider radiation incident on the material from
the vacuum, and we obtain closed expressions for
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the reQectivity which fully include spatial-disper-
sion effects for the case where the electric field
of the incident radiation is plane polarized perpen-
dicular to the plane of incidence, and also for the
case where the radiation is plane polarized with
the electric vector parallel to the plane of inci-
dence. We then examine the effect of spatial dis-
persion on the properties of surface polaritons.
As we shall see, one effect of the presence of
spatial. dispersion is to allow the energy stored in
the surface mode to leak into the interior of the
crystal. The surface polaritons thus become vir-
tual surface states when spatial dispersion is pres-
ent. Finally, we present a theory of the effect of
spatial dispersion on the position of the ref lectivity
minima produced by excitation of surface polari-
tons across a gap between two dielectrics for the
configuration used recently by several groups to
study the properties of surface polaritons on di-
electric surfaces.

While our work was in its final stages, two pa-
pers by Agarwal, Pattanayak, and Wolf appeared.
These authors have studied the properties of pre-
cisely the same model we use here, and their solu-
tions are also exact. The two approaches appear
identical, and the results of these two independent
studies are equival, ent, as far as we ean see.
However, we have emphasized different aspects of
the theory than they have, and we regard our paper
to be complementary to their work. As stated
above, we have studied the effect of. spatial dis-
persion on the properties of surface polaritons,
'~while Agarwal eg g$. have confined their attention
.(&ainly to the reflection and refraction of radia-
t'on by a slab, and they have not studied the prop-
erties of surface waves in the model. We also
treat the reflection and refraction of radiation by
a plane surface. In the discussion presented be-
low, we have chosen to stress some features of the
theory contained in the work of Agarwal et gl. but
not discussed in detail by them. We also present
a series of numerical calculations of the effect of
spatial dispersion on the ref lectivity of materials,
for parameters characteristic of the semiconduc-
tor ZnSe.

The outline of the present paper is as follows:
In Sec. II we begin with some general qualitative
remarks about past treatments of the effects of
spatial dispersion on the reQectivity, and on the
physical picture provided by the present theory,
and that of Agarwal and co-workers. Sections
III-V are devoted to an analysis of the reQeetivity,
the theory of surface polaritons in the presence of
spatial dispersion, and an analysis of the coupling
between electromagnetic radiation and. surface
polaritons (in the presence of spatial dispersion)
in the frustrated-internal-reflection technique
employed in recent studies of surface polaritons.

The results of our numerical calculations are
presented in Sec. VI.

II. GENERAL REMARKS

We first recall some features of the theory of.

the reQection of radiation from a semi-infinite
isotropic dielectric, for the case where the di-
electric constant depends on frequency, but not on
the wave vector. For simplicity, consider a me-
dium characterized by an excitation of transverse
polarization (an exciton, or a, TO phonon), which
is electric dipole active at k=0. For frequencies
0 near the frequency A~ of the excitation, the di-
electric constant may be approximated by the form

(2. 1)

in the absence of dissipation. The background di-
electric constant eo is, in general, complex and a
function of frequency, although the frequency de-
pendence of eo may frequently be ignored so long
as we are interested only in frequencies very close
to Q~ . If the excitation is a TQ phonon in an ionic
crystal the frequency 0& is the ion plasma fre-
quency multiplied by Eo; if it is an exeiton, Q~ is
a measure of its electric dipole oscillator strength.

The electromagnetic waves which propagate in
the medium are often called polaritons, and are
characterized by the dispersion relation

(2. 2)

The well-known polariton dispersion curves for
this case are plotted in Fig. 1(a). The frequency
Q~ is the frequency for which e(Q) vanishes. Ex-
plicitly, for the model form in Eq. (2. 1),

QI, = Qr + Qp /eo

Now suppose a wave of frequency Oo is incident
on the crystal surface„For simplicity, assume
the wave is plane polarized, and normally incident
on the surface. Some fraction of the incident en-
ergy is reflected from the surface, and the re-
mainder transmitted. The transmitted energy is
carried by the polariton with the wave vector given
by Eq. (2. 2), for Q = Qo . When Qo & Q~, the po-
lariton which carries the transmitted energy is il-
lustra. ted graphically by the point P i.n Fig, 1(a).
The frequency region between A~ and O~ is a stop
band within which no propagating modes of the bulk
dielectric exist. As a consequence, the reQection
coefficient R of the model dielectric is unity when

~r -no
For general values of Ao, the reflection coeffi-

cient may be obtained by applying the boundary
conditions on E and H obtained from Maxwell's
equations to the problem. Given the amplitude of.

the incident wave, one needs to find the amplitude
of the reflected and the transmitted wave. Any
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when D&0. If we neglect other sources of the k
dependence of the dielectric constant, we may take
the model form

e(k, n) = e, +
Q2 +Dk —Q

(2. 5)

for e(k, &u). This form is a special limiting case
of the model considered below. In our quantitative
discussion, we include damping effects by adding
the term —iQy to the denominator on the right-
hand side of Eq. (2. 5).

In the presence of spatial dispersion, the polari-
ton dispersion relation becomes

c k P
Q' ""Q',+Dk'-Q' ' (2. 6)

FIG. 1. (a) Polariton-dispersion relation in the ab-
sence of spatial dispersion, in a dielectric described by
the dielectric constant given in Eq. (2.1). (b) Polariton-
dispersion relation in the presence of spatial dispersion,
where &(k, ) is given by Eq. (2. 5).

two of the four boundary conditions obtained from
Maxwell's equations suffice to determine the am-
plitude of the transmitted and reflected wave. If

any two boundary conditions are satisfied (say,
conservation of tangential E and tangential 8), the
fact that the waves satisfy Maxwell's equations
ensures that the remaining boundary conditions are
satisfied, of course. From this procedure, one
obtains for R the expression well known from ele-
mentary dielectric theory:

~(n)'~' 1
~(n)" '+ 1

(2. 3)

Next consider the effect of spatial dispersion on

the ref lectivity of radiation normally incident on

the crystal. For Q near Q~, an important source
of wave-vector dependence of the dielectric con-
stant comes from the dependence of the frequency
Q~ on the wave vector k of the excitations. For
small values of Ikl, in cubic crystals, Ar(k) var-
ies quadratically with k. We write for small k,

n', (k) = fl,'+ Da', (2. 4)

where D measures the curvature in the dispersion
relation at k=0 and Qr is the value of Qr(k) at
k= 0. With application to exciton problems in
mind, we take D& 0 in this paper, although the dis-
cussion goes through in a very similar fashion

The dispersion relation is sketched in Fig. 1(b).
Now consider reflection of an incident wave with

frequency Qo& Q~ from the surface. As one can
see from Fig. 1(b), there are now two propagating
polariton modes in the medium with the frequency

The two modes are indicated by the points I'&

and I'z in the figure. The incident wave thus will
excite a linear combination of the two waves when

it strikes the crystal surface. Thus, given the
amplitude of the incident wave, we now have three
unknowns to determine: the amplitude of the re-
flected wave, and the amplitude of each of the po-
laritons P, and Pz in Fig. 1(b). A problem now

arises, since the two independent boundary condi-
tions associated with Maxwell's equations are in-
sufficient to determine the three unknowns. A

third boundary condition is required.
It has been argued in the literature' that to ob-

tain the additional boundary condition it is neces-
sary to construct a microscopic model of the crys-
tal including the surface region. The additional
boundary condition then results when a full account
of the surface region and the effect of the low sym-
metry of the surface region are incorporated into
the theory. In this work, and in the papers by
Agarwal et al. , it is shown that in the presence of
spatial dispersion the nonlocal form of the macro-
scopic Maxwell equations contain all. the informa-
tion required to calculate the reflection coeffi-
cient uniquely. For the dielectric constant dis-
played in Eq. (2. 5) with dissipation added, the non-
local macroscopic equations may be solved ex-
actly, and a closed expression for the reflection
coefficient is obtained. The additional boundary
condition is contained in the nonlocal Maxwell
equations, and there is no reason in principle that
requires one to resort to a microscopic theory to
deduce a new boundary condition to supplement the
ones that follow from the macroscopic theory.

Before we proceed with the present discussion,
one important point must be made. In the present
work, and the work of Agarwal et g)., the proper-
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ties of a homogeneous semi-infinite slab of ma-
terial are studied. In this case, we show that
Maxwell's equations provide a full and complete
description of the interaction of radiation with the
material, and one is not required to resort to a
microscopic theory to discuss the ref lectivity
problem. However, in practice, microscopic in-
homogeneities near the surface, perhaps of in-
trinsic origin, may influence the ref lectivity in
important qualitative ways. That this is so in the
case of CdS seems clear from the work of Hopfield
and his collaborators. The presence of the micro-
scopic inhomogeneities will modify the boundary
conditions derived here and by Agarwal et al. Of
course, a microscopic theory is required to obtain
anything other than a phenomenological description
of these effects.

We next describe the physical picture of the ra-
diation in the medium that results from the present
work, and that of Agarwal et al. First consider
the case where Qo& Q~, as indicated in Fig. 1(b).
The additional boundary condition obtained from
the nonlocal form of Maxwell's equations allows
one to compute the amplitudes of the two propagat-
ing waves I'I and P& as well as that of the reflected
wave, as stated above.

For incident frequencies Qo below Qz, Fig. 1(b)
indicates that only one propagating mode exists.
In some discussions in the literature, it is as-
sumed that in this frequency region the normal two
independent boundary conditions used in the local
theory suffice to determine the ref lectivity„since
in the presence of only one propagating mode these
boundary conditions contain enough information to
determine uniquely the amplitude of the reflected
wave and the single transmitted wave in the me-
dium, just as in the case where 6 depends only on
frequency and not on wave vector. However, the
additional boundary condition we obtain does not
apply only for Qo & Q~, but for all values of the
frequency, even Qo& Q~. If this is so, and there
is only one wave in the medium when Qo & Q~, the
problem is overdetermined. There must be a sec-
ond wave in the medium, even for 00& QI . In the
work of Agarwal et al. , and in the present work,
it is found that for all values of the incident fre-
quency 00 one must couple the plane wave normal-
ly incident on the material into two internal waves.
In the absence of dissipation, when e(k, Q) is real,
for Qo & Q~ both waves propagate as indicated in
Fig. 1(b). For Qo &Q~, one of the waves is spa-
tially damped [i.e., the wave vector determined
from Eq. (2. 6) is purely imaginary for this mode],
while only one of the modes is a propagating mode
characterized by a real value of the wave vector.
Thus for Qo & Qg energy is transported into the
crystal by only the propagating wave, but one must
make up the electric field in the medium by con-

c'k,', e(Q, )

Q~ 1+ e(Q, )
(2. 7)

In the absence of spatial dispersion, the surface
polaritons exist only for wave vectors to the right
of the light line, i.e., only for values of 0, and
Qk l

such that (.k)) ~ 0 They also exist only be-
tween the frequencies O~ and Q~, as mentioned
above. The first condition ensures that the energy
stored in the surface polariton cannot radiate into
the vacuum, since no propagating electromagnetic
disturbance in the vacuum can be phase matched
to the surface polariton. The second condition en-
sures that the energy stored in the surface wave
cannot radiate into the interior of the dielectric,
since no propagating modes of the dielectric medi-
um occur within the stop band between Q~ and O~ .

structing a linear superposition of the propagating
and the spatially damped wave to satisfy Maxwell's
equations with the additional boundary condition.

The above remarks apply to the case where
plane-polarized radiation is normally incident on
the crystal. If we consider oblique incidence, then
when the electric field vector is perpendicular to
the plane of incidence, a similar situation obtains.
Two waves are always present. If jp is the magni-
tude of the vacuum wave vector of the incident
wave, and A, = k sing, where 8 is the angle of inci-
dence, then for Qo &Qg(kg) two propagating modes
in the medium are excited by the incident radiation,
where

QI (k„)= Qi+Dk„.

If Qo& Q~(k„), only one mode has a real wave
vector (in the absence of dissipation) and one mode
is spatially damped.

If the electric field vector is parallel to the plane
of incidence, two additional boundary conditions
obtain for non-normal incidence and, in general,
three waves in the medium are excited by the in-
cident field. The third wave is an irrotational
wave (the electric field has vanishing curl), and is
a longitudinal mode for Q & Q~(k„), and a spatially
damped oscillation of irrotational character for
Q & Q, (k„).

We conclude this section with a few qualitative
remarks about the effects of spatial dispersion on

surface waves. It is now well known that surface
electromagnetic waves propagate down the surface
of the dielectric-vacuum interface. For a beauti-
ful experimental study of this type of wave, we re-
fer the reader to the work of Marschall and Fisher.
For a given value of the wave vector k, par-
allel to the surface, these surface electromagnetic
waves (surface polaritons) have a frequency Q,(k„)
that lies between Q~ and O~, in the absence of
spatial dispersion. For the dielectric-vacuum in-
terface, the dispersion relation assumes the form'
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Thus, crudely speaking, when these conditions are
satisfied the energy trapped in a wave localized to
the surface must remain there, and the surface
waves have infinite lifetime in the absence of dis-
sipative forces in the medium.

When spatial dispersion is present, there is no
longer a stop band between Q~ and A~, as one can
see from Fig. 1(b). If one attempts to excite a
mode in which the fields are localized to the sur-
face, the energy will leak into the interior of the
crystal, and the amplitude of the surface wave
damps out in time, even in the absence of dissipa-
tion. If the leakage rate is low, the surface wave
may propagate a large number of wavelengths be-
fore its amplitude decays. In this instance, the
surface mode behaves like a weakly damped nor-
mal mode of the crystal. We refer to these weakly
damped modes as virtual surface modes.

To speak more precisely, in the absence of spa-
tial dispersion the surface polariton is character-
ized by an electric field which decays to zero in a
purely exponential fashion as one penetrates into
either the vacuum or the medium from the surface.
In the presence of spatial dispersion, the presence
of additional boundary conditions means that a
single damped exponential wave no longer fully
satisfies the set of boundary conditions. In fact,
for 0& Q~, the boundary conditions admix the
bound exponential wave with the bulk polariton as-
sociated with the lower branch of Fig. 1(b). Thus,
the electric field in the wave is no longer bound to
the surface, but its amplitude is nonzero even in
the interior by virtue of the admixture of the bulk
wave into the surface mode.

III. REFLECTION OF PLANE ELECTROMAGNETIC WAVES
FROM THE SURFACE OF A SPATIALLY DISPERSIVE

MEDIUM

E,(x, t) = E (z) e'"~t" e '"', (3. la)

while similar relations obtain for the displacement

We shall study the properties of a semi-infinite
dielectric medium. Let the surface of the dielec-
tric lie in the xy plane of the coordinate system.
The dielectric will be assumed to occupy the upper
half-space z & 0, and the half-space z & 0 is the
vacuum found below the dielectric surface. The
magnetic permeability will be taken to be unity in
the medium, so that B= H everywhere.

In this section and in Secs. IV and V we study
either the interaction of external radiation with the
dielectric, or the propagation of surface waves
along the dielectric-vacuum interface. In both
instances, we suppose the electromagnetic waves
propagate with wave vector parallel to the xz plane.
We shall look for solutions of Maxwell's equations
in which the zth Cartesian component of the elec-
tric field has the form

field 5 and the magnetic field 8,

D„(x, f) = D, (z) e "~'"e '"'

a, (x, f) = a (z) e"ii" e '"' .

(s. I )

(3. lc)

If these forms are substituted into Maxwell's
equations, we find (with 5=H)

(3.2a)

(s. sb)

from the fact that V ~ D= V ~ H=O, and the relations
[suppressing explicit reference to the dependence
of E (z) and H, (z) on z]

BE . 0~ =+i —H„,Bz c (3.sa)

BE„. . 0" —ik)) Eg =+i —H~, (s. sb)

BH . Q

Bz c (3.4a)

BH„. . Q-" —ik)) Hg= —i —D
Bz ' c (3.4b)

0
k), H~ = ——Dg (3.4c)

from the Vxf and Vx0 equations, respectively.
To complete the set of equations, one needs a

functional relationship between 5 and f. The
most general linear relationship between 5(x, t)
and E(x, f) consistent with the homogeneity of time
ls

D (x, t) =Z J d'x' f dt' ~„z(x, x'; t —f') E,(x', f') .
(3.5a)

The integration on the right-hand side of this equa-
tion extends over all times f [a ~(x, x; f —f ) van-
ishes identically for f & f], and in the spatial inte-
gration x is restricted to the volume occupied by
the dielectric material.

We have written the dielectric tensor in Eq.
(3. 5a) as a function of the spatial coordinates x
and x separately. This is a consequence of the
fact that although the semi-infinite crystal retains
infinitesimal translational invariance in directions
parallel to its surface, it has lost it in the direc-
tion normal to the surface. Consequently, e z(x,
x; f —f') is a function of the coordinates x, x', y, y'
through the differences x —x and y -y, but it de-
pends on z and z separately.

However, in what follows we will make the sim-



pllfy'lllg Resumption that «'II(x x ' f —t ) depends oil
8 RQd g thl ough thelx' dlffex'ence Rs ls the cR86
for an infinitely extended medium. The effects of
a surface, therefore, enter our calculations only
through the x'estx'lctlon of th6 rRnge of integration
over z in Eq. (3. 5R) to z &0. This assumption is
equivalent to setting

«., (x, x'; f - f') = e(z) e(z') «.,(x -x', f - f'), (3.5b)

where e(z) is the Heaviside unit step function. Our
neglect of surface corrections to the dielectric
constant itself is consistent wi.th the assumption
that the decay length of the excitations we consider
here is long enough that these excitations are in-
sensitive to variations in the dielectric constant
on R scRle sIQall 1Q comparisonq RQ Rssunlptlon
which underlies the ma, croscopic theory of wave
px'opRgRtlon in dielectx'lcs.

For the moment, we assume x lies inside the
dielectric. VVe IQRy wl"lte

e„(x-x', t —t )f ('s I, ~,(s, o(

iS (x-s'& (Il(H-'I (3 8)&(8 8

For the purpose of analyzing the planar geome-
try considered here, it will be convenient to intro-
duce the partially transfoxmed dielectric tensor,
defined Rs follows:

phenomenological damping term in the resonance
denominator. %'6 use the model

Op
«(q, Q) = «0+-Y

Q~ + Dq —0 —jQy
{3.8)

When D= 0, the form in Eq. (3.8) reduces to the
well-known phenomenological form employed fre-
quently in the literature to analyze ref lectivity and
absorption data for frequencies in the vicinity of
an electx'ic-dipole-active exciton absorption line,
or in the vicinity of an absorption peak in the in-
frRled pl odUced by RQ lnfx'Rx'ed-Rctlve TO phoQGQ.
In the present work we assume &0 to be real, al-
though in the general results exhibited below one
may insert a complex value for &0 directly.

The tel m pl'opol"tlonal to Dg 1Q the denominator
is responsible for the spatial-dispersion effects
analyzed here. %'6 assume D& 0, the sign expected
if the q term in the denominator arises from the
wave-vector dependence of the exciton dispersion
relation. Again, the general formulas exhibited
below may be directly applied when D & 0, although
some of the comments and interpretation offered
in Sec. II and the following must be changed in de-
tail if a&0.

Tbe great virtue of tbe model form for «(q, 0)
exhibited in Eq. (3.8) is that a simple closed
analytic expression for the kernel in Eq. (3. Vb)

may be obtained. To see this, introduce the quan-
tity

0 -0& —Dq„+ jQy
&(q„)= (3. 9)

Now suppose the electric field has the space and
time dependence exhibited in Eq. (3. Ia). It is a
short exercise to demonstrate that for z & 0,

D„(x, f) = &'(" " "'IZ f-dz'«. ,(zI „,n; z -z') E,(z'),
0

or for the function D, (z) defined in Eq. {3.lb),

D.(z)=Z j dz'«. ,(zh„, n;z -z')Z, (z') . (3. VR)
0

This relation applies for z & 0, where the point z
ls lnsld6 th6 Inedlum.

To proce6d with R speclflc cRlculatlon GDe

needs an explicit form for the wave vector and fre-
quency-dependent dlelectrlc tensor that 6Dtex'8
Eq. (3.6). We sbRll suppose that 'ttle dlelectl'lc
is a scalar even for finite q [i.e., « II(q, 0)
=8,~«(q, I1)j, and furthermore we suppose that
«(I(q, ~) depends only on the magr(itude of the
wave vector q. Then Eq (3. Va) ass.umes the sim-
ple form for z & 9,

D.(z) = J dz' «(n„n; z -z') E.(z'), {3.Vb)

while in the vacuum, for z & 0, of course, D, (z)
= E„(z).

For the function «(q, 0) we take the model dis-
cUSSed ln Sec. II, Rnd we include ln addltloQ R

where in Eq. (3. 9) the square root with positive
imaginax'y part is chosen. Then we can write

Q~ 1

D l.q, +F{q)IIq, -F(q )I

RQd, after an elementary lntegratlon,

«(&„&;z-z')=«05(z -z')+i

lr (s„)Is-s' I (3 11)

When I"(0„) is chosen to have a positive imagi-
nary part, as remarked above, «(k„Q;z —z )
vanishes as Iz —g I

- ~. The imaginary part of
1 (}t„)thus controls tbe range of the nonlocal di-
electric constant in our model. Equation (3. Vb)
now becomes

(3. 12)
This relation~ along with the Maxwell 8 equa-

tions, contain the information required to discuss
the ref lectivity of the semi-infinite dielectric, and
the effect of spatial dispersion on surface polari-
tons. In this Section we first study the reflection
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of plane-polarized radiation with electric vector
perpendicular to the plane of incidence from the
surface; then we turn to the case where E is par-
allel to the plane of incidence.

reduced to a fourth-order differential equation.
One finds

8 p 8 0
—,—,+r'(k„) ~+ ~, —,-k,', E,(z)

A. Reflection ox Plane-Polarized Radiation from the
Surface; Case where Electric Field is Perpendicular to

Plane of Incidence

AqQ— ', E (z)=O.
Dc

(3. iS)

In the geometry described in this section, the
xz plane is the plane of incidence. In this section
we examine the nonlocal form of Maxwell's equa-
tions for solutions with the electric field directed
in the y direction, perpendicular to the plane of
incidence. Thus, with E„=E,= 0 and H, = 0, Eqs.
(3. 2)-(3.4) reduce to

8Hg 8E . 0ik)H+ ' =0, - ~ +i —H„=0,
8z ' 8z c

0kE= —HIl gc
8H„. . 0-" —ik„Hg= —i —D

c

where for z & 0,

and for z&0,

~ 8

0

These equations may be rearranged to yield an
equation for E, alone. One finds that for z & 0,

8 0
p+ &0

—
~

—k„E~z
2 2

+ f 3
',

(
—

) J
dz e"'"~~' '' 'E, (z')=0,

(3. 13a)
while in the vacuum, for z &0,

8' 0'
z+ z

—k~,
—E (z)=0 .

~-8z c (3. 13b)

~

~

82
-= -+I' 8' ' ' =2iX'6 z —z8z' (3. 14)

If the operator s /Bz + I' is applied to Eq.
(3. 13a), the integro-differential equation may be

Our ta,sk is to solve Eg, (3. 13) subject to bound-

ary conditions appropriate to the ref lectivity prob-
lem. Since tangential components of E are con-
served, E,(z) must be continuous at z = 0. Fur-
thermore, as one can see from the relations above,
if BE, /Bz is continuous at z = 0, we ensure con-
servation of tangential components of H. Thus,
we solve the integro-differential equation subject
to the boundary condition that E, and BE,/Bz are
continuous.

First consider the case z & 0, and the nature of
the solutions to Eq. (3. 13a). Ãe shall make re-
peated use of a simple identity employed earlier
in a different physical context. Note that

Equation (3. 15) possesses plane-wave solutions
with E,(z) = E,e'". Upon inserting this form into
Eq. (3. 15), we find q is a solution of

2 2 2
[I' (k„) —q ] eo —

z
—k„—q = —z

—. (3. 16a)
0 p g 0 Qp

This result may be rearranged into a familiar
form if the definition of I'(k„) is recalled. One
finds

2 0(k„q ) = — —,„-, (3. 16b)
Q~ —0 + D(k(, + q ) —sQy

Consider first the case where damping is ig-
nored, so y=0. Then Eq. (3. 16) is simply a par-
ticular case of the polariton dispersion relation
discussed in Sec. II. If we consider a polariton
which propagates at an oblique angle relative to the
surface, and if the projection of the polariton's
wave vector on the xy plane has magnitude k), then
the value of q obtained from Eg. ('3. 16) is the z
component of the polariton wave vector.

From Eq. (3. 16a), it is apparent that there are
four values of q which satisfy Eq. (3. 16), since it
is a quadratic equation in q . %'e denote the four
roots by aq& and + q3, respectively. It is a
straightforward matter to show that when

2
Q'& Q,'(k„)=Q', +—'+Dk'„,

&0

both q& and qz are real. (We still consider the
case y=O for simplicity. )

For Q & Qz (k„), there are two propagating po-
laritons in the material with wave-vector compo-
nent k), in the xy plane. At k(j 0, one can readily
see this from Fig. 1(b) and the discussion in Sec.
II. When Q & Q~ (k„), there are still two distinct
roots q, and q, of Eg. (3. 16). However, one root
(say, q, ) is purely imaginary with q, & 0, while the
second root q& is real. Thus, for Q&Q~ (k„), there
is one propagating wave that emerges as a solu-
tion of Eq. (3. 13a) [see Fig. 1(b) for Q & Q~], and
also a second, spatially damped, wave. From
this discussion, it is clear thai Maxwell s equa-
tions in the spatially dispersive medium yield two
distinct solutions for gl/ values of the frequency
Q, not only for Q &QL, (k„). These two solutions
must be superposed to obtain the solution to the
ref lectivity problem.

%hen y is finite, of course, q& and qz have an
imaginary part for all values of 0, by virtue of the
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dissipation present. In our discussion of the re-
flectivity, we select from the pairs + q& and +q2
the two roots q& and q2 with a positive imaginary
part, since these two roots describe solutions of
Eq. (3. isa) in which the amplitude of the electric
field decays to zero as one penetrates into the
crystal. The most general solution to Eq. (3. Isa)
has the form

When this statement is combined with the earli-
er requirement that E, and BE,/82 be continuous
at the surface, we now have enough information to
compute the reflection coefficient.

The statement in Eq. (3. 20) is equivalent to an
additional boundary condition imposed on the di-
pole-moment density at g =0. To see this, we
may rewrite Eq. (3. 20) to read

E„(2)= S,e"1'+S,e"2', 2 & 0

where again

Im(q, ) & 0,

Im(qp) & 0 .

(S. IVa)

(3. IVb)

(3. IVc)

(I"+q, ) (r+q, )
(r2 2) 1+ (r2 2) 2 ~

But now in terms of the quantity I',

Ap
&(q) Q)=&p+ ( 2 2] =tp+4vX(q, Q),

DLq -I'

(3. 21)

We must match the expression for E,(2) to the
electric field in the vacuum. If a wave of unit am-
plitude is incident on the crystal, then for z & 0,

E (2) cqzzz + ft e'1lqzz (3. 18)

where 8 is the reflection coefficient. If 8 is the
angle between the wave vector of the incident wave
and the normal to the crystal surface, then

k, = (Qp/c) cose

and, of course,

k„- (Q, /c) s1ne .
We must make E, and sE, /aa continuous at

z=-0, as discussed earlier. At this point, we en-
counter the problem described in Sec. II. There
are two boundary conditions, but three constants

S2, and R which need to be determined. The
main point is that while the function in Eq. (3. 1Va)
satisfies the fourth-order differential equation
(3. 15) for arbitrary values of S1 and S2, it satis-
fies the original integro-differential equation
(3. Isa) for only one unique value of the ratio S,/S2,
To see this, one may substitute the form in Eq.
(3. IVaj back into Eq. (3. isa). After a straight-
forward calculation, one finds that for the form
given in Eq. (3. 1Va),

where X(q, Q) is the wave-vector- and frequency-
dependent susceptibility which describes the con-
tribution to the electric-dipole-moment density
from the excitation responsible for the resonance
in e(q, Q). Equation (3.21) may then be written in
the form

Iq1+ r(kll)] X(kll 'q1 Q)S 1+iq2+ r(kll)] X(kll q2 Q) S 2

where the function X(q, Q) evaluated for the wave
vector q=k„+zq1 is denoted by X(k() q1q Q), in this
last statement. Now the quantity X(k„q„Q)S, is
the amplitude Pj of the dipole-moment density car-
ried by the mode characterized by the wave vector
k„+zq, . Thus, Eq. (3.20) becomes

[q, +r(k„)]P,+[q, +r(k„)]P,=o,
or if

P(Z) = P1 e"1'+ P2 e"2'

is the total dipole-moment density carried by the
wave, Eq. (3.20) becomes

+ ir (k„)P(0+) = 0 .BP '

g p+
(3.22)

Thus, the additional boundary condition we ob-
tain is equivalent to the constraint on the polariza-
tion field displayed in Eq. (3.22). Hopfield has
presented qualitative arguments that suggest, quite
generally, that one expects the additional boundary
condition to assume the form

2 2
]g- 'i

A P(0+) + B — = 0 .BP
88 ~gp+

(3.23)

g g
+ =0

r(k„) —q, r(k„)-q, (s. 2o)

2 2

ZZc l(q )q(q„)'—
q„, )'(q„) -q ) '

(3. 19)
Thus, the form in Eq. (3, 1Va) satisfies the non-

local MaxweH's equations in the dielectric only if
the quantity in large parentheses on the right-hand
side of Eq. (3. 19) vanishes identically:

The result in Eq. (3.22) is then a special case of
this condition. We again point out that we have
not required the use of a microscopic model to ob-
tain Eq. (3.22), however. It follows directly from
the nonlocal form of Maxwell's equations, for the
semi-infinite dielectric with spatial dispersion.
Incidentally, we shall see in Sec. III8 that when
the electric field vector is parallel to the plane of
incidence, tuo additional boundary conditions
emerge from the nonlocal Maxwell equations.
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R= n cose —c[q, + q, —I'(k„)]
n cos8+ c [q + q —I'(k„)] (S.24)

Recall that q„qz, and I"(k„)are to be chosen to
have positive imaginary parts.

B. Reflection of Plane-Polarized Radiation from the
Surface; Case where Electric Field is Parallel to Plane

of Incidence

It is now a straightforward matter to find an ex-
plicit expression for the reflection coefficient by
using the three boundary conditions introduced
above. We find that

SD(z) . . n
ik—„D,(z) —i — dz «(k„n;z —z )H (z )

= «(k„n;z)Z„(0) .
But now D„and D, on the left-hand side of this
equation may be eliminated through the use of Eqs.
(3.25b) and (3.25c). We then obtain an inhomo-
geneous integro-differential equation for H, (z).
One has, for z&0,
( B2 0(, , —k'„H, (z)+ —, dz' «(k„n; z —z') H, (z')

0

BE„ . . 0" —ik, )
Eg=+i —& (S.25a)

BH . 0~ =+i —D
Bz

(3.25b)

We now seek solutions to the nonlocal Maxwell
equations with E„and E, nonzero, but E, = 0. For
this case Eqs. (3.2)-(3.4) become Upon noting the explicit form

en in Eq. (3. 11), we have for

f e' n'
z+« ——k H(s 0 2 II ))

2 2

= i —«(k„n; z) E„(0) .. 0

of «(k„n;z-z ) giv-
z&0,

0
&)(& = —D

y

C
(S.25c)

BDg (3.25d)

where again for z & 0,

2
oo

0

(S. 25)

We can find the form of the magnetic field H, (z)
in the medium. To do this, first let z be replaced
by z in Eq. (S.25a). Then multiply the result by
«(k„n;z -z ) and integrate on z from 0 to ~. One
finds

0 0
2DI' ~()) c

The integro-differential operator on the left-
hand side of Eq. (3.28) is the same as the operator
in (3. 13a). We proceed to convert the integral
equation to a differential equation for II, by operat-
ing on both sides with [8 /Bz + I' (k)))) and employ-
ing the identity in Eq. (3. 14). This operation
shows that H, (z) satisfies precisely the same dif-
ferential equation [Eq. (3. 15)] as the electric field
E,(z) for the case where the electric field in the
incident wave is normal to the plane of incidence.
From this fact, for z & 0, the magnetic field H, (z)
in the material has the form

dz «(k„n;z -z ) *, -ik„D (z)f sE„(z')

0
H, (z) = k, e"~'+ k, e"z', (3.29)

=+i —J~ dz' «(k„n;z -z')H, (z') . (3.27)
C 0

But now after a partial integration,

z ~ I I
tt ~ ~ z

~

~
I

()0 r

dz'«(k„n; z —z')

= —z(Z,„();z)Z,(Q) -f Z 'Z, (z') z(Z,„();z-z')

=-«(k„n;z)E„(0)+- -",BD„

where to arrive at the last statement, note that

r
z «(k„n; z —z ) = ——«(k„Q; z -z ) .

Thus, Eq. (3.27) becomes

n kz kz

z —)'()'») )(»») —z ) (3. so)

This statement is one of the two additional bound-

ary conditions required to determine the reflec-
tivity in the present case.

We next turn to a study of the form of the elec-
tric field E and the displacement field D in the
medium for this geometry, Upon eliminating
H, (z) from Eq. (3.25a) by the use of Eq. (3.25c),

where q& and q, are found from Eq. (3. 16b), again
with Im(q) ) & 0 and Im(q, ) & 0.

We now proceed exactly as before. The expres-
sion in Eq. (3.29), while it satisfies the differen-
tial equation (S. 15), does not satisfy the original
integro-differential equation (3.27) for arbitrary
values of k, and kz. To satisfy Eq. (3.27) we find

h& and h2 must obey the constraint
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and noting Eq. (3.25d) we obtain two coupled
homogeneous differential equations for E„and E,
which take the form

8E„(2
Q2

*+1k))-«o~ F.
az ( c

2
1+ oo

dz'e(r(a(&('"'E (z')=0 (3 Sla)
2Dc I'(k„) „

P ~ll
dZ &e( r O))(& & k-s .(E (Z

&

)2DI (k„)„, x

(s.Sib)
Now, as before, we operate on both equations

with the differential operator II (k)))+ 9 /Bz ] to
obtain two coupled differential equations. One has

by the attenuation constant qs, V' E W 0, while the
two roots characterized by q, and q2 have V E = 0
always. If we neglect dissipation in the medium
(set the damping constant y= 0), then for Q & Qz, (k(()
all three attenuation constants q„q2, and q, are
real. Then the roots q~ and q2 are associated with
the transverse polaritons of Fig. 1(b), while the
mode q3 is a longitudinal wave with E parallel to
the wave vector k„x+q,z, and V ~ E w 0 (of course,
V ~ D-=0 always). When Q«Aa(k„), q, becomes
pure imaginary, as does one of the pair q, and q2.
When A «Ap (ko) V E —0 fol the modes q &

and qa
but V ~ E is still nonvanishing for the mode q, . For
all values of Q, the mode q3 has zero magnetic
field associated with it, while as we have seen
explicitly, q, and q2 have nonzero magnetic fields.

The relative amplitudes of the various field
components in the medium are interrelated by the
Maxwell equations (3.25), the differential equa-
tions (3.31), and by Eq. (3.26). If we write

g(1)eloge h (2)eiq2c g (3)pfqss (S.S4a)

p
A" 8 p AaQ ~

+ k, )
—«o~ a + I' (k„) + p J E,=O,c Bz Bc

(3. 32a. )

then from these relations we find

g((&e(()()k qa g(a&e(((ag
g )j2 (S.34b)

&0 2 +j" — -- -'++'ll&. =0 (s. 32b)
g (( & e((&(s (3.34c)

We seek solutions to Eqs. (3.31) of the form

E„„(z) = g„,e'".
Then after setting the determinant formed from
the coefficients of S„and 8, equal to zero, one
can show that the values of q are determined from
the condition

g((&e(q(kx= && x
f=la2

j"-j.a2

(S.34d)

(3.34e)

k(k„k, ())(-- ", — —k(k„k, B))=D, (k. kkk)

where «(k„q, Q) is the dielectric constant «(q, Q)
evaluated for q = kl, + zq.

For any frequency Q, there are three values of

q which satisfy Eq. (3.Ssa). Two values of q
follow upon requiring that the factor in large
parentheses vanish:

cq Q

Q
= ('q )=-"

Q, -A, D(k„,q);Qy
These two values of q are, of course, just the two
quantities q, and q2 that appear in the expression
for the magnetic field, Eq. (3.29). The third
value for the propagation constant is the solution of

In these expressions„ the quantity g, is an abbrevi-
ated notation for the quantity «(k,)q„Q) of Eqs.
(3.33). For the mode qa, the displacement field
vanishes identically.

We now find the additional constraints imposed
on the solutions by the requirements that the
original integro-differential be satisfied. If we
write

E (z) Q g((& e(()(g

Q g((&e(()(k

where the coefficients 8,") are displayed in terms
of g„' in Eq. (3. 34b), then when we require Eqs.
(3.31a) and (3.Slb) be satisfied, two additional
boundary conditions are obtained:

«(k()q, A) = «o+ Aa Qa D.ka a.n~- 0 +B(k„+q )- any
(3. Ssb)

We denote this third root by q~. Again, we select
only the one root of Eq. (3.Ssb) with Im (q, ) &0.
From the equations for the amplitudes 8, and 8„
one readily sees that for the wave characterized

g(4)
x 0

, , I'(k„)-q,.

g(f)*—=0.
, , 1(k„)-q,

(3„35a)
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We nom have three additional boundary condi-

tions, when we include Eq. (3.29) with Eqs. (S. 35).
However, it is a straightforward matter to ex-
press h) and h2 in terms of 8„"' and 8„' ' via Eq.
(3.34c), then insert these quantities into Eq.
(3.30), and demonstrate that Eq. (3.30) is the
same as Eq. (3.35a). Thus, we employ the two
conditions, Eqs. (3.35), in the remainder of this
section.

If me multiply the numerator and denominator
of each term in Eqs. (3.35) by [I'(k„)+q,j, and

note the relationship betmeen the electric-dipole-
moment density and the electric field given in the
discussion which precedes Eq. (3. 22), then Eqs.
(3.35) become

cos8- Q
cos 8+@ ' (S.Sea)

q ( )
kll +kH(71+ if 1 mfa + Ia)+ (Il +ifa)llqaifa

4 2 2 2

ko (Vi + Ca —
if a) + Ala ifa

(S.35b)
We have carried out a series of numerical cal-

culations of the effect of spatial dispersion on the
ref lectivity, for parameters characteristic of
cubic Zn86 at lorn temperatures. The results of
these calculations are described in Sec. VI.

IV. THEORY OF SURFACE POLARITONS IN THE
PRESENCE OF SPATIAL DISPERSION

In this section, we obtain the dispersion relation
for surface polaritons on the surface of the model
nonlocal dielectric studied in Sec. III.

In the absence of spatial dispersion (the param-
eter D=O in the model used here) and in the ab-
sence of dissipation in the medium (y=O), Max-
well's equations admit solutions which have the
character of surface waves. The electric and
magnetic fields associated mith the wave, as mell
as the electric-dipole-moment density in the me-
dium, are localized near the surface when the sur-
face wave is excited. The dispersion relation for
the surface waves mhich propagate along the inter-

al"(k )P =0
a~0+ 0+

where I'~ is the eth Cartesian component of the
dipole-moment density.

There is nom only one independent constant, say,
8„", in terms of which the relative amplitudes of
all the waves of the medium may be expressed,
once Eqs. (3.35a) and (3.35b) are used. Then,
by matching the internal fields to the vacuum fields
through the use of two of the usual boundary con-
ditions (conservation of tangential E and tangen-
tial H, for example), one may compute the reflec-
tion coefficient. We find for the amplitude of the
reflected wave the expression

face between an isotropic local dielectric and the
vacuum is given in Eq. (2. 7). Some properties of
the surface maves were also summarized in Sec.
Ii. The surface wave exists only for values of the
wave vector k„(which is parallel to the surface)
which satisfy ck„& Q, (k„), since it is only in this
limit that the electromagnetic field in the vacuum
region remains localized near the surface. Fur-
thermore, the surface waves exist only in the stop
band betmeen Q~ and Q~, where no bulk polaritons
exist and where the dielectric constant is negative.
The electric field associated with the wave lies in
the plane formed by the mave vector of the mave
and the normal to the surface of the dielectric.
If, as in Sec. III, the surface lies in the xy plane,
and if the surface polariton propagates in the x
direction, then E„and E, are nonzero, while E, = 0
identically. The magnetic field is in the y direc-
tion.

In this section we explore the effect of spatial
dispersion on the properties of surface polaritons,
within the framework of the model employed in
Sec. III. The principal results of this investiga-
tion mere discussed in Sec. II from a qualitative
point of view.

We suppose that the surface polariton propagates
along the surface, parallel to the x axis, The a.th
Cartesian component of the electric field then has
the form

(x f) E (a)eialls 8-io~t (4. 1)

with a similar variation for R and for 5. In this
instance, Maxwell's equations (S.2)-(3.4) may be
used to describe the variation of the fields in the
a direction. In the vacuum region (a & 0), E =5,
while in the crystal (a & 0) the relation between E
and 5 is given in Eq. (3. 12), for the model.

We consider waves with a field configuration
similar to that present in the absence of spatial
dlspex'sion' l. e. %6 look fox' solutions of MRX-
well's equations with E, =O. Consider first the
electromagnetic field in the vacuum region z & 0.
Since the wave is bound to the surface, me seek
solutions with

E„(a)=g„'e' ', E,(g)= g', s'o',

mhere n0 is assumed real and positive. Upon
noting that 5 = F for a & 0, then using Eq. (S.2a),
one finds

&o= kii —&,'/c' . (4. 2)

The attenuation constaQt Q0 ls reRl only lf ck„&0,.

00

Then from Eqs. (S. Sa) and (3.4c) one finds are-
1Rtion bet%een Q0, the %Rve vector 4„, Rnd the fl'6-
quency Aq of the sulfRce %Rve:
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It is only in this region of frequencies and wave
vectors that Maxwell's equations admit solutions for
which the electromagnetic fields in the vacuum de-
cay to zero as one moves away from the crystal.
The electric field in the vacuum outside the crystal
thus has the form for z & 0,

E(z) =8'[~- f(k„/n, )zj e &, (4. 3)

with no given by Eq. (4. 2).
We now match the va.cuum field in Eq. (4. 3) to

the fields in the crystal. This will lead to a dis-
persion relation from which the frequency 0, of the
surface polariton may be computed, given the wave
vector k .

Within the crystal, we search for solutions with

(4. 4)

and Re(a)&0.
The nature of the solutions for the field within

the crystal may be studied by precisely the mathe-
matical methods we employed in Sec. III. Indeed,
the two coupled differential equations (3. 32a.) and
(3. 32b) were derived quite generally for the model,
with no assumption about the nature of the g depen-
dence of the electric field in the medium. Thus,
we can substitute the fields in Eq. (4. 4) into Eqs.
(3.32) to obtain the values of o. allowed for a given
value of k„and 0, , and the relation between the
amplitudes S„and g, for a given value of n. In-
deed, the algebra in the present case is identical
to that in Sec. IIIB, provided we replace q by jn.
The allowed values of a associated with a given k„
and Q, are thus determined from the condition

Consider the nature of the roots to Eq. (4. 5) in this
frequency region, with attention to the ease y- 0.

The dielectric function q(k„ia, Q, ) vanishes when

a = n3, where

~ =+D "'[Q'(k» Q-.
' f-Q.~1"'. (4. 5)

Next consider the roots of the quantity in large
parentheses in Eq. (4. 5). We call the two roots
n2 and n, . It is straightforward to obtain simple
analytic expressions for these two roots from Eq.
(4. 5), since to find the two roots one needs to find
the roots of a quadratic equation in the quantity n2.

The general expression is quite cumbersome and
not very illuminating, however. In the limit y- 0;
the properties of the two roots are readily dis-
played by graphical means. If the quantity in large
parentheses in Eq. (4. 5) is set equal to zero, the
expression may be rearranged to read (for y= 0)

c 2 2 QI, (k„) —Q, —Do)
DQa (D& —Dk„) Dn2+ Qa Q2 (k )

(4. 7)

For the case Qr (k„)& Q, & Q~ (k„) of interest here,
the right- and left-hand sides of Eq. (4. 7) are
sketched in Fig. 2, and the position of the two

As y-0, when Q, &Qr, (k„), o., is real and positive.
The fields associated with this wave decay to zero
exponentially, as one proceeds into the interior of
the crystal from the surface. For this wave, if

and 8 ' ' are the z and x components of the
electric field in the wave, from Eqs. (3.31) one
finds

g (3)&
( /k )g (8))

where

2

«) ~0 QR A2+ D(k2 2)s

For a given value of Q, and k, , there are three
solutions to Eq. (4. 5) with Re(a)& 0. It will be
necessary to construct an expression for the elec-
tromagnetic field in the crystal that is a linear
combination of all three solutions, to satisfy the
constraints imposed by the nonlocal Maxwell equa-
tions and to match the vacuum fields at the surface.

Although the discussion in this section will be
phrased in general terms, the limit y- 0 where the
dielectric is lossless is of particular interest,
since we can easily compare the qualitative proper-
ties of the surface polaritons with and without spa-
tial dispersion in this case. Furthermore, since
the surface polaritons exist in the region of fre-
quencies Q~ & 0, & Q~ in the absence of spatial dis-
persion, we will be primarily interested in the
frequency region for which Qr(k„) & Q, & Q~(k„),
where Qr(k„) = Qr +Dk„and Q~(k„) =Qr(k„)+Q2/(. 0.

FIG. 2. Plot of the left- and right-hand side of Eq.
(4.7). The solid straight line is the left-hand side. The
position of the bvo roots is indicated by the circles.
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g «)& ~

(y /n )g &i)& (4. 9)

From the discussion given above, we see that the
most general solution to the differential equations
(3. 32) in the medium z & 0 assumes the for&r& (with
a small change in notation)

E(z)= + g' e "+g e
( =1, 2

(4. 3')

(4. 9")
While these forms satisfy the differential equa-

tions (3. 32), they will satisfy the original set of

roots are indicated and labeled. There is one root
u2 for which n2 is positive and n2 is real. How-
ever, as one can see from the graph, for the sec-
ond root n, , the quantity u, is negative. Thus, for
y=O, one root with n pure imaginary exists.

The first real root e2 describes a wave for which
the field decays to zero exponentially as one pene-
trates into the medium. For the second root n„
since n, &0 and n, is purely imaginary, the field
oscillates and does not damp out with g. In fact,
if one remembers that the quantity ia is the
propagation constant q of Sec. III, then one sees
that the undamped wave is the bulk polariton as-
sociated with the lower branch of Fig. 1(b), with
frequency 0, below the onset 0&; (k„) ot the upper
branch.

In general, to construct a, wave which satisfies
the nonlocal form of Maxwell's equations, and to
match the fields in the medium to the attenuated
field in the vacuum, all three waves a„u2, and

n3 will need to be superposed, as we sha. ll see.
Thus, in the presence of spatial dispersion, no gap
in the frequency spectrum of the dielectric exists
between Q~ and Q~, and the boundary conditions
admix the purely attenuated surface wave with the
bulk polariton. The resulting state is not a true
surface polariton, but rather is a virtual surface
state.

When yWO, n» n» and n3 all become complex.
In particular, n2 acquires a real part that vanishes
as y- 0. Since the waves must damp out in space
and not increase exponentially, one must select
only the n's that satisfy Eq. (4. 7) and for which
He(n) & 0 always. Since Eq. (4. 7) involves only n,
for each n that satisfies Eq. (4. 7), there is one
value of (n )'~ with positive real part, and one
with negative real part. Thus, for finite y, there
are three and only three solutions of Eq. (4. 7) with
He(n) &0.

If we denote the x and g components of tQe elec-
tric field for the modes n, and a2 in the rgediurp by
g„"', 8,"', where i = 1 or 2, then one easily finds
that

coupled integro-differential equations [Eqs. (3.32)]
from which these differential equations are derived
only for certain particular values of the admixture
coefficients 8 «), as explained in detail in Sec. III.
In the present case, the constraint equations anal-
ogous to Eqs. (3.35) assume the forms

+
~ (2) + (s) = 0r(u„)-in, r(a„)-in, r(a„)-in, (4. 9a)

kI $(1) kII ~(2) +~+ ~ (&) 0
n, r (a„)- in, n, r (u„) - in, u, r(a„)- in,

(4. 9b)
The constraints in Eq. (4. 9) allow the internal

field to be determined to within one multiplicative
constant. We must now match the internal field to
the vacuum field in Eq. (4. 3). Conservation of
tangential components of E at the boundary gives
the relation

~(»+&(2)+(3) & =0 ~ (4. 10)

As a second boundary condition, we require that
the normal component of D be conserved. The
form of D, is given in the dielectric by Eq. (3.34e).
This expression can be adapted to the present cir-
cumstance by recalling that q,. = za, . Then conser-
vation of normal components of D leads to the con-
dition

q1kI, @& &2kII @& k, I @&(1)+
Q (2)+Q 7

Q1 2 0
(4. 11)

Unfortunately, Eq. (4. 12) is cumbersome and un-
wieldy. It does have one important qualitative fea-
ture that results from the admixture of the bulk
polariton into the surface wave. For real values
of the wave vector k „ the frequency 0, that
emerges as the solution to Eq. (4. 12) has an
imagina, ry part. The presence of the imaginary
part means that the amplitude of a plane wave of
wave vector k„set up at time zero decays away to
zero in a lifetime 7' given by v = 1&n[Q, ()'3,&)].

Crudely speaking, the amplitude of the wave de-
cays in time because the energy stored near the

where as before e, = q(k„, in&, Q, ).
We now have four homogeneous equations in the

four amplitudes $~, g&&», $&&», and g&&» [Eqs.
(4.9)-(4.11)]. For a given value of k„, the equa-
tions admit a solution only if the coefficient de-
terminant vanishes. We find the surface-polariton
dispersion relation from this condition.

After some manipulation, the following implicit
equation may be obtained for 0, as a function of k„:

n, (ir+ o.,) (a3„- n, n, ) —n3(ir+ n, ) (a3„—n, n, )

+ lPp(3r + n3) (n3 n&) + Qn[ E(i&r+ n'&) ()3I n3n2)

—e (ir+ n ) (k„—n n, )]=D(I'3„, 0, ) =0 —. (4. 12)
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llm Qg: p~) p

C

(4. 13a)

(4. 13b)

and

surface leaks into the crystalline interior via the
coupling to the bulk polariton which results when
D4 0.

To see this effect, we explore a special limit of
Eq. (4. 12). We consider values of k„such that

0 Then retardation effects can be

ignored�

.
Formally, we may take the limit c- ~ in Eq.
(4. 12) if we wish to obtain the form of Eq. (4. 12)
in the quasistatic region where retardation effects
are unimportant. The root n3 is given in Eq.
(4. 6), and this root is unaffected by the presence
of retardation. The behavior of a, and n~ is readi-
ly deduced from Fig. 2. As c- ~, the slope of the
straight line in Fig. 2 [a plot of the left-hand side
of Eq. (4. 7)) approaches infinity T.hen one sees
that

Q~ 1
2M' l" —zu

as n- —zl

Thus Eq. (4. 11) becomes, as c- ~,

2DI I —za,
(4. 16)

(4. 17)
With Eqs. (4. 14a), (4. 15), and (4. 17), we may

obtain the surface-polariton dispersion relation.
If Eq. (4. 14a.) is used to eliminate h)&3& from Eq.
(4. 15), a second relation between h'&~& and g( is
obtained:

where as n, —k„, the quantity e, = e(kIIio. 2, 0, ) ap-
proaches the local dielectric constant q«(Q, ) given
in Eq. (2. 1). Now, the quantity 4)&» /(I' —in, ) may
be expressed entirely in ter'ms of 8&~) through the
use of Eqs. (4. 14). This allows us to write Eq.
(4. 16) in the form

limno= k~~

C

(4. 13c) (4. 18)

~))~ (2) ~ (3)
3 . +

k',
)
+ ZI"e3 e3+ I"

Now from Eq. (4. Qa), one has

(4. 14a)

gp ZQf gp ZG$ gp (4. 14b)

When c-~ and n&- —il, this equation shows that

Equation (4. 10) then reads

(4. 15).

Equation (4. 11) must be handled with care, since
as c- ~, 8&- 0 but at the same time q, -~. Nate
that

We have also specialized to the case y= 0, and
the la.st relation holds only then. In order to re-
cover the dispersion relation in the absence of re-
tardation from Eq. (4. 12), the limit c- ~ must be
taken quite carefully. In fact, it is more straight-
forward to take the limit c- ~ directly from the
boundary conditions. We begin by eliminating
h)&» from Eq. (4. 9a) to obtain a relation between
g ~p) and g y) ~

+1I +8 g) +1 +1 SI kII g) 0I i~ () P Z~ ()
3

Upon employing the limiting forms in Eqs.
(4. 13), one obtains

Now upon combining Eqs. (4. 17) and (4. 18), one
finds after a bit of manipulation that

k~) Q~ n3 —ki)e,(Q, )+I = . ", iI'+ ,oi+-
ZG3l + Q„ 2DI' P,

~

jI"

(4. 19)
Consider the behavior of the various quantities

in Eq. (4. 19) as k„-0. In this limit, both I" and

n3 remain finite, with

(4. 20a)

limn—
II

(4. 20b)

Thus, the right-hand side of Eq. (4. 19) vanishes
linearly with k, as 0 -0. Then as 4„-0, in the
absence of retardation, the surface-polariton fre-
quency is obtained as the solution of

e(Q, )+1=0 .

The well-known result displayed in Eq. (4. 21) also
follows at once from Eq. (2. 7), upon taking the
limit c- ~.

From Eq. (4. 19), we can readily find the form
of the surface-polariton dispersion relation as
4~, -0. As Dk, - 0, all quantities on the right-hand
side may be replaced by their limiting forms at
P =0, and Q, may be replaced by the value obtained
from Eq. (4. 21). This gives, as k„-0,

Qp 1
1 ( II 1I 8) 0 D (F ~ )(F '

)
e(Q, (k„))+1= .F" o., 1+ —;+il', (4. 22a)iI'n3 3 2DI'
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where I' and o.s are given by Eqs. (4. 20). After
some straightforward manipulation, we find that
Eq. (4. 21) may be written

+1= " (1+

(4. 22b)
We now write

n„(k„)= n, (o) + An(k„),

where Q, (0) is the frequency which satisfies Eq.
(4. 21). Then to first order in k„,

k))(I + &o) iy2 &0+ 3

After a bit of manipulation, this result may be
written in the form

ip2 (e, —~o)"' Qr(o)
bing (k)) ) D k))

2 (1 )3))g Q (0)
)

x ~,"'-f ' — . (4. 23)
2

In this expression, q, =&0+Q~/Qr is the static di-
electric constant of the medium, while Qr(0) is the
frequency of the bulk transverse excitation at 4,
=0, and Q, (0) is the solution of Eqs. (4. 20), i.e. „
the frequency of the surface polariton at k, = 0,
neglecting retardation.

Several comments are in order at this point.
First, we remind the reader that Eq. (4. 23) is
valid only for small 4, =-0, and in the absence of
retardation.

One important feature of Eq. (4. 23) is that in the
presence of spatial dispersion, for real values of
k„, the surface-polariton frequency is complex.
As explained earlier, this is because in the pres-
ence of spatial dispersion, there is no longer a gap
in the frequency spectrum of the dielectric between
Q~ and Q~. Furthermare, the boundary condjtions
admix the waves bound to the surface with the bulk-
polariton mode indicated as the lower branch in
Fig. 1(b). As a consequence, energy s".ored near
the surface leaks off into the interior, and tPe sur-
face mode acquires a finite lifetime.

Notice that nn(k„) is proportional to k, , and not
Also, it is clear that the expansion parameter

that enters for small Dk', in the calculation of cor-
rections to local dielectric theory is D'

jp)) These
two features indicate that even when Dk„ is small
the effects of spatial dispersion can be significant.
A dimensionless measure of the importance of spa-
tial dispersion is provided by the quantity

n= e,D/c' .

For excitans in ZnSe, we sha, ll see that g-5&&10
Then g' -10 to 10, so spatial-dispersion ef-
fects can be expected to exert an influence on the
optical properties of exciton levels in semiconduc-

c(k', + k')" '= Q, %„), (5. 1)

while at the same time, in Sec. IV we have seen
that the electromagnetic fields associated with the
surface wave can be localized to the 'surface only if

n. (K„)«k„. (5.2)

The two conditions (5. 1) and (5. 2) can be recon-
ciled only if k, &0, that is, if the electromagnetic
field of the light incident on the crystal surface is
damped along the g direction. Such an electromag-
netic field can be produced by the method of at-
tenuated total reflection (ATE) first proposed by
Otto' as the means for the experimental study of
surface plasmons in metals. This method has been
used subsequently in investigatians of other kinds
of surface excitations.

In this section we present the theory of the ATB
method, with a view toward the use of this method
to explare the effects of spatial dispersion on sur-
face polaritons discussed in Sec. IV. In this
method, one measures the reflection coefficient of
an electromagnetic wave incident on the interface
between two media, a prism and a gap, constitut-
ing a plane of total internal reflection. The pres-
ence of the crystal being studied at a distance from
this interface destroys the conditions necessary
for total internal reflection, and, as a consequence,
the reflection coefficient departs from unity.
From structure in the reflection coefficient as a
function of the frequency of the incident light, the
dispersion relation for surface polaritons ean be
obtained. We now turn to a calculation of the re-

tors, since a very narrow range of frequencies
very close to Q~ is of interest in this case. We
shall explore spatial-dispersion effects in our
model in Sec. VI for parameters characteristic of
ZnSe.

Finally, we point out the similarity of the ex-
pression in Eq. (4. 23) to the dispersion relation
of surface plasmons in metals. e The surface-plas-
mon frequency is also complex for small k„as
k„-0. Experimental evidence for this linear shift
in wave vector of the surface-plasmon frequency
has been provided by studies of the inelastic scat-
tering of low-energy electrons from the surface
of aluminum. e

V. OBSERVATION OF SURFACE POLARITONS BY THE
METHOD OF FRUSTRATED TOTAL INTERNAL

REFLECTION

It is not possible to observe surface polaritons
in a conventional light-absorption experiment. If
the incident light strikes the crystal at non-nor-
mal incidence, then the frequency of the incident
photon is c(k„+km) ~2. If the incident photon is ab-
sorbed with the creation of a surface polariton with
wave vector k, parallel to the surface, then con-
servation of energy requires
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Z=O

REGION IK (CRYSTAL UNDER STUDY)

k,~) faeSf,„,=~
8p c k)

(5. 7a)

and

E&ls. (5.4) and (5. 5), the magnitudes of the energy
flux in the incident and reflected waves are given
by

REGION Z (GAP) n2
iaeS[...= (5. 7b)

REGION I (PRISM)

FIG. 3. Configuration employed in the frustrated-
internal-reflection method.

The fraction I' of the incident energy reflected
from the interface between the prism and the gap
is then

flection coefficient.
The geometry we consider is illustrated in Fig.

3. To simplify the problem, we have assumed that
the prism (region I) and the crystal (region III)
occupy semi-infinite portions of the z axis. The
electric and magnetic fields in the prism will be
written in a form similar to the form used in the
preceding sections:

E&1&(x f) E&1)( )etiam tz
- iot

If &1&(x f) H&1)( )
iz((z -&Qt

(5. 3a)

(5. 3b)

E &1&
( ) ety&z + ff - iriz (5. 4a)

and

E &1)
( )

~l
( iy&z + ft - ir&z)

X
II

(5. 4b)

where the superscript (1) refers to region I of Fig.
3. We assume the electric vector is in the xz
plane, since this is the only configuration which
gives rise to coupling between the incident radia-
tion and the surfa. ce polariton. Then E,"&(2)

H&1&( ) H&1&( )
—o

The nonzero components of the electric and mag-
netic fields in the region of the prism can be writ-
ten in the form

IBeS[„,
l BeS I,nc

(5. 8)

The value of R is determined from the boundary
conditions satisfied by the electromagnetic fields
at the interfaces between the prism and the gap,
and the gap and the crystal under study.

In the gap (region II of Fig. 3), the electric and
magnetic fields have the nonzero components

E&'&(2) = A&e-"2'+ A2e' y2',

E&'& {2)= ——.
" (X,e-"e —a,e'"~),

iy2

a,"&(2)= —. ' (a,e-'2'-a, e"y&),
icy2

(5. sa)

(5. sb)

(5. Sc)

y2= k~, —E (5. 1O)

d +Re. ", ) A&er2 +828 y2 (5. lla)
k),

and q, is the dielectric constant of the gap, which
we also ta,ke to be real, isotropic, and independent
of frequency.

The conservation of the tangential components of
E and the normal components of D at the plane z
= —4 yields the pair of equations

H' &(2)=- ' -(e*y&'+we *"1')g 0
ck

where

(5. 4c) and

-ir&d+E +ir&d) z 4 {g y2d ~ -r2d)&k,
iran

fl2/ 2 ~2)1/2 (5. 5)

and q is the dielectric constant of the prism, which
we take to be real, isotropic, and independent of
the incidentfrequencyO. The first term on the right-
hand sides of E&ls. (5. 4) describes the incident
field, while the second describes the reflected
field.

The time-averaged flux of energy in an electro-
magnetic wave is given by the real part of the com-
plex ~oynting vector"

8= (c/8&r)Ex H* . (5. 5)

If we use the expressions for E and H given by

(5. 11b)
Of course, the conservation of the components of
H across the plane z= d yields no new conditions.

Equations (5. 1) can be solved for the amplitudes
A, and A~ with the results that

-&r dA1 ze ~ +i —8 1
k~, k~~ Qg

+-,'e-'r' —"—2' —' ~ re"*'1' (5. 12a)k„k), qg

A. =--e '2" ——i ~ —e "&'yy ~ y
2 2

k) k),
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+-'e'"2 (~k+i ~ ~ Re'")' . (5. 12b)
II II ~g

It only remains to satisfy the boundary conditions
at the plane z =0, the interface between the gap
and the crystal. Upon combining Eq. (5. 9a) with

Eq. (4. 8a), we obtain, from the conservation of the
tangential components of E across the plane g = 0,

A&2) -rp( & i~y +~ +& &(&—2e
k II k

I I ~g )

g(1) & +rp
2 =a~

II II ~g

g(2) & e+ Yp—28
k II k II 6g

(5. 18b)

(5. 18c)

(5. 18d)

&1+&2=~(1)+(2)+(3) (5. 13a) This result may be written in the form

Combining Eq. (5. 9b) with Eq. (3.34c), we obtain,
from the conservation of normal components of D
at the plane a=0, where

2"1~ 1 —2Q
~

I+iQ )(
' (5. 19a)

e,k„(A —A )
k„e, g& k„&2 g&

1 2 ~ (1) ~ (2) &

y2 n1 Qa
(5. 13b) ~~ ~y (M/N)+tushy, d

~, y, 1+(M/N)tanhy, d
(5. 19b)

A, +Ag=M(k„, Q)h (g& (5. 14a)

where we write this expression in terms of the pa-
rameters n, used in the discussion of surface
polaritons in Sec. III. Recall that the quantities
q, which appear on the right-hand side of Eq.
(5. 13b) are e(k„i&&&&, Q), where e(k„k, , Q) is the
frequency- and wave-vector -dependent dielectric
constant of the crystal.

The conservation of the tangential component of
H across the plane z= 0 yields no new condition.
The two additional boundary conditions (4. 9) may
be used to eliminate h~ and (&l~ from Eqs. (5. 13).
The resulting expressions become

Suppose for the moment the width d of the gap is
allowed to be very large, so that yad» 1. Then if
the conditions of the experiment are such that both

y, and y~ are real (the electromagnetic wave prop-
agates in the transparent prism, with its amplitude
exponentially attenuated in the gap region), then Q
is purely real, and the reflection coefficient I'
equals unity.

When yad is the order of unity, the wave inter-
acts with the crystal, and E drops below unity. If
the angle of incidence is 8, then

k, =—~,"asin6 .0 1/2
C

and

A, —Am = N(k„, Q)h &2),

where in the notation of Sec. IV

(5. 14b)

Thus, if the frequency 0 of the incident wave is
fixed, and the angle of incidence 8 is varied, k
may be swept through a large range of values. The
experimental work cited earlier shows that for
fixed 0, the ref lectivity suffers a sharp dip when

Q=Q, (k„),

(5. 15a)

It follows that

A& + A2 M(k(( ( Q)
A, —

A& N(k(( Q)
(5. 16)

(M/N) (A &) & A &~ & )
A + A ' —(M/N) (A) —A' )

(5. 17)

In view of Eqs. (5. 12), Eq. (5. 16) can be re-
garded as the equation determining the amplitude
R, and hence the reflection coefficient Il. Com-
bining Eqs. (5. 12) and (5. 16), we find that

where Q, (k„) is the surface-polariton frequency.
Then by observing the position of the ref lectivity
diy for various frequencies, the dispersion rela-
tion Q, (k„) may be mapped out. This is the tech-
nique used by Marschall and Fischer to obtain the
dispersion relation of the surface polariton in GaP,
in the region between the TO-phonon and LO-pho-
non frequency.

The relationship of the position of the reflectiv-
ity dip to the frequency and wave vector of the sur-
face yolariton follows from the preceding results.
Suppose that the gap between the crystal and the
prism is an air gap. Then q = 1, and the param-
eter ya= uo, where o'.0 is the parameter encountered
in Sec. IV [see Eq. (4. 2)]. Furthermore, suppose
d is sufficiently large that yad» 1. Then the
quantity Q is well approximated by the expression
(for q, = 1 and ym= no)

where

(5. 18a)

q-='" [I+2z(k„, Q) e-a"r'],
y1

where
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k Q
M(k»Q)-N(k Q)
jjf(k„, Q)+ ~(k„, A)

(5. 20) (5. 23)

Then after a short calculation, one finds for the
amplitude 8 of the reflected wave

where

~py d yg ZC06pBo= e ].
Pg + ZQofp

Under the conditions where the incident wave
suffers total internal reflection, tAO t = I, Then
in this case,

F = ~Z~'=1, ", &",~ s-"2'im[~(k„, Q)].

All of the information about the properties of
the crystal under investigation are stored in the
quantity &(k)) Q). From Eq. (5. 20) it is a short
calculation to demonstrate that

k(k)) Q) = S(kg A)/D(kg Q) (5. 22)

where the function D(kg A) is defined in Eq. (4. 12),
and

(k)), A) = 12 1(3F+ gg 1) (k)) - n'3o'2)

—&2(3 + o'2) (k))- &3&1) +k)) (2F+ &3) (132- &1)

+ o)0 [e2(3F+ o)2) (k11 n3121) e1(2F+ 131) (kll n3+2)]

Suppose we now consider the following idealized
experiment. Radiation is incident on the interface,
and the frequency ~ is varied while k „remains
fixed always. (Of course, as Q is varied, the angle
of incidence 8 needs to be varied if 0„ is to remain
constant. ) The frequency dependence of the reflec-
tivity is controlled by the frequency dependence of
h(k„, A) in this case. We have seen in Sec. 1V
that for a fixed value of k', , the denominator has a
pole in the lower half of the complex 0 plane. In
a lossless dielectric and in the absence of spatial
dispersion, this pole lies on the real axis, at the
surface-polariton frequency Q, (k„) given by Eq.
(2. 7). In the presence of spatial dispersion, the
pole is shifted off the real axis (the surface polari-
ton is now a virtual state), as we have seen in Sec.
IV. In the limit that A'„0, and retardation effects
are ignored, the pole lies close to the real axis,
as one can see from Eq. (4. 23). There will thus
be a sharp resonant structure in the function
4(k g Q) for Q near the surface-state resonance.
Let the pole occur at the (complex) frequency

Q8("II) = A8 (kll) —3Q8 (kll) ~

Then for A near Ag(kg) since the numerator
is a slowly varying function of frequency, to a good
approximation

(k, 8(k„, A, (k„))
ill

g n ns &~jj)

The ref lectivity thus exhibits a dip when 0 is
neal Ag(k)1), Tl1e dip llas a LOI'e)ltzian shape only
if the quantity n(k„) is real. The position of the
dip provides a measure of Q, (k„), and its width
provides a measure Q, (k„).

The present work shows there are two contribu-
tions to the width A8(kg) If the dielectric is lossy
[the parameter y in Eq. (3. jj) is nonzero], Q, (k„)
will be finite because the energy stored in the elec-
tromagnetic field is damped out by the presence
of dissipation in the medium. Second, when spatial
dispersion is present, the "leak" into the interior
of the crystal damps out the energy in the surface
wave even in the absence of dielectric loss. Thus, spa-
tial dispersion manifests itself by an increase in
width of the ref lectivity minimum over that expected
on the basis of the local dielectric theory, and the
position of the resonance is shifted by virtue of
the contribution of spatial-dispersion effects to
Q, (k,)).

The structure in the ref leetivity occurs near
Q, (k„) only in the limit y2d»1. When ygd is the
order of unity, the presence of the prism perturbs
the surface polariton and shifts the resonance posi-
tion somewhat, as Marschall and Fisher have
noted.

The width of the resonance is controlled by
A, (k„) only when A is varied with k)I fixed, as
assumed above in our analysis of the idealized ex-
periment. In general, both frequency and the wave
vector vary, if 8 is fixed and Q is varied. When
the frequency is fixed, and 6 is varied, then we
must consider the behavior of &(k„,Q) for fixed
real frequency 0, and varying real values of k,),
The width of the ref lectivity dip then measures in
essence the imaginary part of the wave vector of
a surface polariton excited by a driving field of
fixed frequency; i. e. , the width of the dip is con-
trolled by the quantity k'j~ ~, where

a„=u,N&+ e,"'
is the solution of

D(k„, Q) = 0,
for real values of the frequency O.

VI. EFFECT OF SPATIAL DISPERSION ON THE
REFLECTIVITY AND THE PROPERTIES OF SURFACE

POLARITONS; NUMERICAL STUDIES

We have carried out a series of numerical cal-
cuiat'. ons to explore the effects of spatial disper-
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sion on the properties of the model crystal dis-
cussed in Secs. II-V. In this section we describe
the results of these numerical calculations, and we
compare the behavior of the ref lectivity and the
properties of surface polaritons in the presence
of spatial dispersion with the predictions of the
local dielectric theory.

We first comment on the parameters employed
in the calculations. We have chosen the parameters
to describe the resonance in the dielectric con-
stant produced by the ground-state exciton in the
cubic semiconductor ZnSe. The ref lectivity of
ZnSe for frequencies near the fundamental absorp-
tion edge has been studied by Hite, Marple, Aven,
and Segall. ' These authors have extracted the os-
cillator strength of this exciton state from the data,
and they also provide a convenient table of prop-
erties of ZnSe.

The background dielectric constant [the eo of
Eq. (3. 8)] is found to be 8. 1, and the contribution
of the exciton level to the static dielectric constant
is 5. 5x10 . Thus, for this crystal,

Qp/Qr = 5. 5X 10

and in electron volts,

Az = 2. 8 eV.

(6. 1)

(6. 2)

Next consider the parameter D. If Er(k) is the
energy of the transverse exciton of wave vector 0,
and if the dependence of the exciton energy on k

comes about only because of the center-of-mass
motion, then

Er(k) =Sr(0) +, k',
2(me+ my

where m, and m& are the effective masses of the
electron and hole, respectively. For ZnSe, ' tQe
sum m, +m& assumes a value very close to the
free-electron mass. Then the function Qr(k)
= ~&+D4 of our model is given by

ga k
&r(k)' Er(0) &r(0) k2

so that

& r(0)
SZ~+ Ply

It is convenient to introduce a dimensionless
measure of the amount of spatial dispersion present.
We use a parameter & for this purpose, where

The results of calculations of the ref lectivity
are displayed in Figs. 4-6. In these calculations,
the parameter y in Eq. (3.8) was set equal to
10 A~. This value of y is similar in magnitude
to the damping constant employed by Mahan and
Hopfield in their analysis of the effect of spatial
dispersion on the ref lectivity of CdS.

In Fig. 4 we compare the ref lectivity in the
presence and absence of spatial dispersion, for
the case where the radiation is normally incident
on the surface, so that the angle of incidence 8 is
zero. The dashed line shows the frequency depen-
dence of the ref lectivity calculated from the local
dielectric theory (with D = 0), and the solid line
sho~s the ref lectivity computed when D assumes
the value in Eq. (6. 3). At normal incidence, the
principal effect of spatial dispersion is to decrease
the amplitude of the peak in the ref lectivity by a
substantial amount, while the dip in the ref lectivity
on the high-frequency side is not greatly affected.
In fact, if in a given experiment the sharp dip is
not completely resolved, so that an accurate mea-

I.O-

0.8—

8=0.0
D=O

———D/0

I-
0.6

I-
O
LLI

LLI

O

04
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in Eqs. (6. 1)-(6.3). We first describe the results
of the ref lectivity calculations, then we turn to a
study of the properties of surface polaritons and
the technique of frustrated internal reflection.

A. Reflectivity

6= eoD/c' .
For the parameters characteristic of ZnSe, we
find that

0.999
I

l.000 I.OOI

I

I.002

Z= 5xyp '. (6. 3)

All of the calculations carried outinthe remainder
of this section employ the numerical values given

FIG. 4. Frequency dependence of the ref lectivity in
the presence and absence of spatial dispersion, for the
case where the radiation is normally incident on the
crystal.
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thickness of the surface layer increases. They
also confine their attention only to the case of
normal incidence, and their mechanism produces
structure in this case. As one sees from Figs.
4-6, we obtain the ref lectivity peak above ~& only
for non-normal incidence, and only when the elec-
tric field is parallel. to the plane of incidence.

Thus, from an experimental point of view, it
would be a straightforward matter, in principle, to
distinguish between the structure present in Fig.
6 and that described by Hopfield and his collabora-
tors. The structure in Fig. 6 disappears at nor-
mal incidence where the electric field does not
excite the longitudinal wave, and at non-normal
incidence the structure appears only for one polar-
ization.

One may ask whether our model can be applied
to a real material, particularly since Hopfield and
his collaborators demonstrate quite clearly that
in CdS the surface layer plays an important role
in determining the form of the ref lectivity for fre-
quencies in the region where excitons produce struc-
ture in the dielectric constant. We feel that it is
not clear that the surface layer will play an im-
portant role in all materials. In the particular
case of ZnSe, at normal incidence, no anomalous
structure appears in the low-temperature reflec-
tivity data of Hite et al. It would be extremely
interesting to examine the ref lectivity of ZnSe for
frequencies in the vicinity of the fundamental ex-
citon absorption line at large angles of incidence
to see if structure similar to that in Fig. 6 would
appear. Indeed, we know of no ref lectivity studies
of exciton lines in III-V or II- VI semiconductors
at non-normal incidence.

B. Method of Frustrated Internal Reflection

In this section we describe the results of our
numerical studies of the ref lectivity dip observed
in the method of frustrated total internal

reflect-

ionn. The geometrical configuration utilized in
such an experiment is discussed in Sec. V, where
an expression for the reflection coefficient is Ob-

tained, and several of its properties are dj.scussed
from a qualitative point of view.

The numerical studies have been carried out for
the case where the ref lectivity dip is produced by
the surface polariton formed from the gg ound-
state exciton in ZnSe. It should be mentioned that
to date all of the experiments reported so far have
employed infrared radiation, and have explored
the ref lectivity dip produced by the sup face polari-
ton that exists in the frequency region between the
k= 0 TO-phonon frequency and the k= 0 Lo-phonon
frequency. Thus, in this section, ti)e frequency
region we explore is in, the visible, near 2. 8 eV
for the ground-state exciton in ZnSe. In principle,
it should be possible to apply the technique of frus-

trated internal reflection in the visible as well as
in the infrared. We choose to carry out the nu-
merical studies for this case since spatial-disper-
sion effects can be significant in the study of ex-
citons, as we have seen in the calculations of the
reflection coefficient just described. However,
for phonons, the damping constant y is sufficiently
large and characteristic values of Dk„so small
that observation of spatial-dispersion effects will
prove very difficult, if not impossible.

We have carried out the numerical studies of
the ref lectivity dip observed in the frustrated-in-
ternal-reflection method for the parameters in-
troduced at the beginning of this section, choosing an
air gap between the prism and the sample (s~= 1),
and choosing the dielectric constant e~ of the prism
equal to 15. We choose a large value of c'~ so that
the wave is totally reflected from the prism-gap
interface for a wide range of incident angles. The
value of c~ chosen affects the range of k~, that may
be explored by the frustrated-internal-reflection
method, but for sufficiently large d, the width and
position of the ref lectivity dip is independent of e~,
as we may see from the discussion at the end of
Sec. V. The angle of incidence 8 was varied from
20' to 80', in increments of 10', and at each angle
the dependence of the ref lectivity on frequency was
computed. The shape of the ref lectivity dip was
examined for each value of 8. The thickness of the
air gap was chosen so that when 8= 20', the param-
eter y, d of Sec. V assumed the value unity.

The ref lectivity dip at 8= 20 is exhibited in
Fig. (7a), and the ref lectivity dip at 8=80' is pre-
sented in Fig. 7(b). The full form for the reflec-
tivity coefficient given in Eqs. (5. 1S) was used in
the calculations. However, for this value of y~d,
the results are well approximated by the approxi-
mate form in Eqs. (5. 21). As a consequence, we
interpret the results in terms of this latter equation.
Also, the value of the damping constant y was set
equal to an unrealistically small value, so that
the shape, width, and the position of the ref lectivity
dip are controlled entirely by spatial-dispersion
effects. W'e shall comment briefly on the effect of
a realistic value of y later in the present section.
Next we comment on several features of the results.

First of all, since the oscillator strength of the
exciton level is small, the magnitude of the reflec-
tivity dip is much smaller than the magnitude of
the dip observed in Ref. 3. At 8= 20, the maxi-
mum value of the fractional change AR/It 0 in the
ref lectivity is roughly 2&10 '.

The curves in Fig. (7) are not Lorentzian in shape,
but are distinctly asymmetric. This is expected
from the limiting form in Eq. (5. 23), since the
numerator in this expression is complex. This
means that the position and the width of the reflec-
tivity dip are not simply related to Re[40, (k„)] and
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FIG. 7. Reflectivity dip appropriate to the frustrated-
internal-reflection experiment for the angle of incidence
II)1 equal to (a) 20' and (b) 80'. The parameters employed
in the calculation are described in text. The position of
the bulk longitudinal exciton is marked by the vertical
arrow. The horizontal bar is the width of the ref lectivity
dip predicted from the width of the virtual-surface-polari-
ton state predicted by Kq. (4.23).

Im[&Q, (kI)], respectively, where AQ, (kI) is the com-
plex shift in frequency of the surface polariton pro-
duced by the presence of spatial dispersion. An

approximate expression for these quantities is given
in Eq. (4. 23). Nonetheless, we do expect these
two quantities to provide semiquantitative estimates
of the contribution to the width and position of the
dip from spatial dispersion.

The effect of spatial dispersion on the position
of the ref lectivity dip is particularly evident in
Fig. 7(b), since the minimum in the ref lectivity
lies above the frequency of the bulk longitudinal
exciton. In the absence of spatial dispersion, the
frequency of the surface polariton always lies be-
low the frequency of the bulk longitudinal exciton,
in the gap between the bulk transverse- and longi-
tudinal-exciton frequencies, as explained earlier
in this paper [see Eq. (2. 7)].

In Fig. 7(a), notice the distinct change in slope
of the wing of the ref lectivity dip at the frequency
&I, of the bulk longitudinal exciton. This break
in slope appeared distinctly in all of the calcula-
tions for which the minimum in the ref lectivity
was well below Qz, . The physical origin of the
break in slope lies in the presence of the longitudi-
nal (or irrotational) wave component present in the

surface polariton, in the presence of spatial dis-
persion. When Q=Qz, (k„) [=Qr, (0) for the values
of kI relevant here], this irrotational wave changes
from a spatially damped wave to a propagating one.
This produces an increase in the width of the vir-
tual surface polariton.

We have computed the quantity 2Im [&Q,(k„)] from
Eq. (4. 23) for the parameters employed here, and

compared the result to the features in Fig. 7. Of
course, the expression in Eq. (4. 23) was derived
only after retardation effects were ignored. Fur-
thermore, since the ref lectivity dip is skewed by
the presence of the imaginary part of the numera-
tor in Eq. (5. 23), the width of the ref lectivity dip
is not controlled only by Im[&Q, (k„)j, as remarked
above. Nonetheless, the expression in Eq. (4. 23)
does provide a good semiquantitative estimate of
the width of the features in Fig. 7, and the varia-
tion of the width with 8. The solid horizontal bars
in Fig. 7 represent the quantity 2lm[40, (k„)]for
the two values of 8.

One can see quite clearly from the expression
in Eq. (4. 23), and also from the results displayed
in Fig. 7, that the width of the virtual-surface-
polariton state produced by the presence of spatial
dispersion increases as the wave vector OII or the
angle of incidence 8 increases. When dissipation
is present in the dielectric, there is a contribution
to the width of the ref lectivity dip and the decay
rate of the surface-polariton state simply from
the presence of dissipation. This latter contribu-
tion behaves quite differently from the former as
a function of 8 or, equivalently, of 4'll. As 8 de-
creases, and the surface-polariton frequency sinks
toward 0&, the latter contribution increases, since
the fr equency of the surf ace polariton moves to-
ward the region where the imaginary part of the
dielectric constant is large. Thus, in the presence
of both spatial dispersion and losses in the dielec-
tric, the width of the ref lectivity dip should be
large for k„small enough for the dominant contri-
bution to the lifetime of the surface polariton to
come from the dissipation present in the medium.
As ~ II is increased, and the frequency of the mode
increases, the width of the ref lectivity dip should
decrease and pass through a minimum to begin to
increase as k„becomes large enough for the domi-
nant contribution to the width of the surface polari-
ton to arise from spatial-dispersion effects.

Next consider the contribution to the frequency
of the surface polariton from spatial-dispersion
effects. The frequency shift produced by spatial
dispersion in the absence of retardation, and in
the long-wavelength limit is given by the real part
of the right-hand side of Eq. (4. 23). As remarked
above, it is clear from Fig. 7(b) that there is a
large contribution to the frequency of the surface
wave from this effect, since the ref lectivity mini-
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mum lies above the frequency of the bulk longitu-
dinal exciton.

There are two distinct contributions to the vari-
ation of the frequency of the virtual surface polari-
ton with 0„. First of all, in the absence of spatial
dispersion, the frequency A, (k„) of the surface
polariton increases with k„simply because of re-
tardation effects. One can see this from Eq. (2. 7),
which gives the form of the surface-polariton dis-
persion relation in the absence of spatial-disper-
sion curves. Then, when spatial dispersion is in-
cluded, there is an additional contribution to A, (kg),
as we see from Eq. (4. 23). Thus, a plot of the
frequency of the ref lectivity minimum against 8, or
against 4'~~, will contain contributions from these
two sources. In order to extract the contribution
to the frequency of the surface polariton from
spatial dispersion from the numerical calculations,
we have used the following approximate procedure.
Let &A(kg) be the shift of the ref lectivity minimum
above Az, as determined from the numerical calcu-
lations. Then let &A„&(k„)be the shift in the sur-

face-polariton frequency above 0&, if only retar-
dation and not spatial dispersion is present. This
quantity may be calculated from Eq. (2. 7). We
then define &Aan(k„) from the relation

&A(k ii) = &Asst (k ii) + &Aan(k ii), (6.4)

and we use &Aan(k„) as a measure of the effect of
spatial dispersion on the frequency of the surface
polariton.

There are two assumptions in this procedure.
First of all, the two contributions to the frequency
of the surface polariton will be additive only for
sufficiently small values of Dk„. Vile assume this
condition is satisfied. Second, since the numera-
tor in Eq. (5. 23) is complex and the ref lectivity
dip is skewed as a consequence, the quantity
EA»(k„) determined from Eq. (6. 4) is not strictly
the real part of &A (kI) even if the additivity as-
sumption is valid. The two quantities are equal
only if the numerator of Eq. (5. 23) is purely real,
and the ref lectivity dip a Lorentzian as a conse-
quence.

The values of &Q»(k„) determined in the manner
just described are presented in Fig. 8, where this
quantity is plotted against ck„/Ar. From Fig. 6
it is clear that the dominant contribution to EAsn(kI)
comes from a term linear in 4'„, as one would ex-
pect from Eq. (4. 23). The dashed line in Fig. 6
is a straight line drawn through the point k„= 0,
&Asn(kt~) = 0, and through the smallest values of
&Ag(k ~~), While a contribution quadratic in k g ls
visible in Fig. 8, the dominent contribution comes
from the term linear in k,). The slope of the
dashed line in Fig. 8 is quite close to the value
computed from the real part of the right-hand side
of Eq. (4. 23). The slope of the dashed line is lar-
ger than the value computed from Eq. (4. 23) by
30%. We conclude that the expression in Eq. (4. 23)
provides a good semiquantitative estimate of the
shift in frequency of the surface polariton produced
by the presence of spatial dispersion.
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A model-pseudopotential method for calculating the states of a valence electron in a solid (such as a
conduction or localized electron) is developed. This is done by using atomic model pseudopotentials and

the expansion of the valence-electron state in terms of the complete orthonormal set of atomic model

pseudo-wave-functions. By this expansion, the operation of the atomic-pseudopotential operator on the

pseudo-wave-function of the valence electron is changed into the operation of the atomic pseutopotential

on the atomic pseudo-wave-functions. A model pseudopotential suitable to this method is suggested. In
the case of the positive ions where bound states are available, the quantum-defect data for them are

used to determine the necessary parameters. In the case of a negative ion with no open cores the
integro-differential equation for the electron scattering problem is solved. The necessary parameters are

then determined from the solution. This method is tested in the case of a localized electron by

calculating the optical ionization energy of the I' center in the ground state for &Cl. It is found that
the method gives satisfactory results.

I. INTRODUCTION

The calculation of the states of a valence electron
(i. e. , a noncore electron) in a solid is a compli-
cated problem. Among other things, one has to
take into account the effect of the presence of the
core electrons, such as direct and exchange inter-
actions, correlations, etc. Since a complete solu-
tion of the many-body Schrodinger equation for the
interacting electrons and nuclei is out of the ques-
tion, one has to resort to different kinds of approxi-
mations.

In the usual Hartree-Pock (HF) approximatiOn,
the correlation and other minor effects, e. g. ,
relativistic effects, have been neglected. The core
states are just taken to be free-ion core states,
thereby neglecting some crystal effects. Even in
this approximation, the solution of the HF equation
for a solid is still not easy, in that a large g,mount
of computation has to be done. This is particularly
true when the situation becomes more complicated,
e. g. , in imyurity-state calculations.

Another method to tackle this problem is pro-
vided by the theory of pseudoyotentials. ' Already,
a number of yseudopotentials have been suggested.

These fall into two classes. In one, the core states
are included explicitly. A well-known example is
Austin's pseudopotential, V~&', which is defined by

for an arbitrary ket ) P). Here, as in the rest of
the paper, we denote the spatial one-electron core
states by )g, ), and the atomic-core potential oper-
ator by V, .

Another well-known example of this class is the
Philip and Kleinman pseudopotential, which is de-
fined by

I
I y) = I'. Ie&+~ (E E.)(t. e&lt.-&

for arbitrary ) P). Here E is the energy of the state
) P) and E, are the core energy levels.

For both of these, an exact form of V, has to be
known. In actual applications, V, is usually taken
as the HF potential, neglecting correlation and other
minor effects. Even in this ayproximation, the
solution of the yseudoeigenequation is by no means
easy, especially in the solid case.

In the other class, it is assumed that the pseudo-
potential has some simple analytic form, with pa-


