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A model potential previously applied to molecules is adapted to the study of structural trends in
solids, The potential, which has simple analytic one-electron eigenfunctions and eigenvalues, is based
upon a Pauli-force concept and retains the salient features of ab initio pseudopotentials. The
eigenvalues are of the quantum-defect form, so that treatment of the energy dependence of the potential
parameter is particularly straightforward. A form factor is calculated in a local-screening approximation,
and algebraic expressions for a core radius r, and the form-factor node qo are obtained. These
expressions have transparent physical interpretations, and form the basis for a discussion of chemical
trends in r, and qo in terms of a few simple parameters. The connection with well-known local model
potentials is briefly explored.

I. INTRODUCTION

During the past few years, the pseudopotential
theory of solids has reached chemical fruition in
the systematic treatments of covalency by Phillips'
and of metallic cohesion and structure by Heine and
co-workers. ~ Progress in the application of the
method to molecules has been less rapid. Recently,
however, one of us has shown' that certain trends
in molecular structures are described by a simple
model potential which may be understood in terms
of a Pauli force" between core and valence elec-
trons. The potential has analytic one-electron
eigenfunctions and eigenvalues, and leads natural-
ly to useful constructs such as orbital electroneg-
ativities and comparative hybridizations.

In this paper we establish a basis for interpreting
structural trends in solids in terms of this same
model potential. In adding yet another model po-
tential to the assortment already available, we are

not primarily concerned with matching the accuracy
of successful calculations already in the literature;
rather, we seek chemical insight into their results.
From this point of view, the choice of a potential
having analytic eigentunctions and eigenvalues is
especially attractive in that it circumvents much
of the mathematics associated with the usual model
potentials. In particular, the connection between
potential parameters and atomic spectral data is
algebraic, and in terms of these parameters we
are able to develop simple expressions for struc-
turally important quantities normally accessible
only to numerical calculation, These new expres-
sions lend themselves to straightforward physical
interpretation. Insofar as the physical basis of
our potential is different from others, such inter-
pretation offers alternative descriptions of struc-
tural trends, and in some cases may elucidate
their chemical nature more clearly. Moreover,
the use of a potential which has already been ap-
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plied to molecules offers the prospect of interre-
].ating structural trends in molecules and solids,
with the aim of understanding both in terms of
trends in a single set of atomic properties.

II. PAULI-FORCE MODEL POTENTIAL

A. General Considerations

Ab initio pseudopotentials for various atoms have
been determined by Szasz and McQinn and by Kahn
and Goddard. These potentials are nonlocal oper-
ators which may be written as

V(r)= ~ Vi(r)&i,

where 5 & is the projection operator over the sub-
space of spherical harmonics of angul. ar momen-
tum quantum number /. In general, the l-depen-
dent functions V, (r) exhibit the following properties:
(a) At large distances r, the dominant term in

V, (r) behaves as —Z/r, where Z is the net charge
of the core system. (b) If the core contains or-
bitals of a given I, then V, (r) possesses a local
minimum at an x corresponding to a core radius.
Inside this radius there is a large positive potential.
barrier, beyond which V, (r) faLls to negative infin-
ity at very small r. (c) If the core does not con-
tain orbital, s of a given /, there is no potential bar-
rier and V, (r) approaches negative infinity without
a local minimum. 8

Unfortunately, the ab initio pseudopotentials are
numerically unwieldy and difficult to use either in
large calculations or in interpretative studies. We
therefore seek a model potential which retains the
salient physical. features of these yseudopotentials,
but avoids. their mathematical complexity.

We begin by recalling that empirically, the va-
lence energy spectrum of a monovalent atom is
well represented by the quantum-defect formula9

(2)

where C is a constant, n is the principal quantum
number, and the quantum defect 5 is a function of

It is natural to surmise that a model. potential
whose eigenvaLues are of the form (2) and which
has the above properties (a)-(c) might be a good
approximation to the atomic pseudopotential. This
is, in fact, the case. The model. potential

which has been successful. ly appl. ied to both atoms'0
and molecules, ~'~ has analytic eigenfunctions with
eigenvalues of the farm (2). The dominant long-
range term in the potential is clearly —Z/r, as in
(a). For B, positive, the model potential possess-
es a, large positive barrier at smal. l r, as in (b);
the failure to approach negative infinity at very
small z is chemically unimportant, as there is

little valence-orbital density near the origin. '~ If
I3, is negative, there is no barrier in the potential,
as in (c).

The general features of this model potential (as
well as those of the gb initio potentials) may be
simply understood. W'here there are core orbitals
having the / quantum number under consideration,
the pseudopotential replaces the core-valence-
orthogonality requirement by a repul. sive Pauli
force which acts to keep val. ence electrons out of the
core region. The Paul. i force leads to a positive
B, and a potential barrier. In case (c), however,
the core and valence orbitals are al.ready orthog-
onal, . Here the dominant effect is the polarization
of the core system by the valence electrons, which
creates a charge-induced dipole interaction. The
resulting negative values of 8, can be interpreted
in terms of an effective core dipole, and indeed
can be estimated from core polarizabilities. ~0

8. Core Radius and Cancellation Theorem

Before proceeding further, we note that the mod-
el potential. s commonly applied to sol. ids are rather
different from the ab initio pseudopotentials and
from the model potential presented here. Specif-
ically, inside some effective core radius the con-
ventional model potentials are set equal either to
zero (the "empty-core" model of Ashcroft's) or to
a small. I-dependent constant (the Heine-Abarenkov
modeL potential'4). A primary motivation for such
a choice l, ies in the cancellation theorem, which
in its simplest form states that for functions which
are smooth'5 on the scale of the core radius, the
matrix elements of the pseudopotential. evaluated
over core space are small. ~ If we approximate
the smooth wave functions by constants in the core
region, the theorem requires that

(V)„= j J f ' V(r) r~drsin8d8dP=Q . (4)
0 0 0

Clearly, if V(r) is zero or small in core space,
the cancellation theorem is satisfied. We empha-
size, however, that this is not a necessary re-
quirement: if V(r) has regions af both negative and
positive sign, (V)„may be small regardLess of
the magnitude of V(r) at a given point.

To illustrate, we evaluate the integral in (4) for
a local. form of our model potential,

V'-(r) = Z/r+ B/r' —.
We take the core radius to be the cl.assical station-
ary point at which the repulsive Paul. i force is
equal to the nuclear attractive force —that is, the
minimum in V'"(r). Thus

r'- = 2B/Z
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(V)„,=4~( -.'Z—~,'+E~,)=O.

If smooth functions are used in (4) instead of con-
stants, (V)„, is no longer identica. lly zero, but is
in general still small. Thus the model potential
employed here, while not motivated by the cancel-
lation theorem, does satisfy it formally, and has
the additional advantages of resembling the gb in-
itio pseudopotentials, possessing analytic eigen-
funetions and eigenvalues, and yielding a core ra-
dius as the natural consequence of a balance of
forces.

C. Radial I Numbers

(9)

/' = /'(/, E) .
Then if the potential (3) is to be applied accurately
to solids, it is necessary to evaluate the l 's at the
Fermi energy E~'7; we designate the result as

/(/) = / (/, E~ ) , (11)

and denote the corresponding value of B, as S,.

The analytic eigenvalues of the Pauli-force model
potential constitute algebraic relations between ex-
perimental atomic-term values and the potential pa-
rameters J3, . In this section we cast these rela-
tions ln a pax tleul. ax ly simple form, and dexnon-
stxate that, i.n principle, the probl. em of evaluating
these parameters at energies appropriate to solids
adds no important complications.

Jf the S,'s are rewritten as"6

E, =- -,'[/'(/', + I) —/(/+ I)], (3)

where / = / (/), then the radial Schrodinger equa-
tion is of hydrogenic form with l replaced by E .
The eigenvalues

E(m, /, /, Z) =. —Za/2(n+ / —/)~

are of the quantum-defect form (2) with 6=/ —/.
In this formulation, all information regarding core
effects on the valence system is contained in the
charge g and the '"radial l numbers" l .. The ra-
dial. E numbers, in turn, are antecedent to tradi-
tional. eonstruets such as hybridization, orbital
electronegativity, and core radius. '

Inasmuch as they are determined directly from
atomic spectral, data according to the simple al.—

gebraic formula (9), the genesis of the / 's in
atomic structure is transparent. In this respect,
the Pauli-force model potential offers certain corg-
putational and conceptual advantages over the
Heine-Abarenkov potential, '4 whose corresponding
paraxneters g„are available from experimental
data only through auxil. iary numerical. procedures
for DIatching wave functions at a core radius.

Now it is well known that the quantum defect
6(/) is a function of the energy, so that (9) becomes
exact onl.y if we write

We now argue that / (/, E) is a smooth function of
the energy which can, in principl. e, be extrapol. ated
from the ionic-term values (9) to obtain /(/).

When (3) and (8) are employed in the radial
Schrodinger equation, the solution, regular at the
ox'1gin~ ls

8, , (r ) = C(p, / )r ' e~ E(l —p
~

2/'+ 2
~
2 y r), (12)

where C is a constant, I' is the confluent hypergeo-
metric function of the first kind, P = Z(2E) '~ —/',
and y= 2/(P+/ ). At the eigenvalues (9), P=n —/,
and R~,.(x) can be regarded as a hydrogenic radial
function R~, , (r) with integral p but with nonintegral
l. This is to be contrasted with the usual. quantum-
defect formulation 8 (appropriate, for example, to
the Heine-Abarenkov model potential' ' '

), where
the experimental quantum defect is manifested at
eigenvalues as a nonxntegral p with integral /. In
an expression such as (9), the distinction is, of
course, merely formal, but the same is not true
for the wave function (12). The transfer of the
quantum defect from the first to the second index
of the confluent hypergeometric function has im-
portant consequences for the behavior of the defect
as a function of energy. If (12) and its derivatives
are to be bounded for finite r and regular at the
origin, /'(E) must remain analytic and can never
cross a negative integer. Moreover, it is imme-
diately clear from inspection of (12) that /'(E) has
no forced zeros" or rapid oscillations in the sense
discussed by Ham. ' As a consequence, unlike the
usual representation of experimental quantum de-
fect, '~ 20/'(E) is a smooth function of the energy,
which can be plotted and extrapolated directly from
the term values (9). For energies at and below the
lowest valence eigenvalue P = 1, the resulting ra-
dial wave functions (12) are nodeless (except at
the origin); at all valence energies they are

smooth" in the sense of Sec. IIB.

III. STRUCTURAL PARAMETERS AND CHEMICAL TRENDS

Having established a physical and mathematical
basis for the application of the Pauli-force model
potential to solids, we are in a position to under-
take a full calculation of the nonlocal form factor,
and to apply the results to structural calculations
in the usual manner. Preliminary work ' indicates
that, at least in the region q & 2 k+, form factors
comparable to those of Animalu and Heine' and of
Shaw are available at a substantial saving of
computational effort.

In this paper, however, we eschew the full cal-
culation in favor of a series of approximations de-
signed to retain the physical transparency of the
Pauli-force model potential. These are not nec-
essarily adequate for detailed calculations of the
form factor, but we shall find them quite sufficient,
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so long as we limit our attention to a few important
structural parameters. Inasmuch as the role of
these parameters in determining structure is, for
the most part, well established, we obtain by this

back-of-the-envelope" approach a set of simple
expressions which directly relate chemical trends
in solids to trends in atomic structure.

A. Form Factor V(q)

To begin, we express the screened Fermi-sur-
face form factor V(q) in the approximation that the
dielectric screening is regarded as local. For our
present purposes, we find it sufficiently accurate
to write

V(q, k) = (k+ q
~

V
~

k )/e(q),
where c(q) is the usual Lindhard dielectric function
modified to account, for exchange and correlation. 3~

After expansion of 8' ' in spherical harmonics,
the matrix element of the Pauli-force model po-
tential in (13) is

&(k+q
i Vik) = —

2 + 4wZ(2l+ l)B,I', (cos&p, p„)

f »( Ik+ q lh)j ~(kh)ch, (14)

where 0 is the volume of a unit cell, and I'& and j&
represent Legendre polynomials and spherical
Bessel functions, respectively. By converting to
ordinary Bessel functions and applying a theorem
given by Watson, we obtain

4mZ
V(q, k)=-—~ ——

nq e(q)

P, (cosef g„-) (0&/k&)"'i'
( )

&~(q)(n 0 )"'

Here k& is the lesser of
~
k+q~ and

~
k~, while A, & is

the greater.
If we confine our attention to scattering on the

Fermi sphere, so that

~kI= ~k+q~ =u„q &2a,
(18)

then (15) is reduced to

—4wz 2' r- —k

f ()

q&2u, . (lab)

For q& 2k„ the form factors (17a) are usually in
good agreement with those calculated by Animalu
a,nd He&ne'7 from their model potential based upon.

2Zu~

mg, B(P,(1 —qo/2k'~)
(18)

Equation (18) can usually be solved exactly, but
we find it more instructive to simplify the expres-
sion slightly. We recall that although qo itself
varies considerably among the elements, qo/2k'
remains very nearly constant. In fact, Heine and
co-workers have found that for some 23 elements,
the average value of qo/2k& is

(qo/2k')„=0. 82,
with a standard deviation of only 0.05. To be sure,
these deviations do contain basic chemistry ' and
are often of central importance in determining
structure, but (19) remains sufficiently accurate
that little is lost by substituting it into the argu-
ments of the Legendre polynomials of (18):

2Zk,
~g, JI,P, (-0.848)

We are now ready to calculate qo, given reliable
values of 8, . In Sec. IIC we remarked that I (E)
is a slowly varying function of the energy which
can, in principle, be extrapolated to the Fermi

the cancellation theorem. For large q, however,
the region of real spa, ce close to the nucleus —where
our model potential does not always behave like
the ab initio pseudopotentials —is emphasized, and
the convergence of (17b) to zero as q- ~ is com-
paratively slow. We have already remarked that
bonding in real space is dominated by regions of
high-valence electron density, away from the nu-
cleus; in reciprocal space this corresponds to the
familiar observation that structural trends are de-
termined largely by the behavior of V(q) in the re-
gion q&2kh. We therefore expect (17) to render
structural and chemical information faithfully, but
to be of doubtful value for computing phonon spec-
tra or other properties sensitive to the high-q be-
havior of the form factor. Presumably the latter
situation could be improved by inclusion of a damp-
ing factor in (17b), but we have not pursued the
point. We are concerned here not with the utility
of (1Vb), but with the chemistry and physics im-
plicit in (17a).

B. Algebraic Expression for q

It is well known that the gross shapes of V(q) for
diverse elements are remarkably similar"; the
function is negative for small q, usually crosses
the axis at a point qo, passes through a maximum,
and is damped for large q. The structural sig-
nificance of the node qo has been extensively docu-
mented '; chemically, it is undoubtedly the most
important single parameter describing the form
factor. From (17a), qo is given (in atomic umts)
by
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TABLE I. Approximate l parameters for solids. ~ is again employed in (20) to obtain

Elements

Li
Na
K
Rb
Cs

Be
Mg
Zn
Cd

Hg
Ca
Sr
Ba

B
Al
Ga
In
Tl

t(0)

0.588
0.627
0.770
0.805
0.869

0.729
0.906
0.740
0.794
0.703
1.141
1.221
1.332

0.797
1.075
1.011
l.090
1.026

1
1.117
1,234
1.288
1.351

1
1.265
l.140
l.199
1.157
1.497
1.604
1.721

1
1.371
1.333
1.439
1.435

t(2)

2
2
l.854
l.767
l.552

2
2
2
2
2
1.313
1.432
1.414

2. 44Z

g, B, P, ( —0. 345) (21)

Inasmuch as it is approximately proportional to the
attractive term of the model potential divided by
the repulsive term, qo may be regarded as a "bal-
ance point" between the attractive Coulomb force
and the repulsive Pauli force. As before, the
Legendre polynomials are weighting functions
which determine the contribution of each /. com-
ponent.

Table II shows that qo increases dramatically
across a row of the Periodic Table. According to
(21), this is due to the large increase in core
charge; this increase is far more important than
any change in the repulsive term.

%'ithin a column of the Periodic Table, qo de-

C
Si
Ge
Sn
Pb

P
As
Sb
Bi

~Calculated as

0.837
l.196
1.182
1.312
1.268

1.287
1.330
1.471
1.464

1.358
1.448
1.602

described in the

1
1.450
1.480
1.626
1.644

1.510
1.602
1.754
1.819

l.559
l.699
l.862

Appendix.

Elements

Li
Na
K
Rb
Cs

Be
Mg
Zn
Cd

Hg
Ca
Sr
Ba

k+

0.5890
0.4882
0.3947
0.3693
0.3412

1.0287
0.7242
0.8342
0.7423
0.7213
0.5865
0.5380
0.5188

qo [gq. (27)]

0.90
0.83
0.61
0.56
0.48

1.44
1.14
1.37
1.25
1.34
0.73
0.70
0.66

TABLE II. Values of qo.

qo (accepted)

0.91
0.8V (0.9V)

1.44
1.13 (1.13)
1.42 (1.42)
1.28 0..28)
1.27 (1.33)
0 vgc

0.75~

o.64'

energy. In the present simplified context, how

ever, we dispense entirely with this intermediate
step in the analysis, and instead present in the Ap-
pendix a scheme for estimating l(l) by inspection,
directly from atomic spectral data. The approxi-
mations involved are not, in general, serious, and
are so chosen that the errors they do introduce tend
to compensate for the inaccuracy of replacing (18)
with (20). The results for SQ elements are listed
in Table I.

Values of qo calculated from (20), (8), and Table
I are compared to a,ccepted values in TaMe D. Our
results agree closely with the values determined
from the Heine-Abarenkov model potential ' and
with those obtained by fits to experimental data.
The results for elements which do not possess low-
lying d states generally agree to within a few per-
cent; both the new and the old qo's for the remain-
ing elements are less certain.

C. Trends inqo

The variation of Q'0 through the Periodic Table
becomes more transparent if the approximation (19)

B
Al
Ga
In
Tl

C
Si
Ge
Sn
Pb

P
As
Sb
Bi

l.2177
0.9276
0.8776
0.7972
0.7738

l.4594
0.9590
0.9206
0.8674
0.6350

1.0008
1.0065
0.8986
0.8520

1.80
1.40
1.43
1.32
1.37

2.20
1.53
1.53
1.40
1.43

1.66
1.65
1.47
1.43

l.87
1.35 0.39)
1.4O (1.49)
1.32 (1.43)
1.39

2.25
1.5O (1.53)
1.53 (1.60)
1.42 (1.46)
1.4V (1.5O)

1.64 (1.68)
1.63 (1.65)
1.48 (1.5V)
1.4v (1.50)

(1.77)
1.67 (1.75)
1.53 {1.64)

S 1.0158 1.76
Se 0.9927 1.69
Te O. 9209 1.53

aFrom Ref. 3.
"From Ref. 3 unless noted otherwise. EVhere two entries

appear, the first is from the form factors of Ref. 17,
while the value in parentheses was obtained by fits to ex-
perimental data.

~From A. O. E. Animalu, Proc. Roy. Soc. Lond. 294,
3V6 (1966).
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It is occasionally preferable to frame discussions
of structural trends in solids in terms of the core
radius z, rather than the form-factor mode qo.
Certainly a transformation to real space is con-
venient if comparisons are to be made between sol-
ids and molecules. Here we show that as they are
defined by the Pauli-force model potential, qo and

z, are equivalent in chemical content.
For the local form of our model potential [Eg.

(5)], (18) becomes

qo- = 2z/Bm . (22)

Recalling the definition (6) of the local core radius,
we obtain

1oc 1oc 4/

Equation (23) is reminiscent of a result of Ash-
croft's "empty-core" model, 3

1
Co&c —

& & ~ (24)

This similarity between relations derived from
quite different model potentials suggests that an in-
verse proportionality between qo and z, may exist
generally.

Now if the definition (6) is extended to a nonlocal
potential so that

r, (I) =- 2i, /Z, (25}

we can write the summation in (18) as a weighted
sum of l-dependent core radii:

creases from the first- to the second-row elements
and then levels off with only small changes. From
Table I and (21), we find that the former effect is
due to the substantial increase in /(0) from the
first- to the second-row elements. The increase
is large enough to smother the effect of the change
in I(1); this is perhaps surprising inasmuch as the
unique properties of the first-row elements are
usually attributed ' to a strong l = 1 component of
the potential arising from the absence of core p
states. The behavior among the heavier elements
results from small changes in l(0) and l(1), which
tend to cancel. We conclude that the attractive-
repulsive balance in (21) is sufficient to rationalize
trends in qo.

D. Trends in Core and Atomic Radii

relation between qo and r, of the form of (23) and

(24). In fact, combining (2V) and (18), we find that
such a relation holds to the degree that

qo/2k' = const . (28)

We have already remarked, in the discussion fol-
lowing (18), that (28) is a good approximation over
much of the Periodic Table. It now becomes clear
that this result, which we introduced earlier as an
empirical observation, can be regarded as a con-
sequence of the inverse relationship between qo and

r, . Making use of (19) in (26) and (2V), we finally
obtain

r, =C Q ' P ( —0. 345),
2

(29)

Simplifying approximations to the pseudopotential
form factor have often taken the form of local mod-
el potentials characterized by one or more adjust-
able parameters which can be fitted to experimen-
tal data or to the results of more sophisticated cal-
culations. We can make contact with this work by
fitting these parameters instead to the results of
Secs. IIIA-IIID.

For example, the adjustable parameter in Ash-
croft's "empty-core" model potential, ~3

y "(r)= 0,

where C is a constant.
It is informative to compare (29) with the atomic

radius r„Re.calling the definition k„=- (sw~Z/0) ~,
and applying (28) and (20), we have

Ps

r„=CZ,'„P,(-O. 345), (so)

where C is a constant, not the same as in (29).
Both atomic and core radii increase with an in-
crease in the repulsive part of the potential, and
decrease with an increase in the core charge S,
in accord with chemical intuition. Moreover,
comparing (29) with (30), we obtain the relation

r,/r„z '", (31)

which states that as the net core charge increases,
the core radius decreases faster than the atomic
radius. The same result has been noted by Heine
and Weaire, and is closely related to the trend
toward more open structures from left to right
across the Periodic Table.

E. Relation to Local Model Potentials

= —Z/r, r &r, (32)

This last relation implies a tentative definition of
the core radius of an atom in a solid,

r, = XX, r, (f)P, (I —q,'/2a,'), (2V)

where N is some appropriate normalization factor.
The arguments of the Legendre-polynomial weight-
ing factors have been chosen so as to generate a

is, of course, the core radius r,. If it is chosen
so as to give the accurate value (20) for qo in the
form factor, then according to (24), Ashcroft's
core radius r,"differs from (29) only by a factor
qo/&r.

r", = ~a~ c Q 'P, (-0.345) . — (332k~, g
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(34)

for all q —2k&. The resulting form factor is

q —4' I 1
V"(q) =———3- —

2Qe(q) qa q20
(35)

which retains the correct behavior at q = 0 and q
=qp. %e have labeled this result with the super-
script, H, because V"(q) is simply the Fourier
transform of Harrison's early "point-ion" local
model potential,

V"(r) = —Z/r+ p6(r) . (36

The present derivation" makes it clear that the
effective strength P of the Harrison 5 function is
given by a weighted sum of the Pauli-force param-

JL

ters B).'

2F a'p
p=

g
~~ISA 1 —

2 2
l 2k~

It also invests P with a degree of chemical content
in that its dependence upon atomic structure is ex-
plicitLy displayed. Further, it is apparent that the
Harrison potential should be a rather good approx-
imation when (34) is valid —that is to say, when.

Bp && B) for all / & 0, This is, of course, just the
situatio~ among the first-row elements, whose
form factors are in fact represented with reason-
able accuracy by V"(q).

IV. CONCLUMNG REMARKS

The thrust of this work has been twofold —to set
forth the physical and mathematicaL foundations of
the Pauli-force model potential, and to establish
its chemical utility. Toward the second end, we
have contented ourselves with deriving simple,
physically intelligible expressions for a few crucial
structural parameters, and have reserved more
detailed calculations and systematic analysis of
structuraL trends for later publication. Clearly,
g1ven our expressions for Q'p, &q, and &g, much of

The similarity of (33) to (29), though predictable
from (23) and (24), may appear surprising at first
glance. since the empty-core" and Pauli-force
model potentials are grounded in rather different
physics. However, it is quite in keeping with our
discussion of the cancellation theorem that the core
radius chosen to give 'the best cancellation should
be a weighted average of l-dependent core radii like
(27). In the approximation (28), we recover (29)
from (33), and a discussion of chemical trends in
the Ashcroft core radius proceeds along precisely
the lines of Sec. IIIA-IIID.

To investigate another local model, suppose that
we make the gross approximation of replacing the
summation in (Iva) with the summation on the right-
hand side of (18):

this analysis can proceed along the lines laid out

by Heine and Weaire, but with the advantage of a
more explicit connection with chemical trends in
atomic structure. It is worth remarking, however,
that because our potential is useful in real space
as well as. reciprocal space, analysis from a rather
different point of view is often profitable. One ex-
ample is the work of Simons' and of Barthelot and

Durand on molecules. As another, we have shown
elsewhere that the parameters I (I) as determined
in the Appendix define a "structural i.ndex,

" gen-
eral for s-P bonded elemental solids, which dis-
tin. guishes quantitatively among hcp, fcc, bcc, and

covalent structures. Further inquiry along these
lj.nes is in progress.

ACKNOWLEDGMENTS

We are grateful to Professor R. G. Parr and to
Dr. J. C. Phillips for helpful discussions.

%e offer here a simple prescription whereby
reasonably accurate values of I (I) may be obtained,
by inspection, from the /' values at the lowest
valence energy levels of the one-valence-electron
ion. '

VYe emphasize that these approximations are
not necessarily adequate for detailed calculations
of. V(q), but we have found them sufficiently accu-
rate in the vicinity of qp to justify their use in the
context of Sec. IIIB.

(1) For all s-P bonded elements, let l(0)= I'(0),
and let l (I) = I for I —3. The former approximation
is justified because the lowest valence energy level
of the ion is close to E&, the latter because the
higher k's and 3"s are close to their respective E

values' and make negligible contri. butions to the
pseudopote ntial.

(2) For first-row elements, let l (1) =. 1; for other
elements, let I (1)= I'(1). The I'(I)'s of first-row
ions are already close to unity' and extrapolation
brings them even cLoser, rendering the P term
relatively unimportant. For the remainder of the
Periodic Table, we adopt the ionic l'(1) without
modification. Among the second-row elements,
I'(I, E) is a very weak function of the energy, and
our error is small. Among the heavier elements,
I'(1) is greater than 1 a,nd decreases with extrapo-
lation, so that we somewhat overestimate I (1). On
the other hand, for this group qo/2k~ &0. 82, so
that the approximation (19) underestimates the
(negative) value of B,(l —qo/2k+) in (18). The two
errors tend to cancel in (20), and our final results
indicate that their combined effect is small.

(3) For elements with low-lying d valence levels
(K, Rb, Cs, Ca, , Sr, Ba), let I (2)=l'(2); for other
elements, 1st I (2) = 2. For the first set of elements,
the d contribution to the pseudopotential is impor-
tant; the validity of a simple extrapolation is
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questionable, however, and we simply set l (2)
=l'(2). For the remaining elements, linear ex-
trapolations typically increase l (2) when l'(2) & 2
and decrease l(2) when l'(2) & 2. As examples, for
Al, l'(2) = 1.95 and l (2) = 1.98; for Si, l'(2) = 1.94
and l (2) = l. 98; for Ga, l' (2) = 2. 08 and l (2) = 2. 00;
and for Tl, l'(2)= 2. 24 and l (2)= 2. 07. We con-

elude that the extrapolation increases the hydro-
genic character of the core and leaves a smaller d
contribution to the potential. Hence, for ele-
ments without low-lying d states, l (2) = 2 is a
good approximation. {Values of / determined by
these rules for 30 elements are given in Table
1.)
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