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We note that the intermediate-coupling theory for the piezoelectric polaron gives an energy-
momentum relation that is quadr"tic for small P and asymptotes to a straight line with slope
equal to the speed of sound at high P. We present arguments that indicate that this is the cor-
rect qualitative behavior for the piezoelectric polaron. We show, however, that if we modify
the Hamiltonian so as to cut off the interaction with the long-wavelength phonons, there is a
maximum momentum for which this type of solution exists.

I. INTRODUCTION

Interest in the piezoelectric polaron started
when Mahan and Hopfield' pointed out that second-
order perturbation theory at finite temperatures
leads to an extremely anomalous energy-momen-
tum [E(P)' curve. Osaka2 subsequently showed that
the Tamm-Dancoff theory at finite temperature
leads to a somewhat smoother curve.

In an attempt to understand the origin of these
anomalies, the zero-temperature problem was in-
vestigated in a paper3 that we will refer to here as
I. It was noted in I that the structure in perturba-
tion theory was caused by a degeneracy in the un-
perturbed energy levels. The natural thing to do
then is degenerate perturbation theory, which turns
out to be the Tamm-Dancoff theory in this prob-
lem. Unlike the analogous situation in the optical
polaron, 4 the Tamm-Dancoff theory gives a quali-
tatively incorrect E(P). It is explained in I that
this is because the Tamm-Dancoff theory solves
for a, self-consistent E(P) which locates the point
of degeneracy incorrectly. The actual degeneracy
occurs when the polaron can emit free phonons.
In the case of acoustic phonons this point is direct-
ly determined by the polaron velocity v(P) = V~E(P)
rather than E(P). When v(P) &s (the speed of
sound) the polaron can emit phonons, and when v
& g it cannot. Hence arguments in I, like those
used for optical polarons, suggest that if there is
an anomaly in the E(P) curve it will take place as
v(P) - l.

It so happens that the intermediate-coupling
theory treats the polaron velocity self-consistent-
ly, and that the zero of the energy denominator in
this theory is determined directly by v(P) rather
than E(P). One is then not surprised to find that
this theory gives an E(P) whose velocity stays be-
low the speed of sound, and approaches it as P- ~.

It is not hardto picture that as the polaron ap-
proaches the speed of sound the enhancement of its
electron-phonon interaction due to the degeneracy
causes a large lattice deformation to form around
the electron which in turn traps the electron and

prevents it from going faster than the speed of
sound. However, for this process to continue to
large P (i.e. , an appreciable fraction of the Bril-
louin zone) would imply some striking anomaly in
the behavior of piezoelectric semiconductors, for
which there seems to be no evidence. '

In Sec. II we argue that the intermediate coupling
theory gives a qualitatively correct E(P) for the
ground state of the Hamiltonian given in Eqs. (I)
and (2).

We expect that in addition to the low-lying po-
laron that we are discussing in this paper there is
also a quasiparticle which behaves very much like
a free electron. Such a quasiparticle could then
account for much of the normal behavior of piezo-
electric semiconductors. %e have not yet obtained
a theory which includes both a free-particle-like
quasiparticle and the low-lying states that we are
discussing here. The relative importance of these
two types of states remains an important unsolved
problem.

In Sec. III we note that the behavior of the po-
laron at high P depends on the interaction with
very-long-wavelength phonons. If we modify the
Hamiltonian so as to cut off the electron lattice in-
teraction at large distances we find that the inter-
mediate coupling theory applies only for P & P,„„
where P,„, is of the order of the momentum that
a free electron has when it travels at the speed of
sound. This is a very small momentum, and hence
the theory applies only to a very small fraction of
the Brillouin zone.

Since the crystal is of finite size, and for most
experimental situations there are enough electrons
in the conduction band to produce a screen length
even smaller than the sample dimension, we feel
that the predictions of the cut-off theory are more
realistic. However, we still regard finding the
correct solutions for the Hamiltonian [(I) and (2)j
to be an interesting academic problem.

II. PIEZOELECTRIC POLARON

In this section we will discuss the properties of
the Hamiltonian,
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For the piezoelectric polaron we use

q(q) = (4mn/vq)'~' .
The unit of energy is ms and the unit of length is
8/ms, where s is an average speed of sound. The
operators g, and g~ annihilate and create phonons
of the one mode that replaces the three acoustic
modes, and r and p are the electron position and
momentum. The volume is t/' and ~ is the cou-
pling constant. 3 6

The total momentum operator

(p =p+Z a,'a, q

commutes with H, and hence the eigenstates of H
can be chosen so that they are also eigenstates of
5' ~

In the intermediate-coupling theory one uses a
trial wave function

cia r -s~o) .

S=Z f(d, a,e" '+H. c. ) .

The parameters d, are chosen to minimize the ex-
pected value of H. This expected value E(P) is
given by

E(P) =-,' P'- -,' tP -~(P)]'

Q'(q)
~( )

1 2 P (5)
q

where v(P) =P —gqd, is determined by the tran-
scendental equation

q'(q)(q)
v(P) p ~
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FIG. 1. E(P) compared with the energy of a state
composed of a stationary polaron plus a free phonon. As
long as E,(03 &4, E(P) will be lower at high P. Units are
chosen so that h —-s =m =1.
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FIG. 2. E (P) using Q ' inII, and a=1. For P. &10
the curve is indistinguishable from E(P). Units are cho-
sen so that h=s=m=1.

By differentiating (5) we can see the v(P)
= V~E(P) and hence is the polaron velocity.

It is imports. nt to note that since gp is an eigen-
function of 6' with eigenvalue P, then E(P) is an

upper bound to the correct eigenvalue of H for each
value of P. We will call the correct ground-state
energy E,(P).

The functions E(P) and v(P) can be evaluated in
closed form and are reported in the Appendix of I.
The curve E(P) is plotted in Fig. l. Although E(P)
starts out quadratic, its slope stays below 1 (the
speed of sound inour units) and approaches l as P

It is clear that since E(P) is an upper bound,
the correct ground-state energy cannot be a qua-
dratic function of P because the quadratic must
eventually cross the linear curve. This suggests
that E,(P) has the same qualitative behavior as
E(P) but lies slightly below it. It is possible that

E,(P) could be sublinear at la, rge P but we do not
think it very likely. Remember there is a plausi-
ble physical picture for a polaron being trapped at
the speed of sound. The same thing happens to a
moving-point imperfection in an elastic medium.
Moreover, the energy-crossing arguments in I
suggest this kind of curve.

There are two possible objections that we would
like to discuss here, both of which amount to the
suggestion that E,(P) is not the energy of a polaron.

(i) There is the possibility that when P- I,
does not describe a pol3ron anymore, but some-
thing more like a free phonon with wave vector
=P and a small momentum electron. The strong-
est argument against this is that the form of. the
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FIG. 3. Cut-off momentum and
energy, P~~ and E~&, as a function
of cut-off length g. Units are chosen
so that k=s=m=l.
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intermediate-coupling wave function $p is that of a
distorted lattice around the electron, i.e. , a
polaron, not a free phonon.

(ii) In the case of the optical polaron, the low-
est state at high P is clearly a free optical phonon
with momentum P and a polaron with momentum
zero. So it is natural to suggest that in the case
of acoustic phonons the lowest state at high P may
be composed of a polaron with P = 0 and an acoustic
phonon with momentum P. The energy of this
state is E,(0)+P, and is shown in Fig. 1. Note
that if E,(0) is sufficiently smaller than E(P), this
state will be the lowest. However, it is possible
to show that E, (0) & A for a wide range of o, where
A is the point indicated in Fig. 1. It is easy to
see that for small c, and large P, we have E,(0)
+P&E(P). To show this we note that as n-0, we
expect E,(0)~ —o, but A- —-', . Therefore E,(0)
&A and the free-phonon state will be higher than

P ~

We conclude that E(P) is an upper bound to the
ground state of (1), E,(P), for each P; E(P) is the
energy of a polaron; E,(P) is most likely a polaron;
and V„E,(P) most likely approaches the speed of
sound as P- ~.

However, we will see in Sec. III that the fact
that E(P) continues to approach a straight line even
for very large P is a property of the form of Q(q)
used in Eg. (2). Almost any modification of g(q)
will lead to a spectrum that stops at some critical
P where the slope has become 1.

III. CUT-OFF INTERACTION

If we transform the sum in Eg. (6) to an integral
we can see that when v- 1 the integral is dominated
by the region near q=0. Hence the interaction with

the long-wavelength phonons is responsible for the
large-P behavior. This means that the interaction
of the electron with distant parts of the lattice is of
primary importance.

It is natural to wonder what would happen to
E(P) if we modified the Hamiltonian so as to cut
off the interaction with the long-wavelength pho-
nons. We have done this in two ways, replacing
Q(q) either by

or

ql(q) =
+

Q, (q) represents the simplest form that cuts off as
q- 0 and Q2(q) is the form that corresponds to the
interaction that would arise from Debye screening.

We find that when A» 1, both forms of Q lead to
an E'(P) almost identical to E(P) except that the
curve stops at P =P,„, and P,„,= 1+ (2n/v) ln 14& I

for both Q's.
Hence we get an E(P) which has an anomaly at

the speed of sound but which is a. solution for only
a small part of the Brillouin zone. Numerical
calculations of E'(P) are presented in Figs. 2-4.

It is int, cresting to note that for an electron in-
teracting with acoustic phonons with the deforma-
tion potential, Q(q) ~ q'~', and one obtains an E(P)
curve similar to E'(P). In no case (involving
acoustic phonons) can the intermediate-coupling
theory give a polaron traveling faster than the
speed of sound.

Although these cut-off dispersion relations are
more plausible than E(P) (Fig. 1) we cannot. use
the fact that they are an upper bound to eliminate
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FIG. 4. Polaron effective mass as
a function of velocity. Units are
chosen so that 8 = s = m = l.
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a quadratic-energy-versus-momentum depen-
dence.

In I and in Sec. II of this paper we use

q(q) = (4vo/V)"' (1/q"'),

which leads to the energy-momentum relation
E(P) shown in Fig. 1. We will modify the Hamil-
tonian by using different forms for Q(q). A way
of characterizing a polaron interaction is in the
strong-coupling theoxy where the parameters of
the system enter only through the function q (q)/
ru(q).

For both the optical and piezoelectric polarons,
where the interaction is essentially Coulombic,

0'/~ "1/q' .

For both the deformation-potential optical and
acoustic interactions, which are short range, we
have

0/~~q
(i) A simple choice of a cut-off interaction is

then

(ii) If we take into account the electron screen-
ing of the electron-lattice interaction, we have

Qa(q)
(g (q) (q'+ I/X')'

In the limit of large A. the energy-momentum re-
lationships obtained from these two techniques are
the following:

Case 1:

P'
I P(v) -il' n tan ~~xi ~ A —v

2 2 27tv 2X A+ v
-urn(a'-~'[-rn ' " '+van(z-v'()1+v

1+P A+ v 2n tan
+—~ln- 2 +ln +—tan Ping-tan nlnn+, dg

2%v 1+n A-v m X

2n A-v P n 1+n n n IP=v+ 2 Alnp +1
'

. lnP
1 &inn 4 2 ln

1
+

1 p+1 pPS A+ v 1+P- 1+n 4Av 1+P- V 1+n 1+P

where

" Rx(1+ v) tan-1-" 'dX,
x

A= ~ q +1
&

v, =2k(1 —v), = PX( 2vI) +.

+- (Inn) tan n — -E +(lnP) tan P- q +2 2
n I Q

mh. v, 1+n 1+j' 2m'. v "2)t(j,- fp)
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Case 2:
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