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piete 1" functions' involving too many terms to be
of practical use. It is also possible to find a se-
ries expansion in E for these integrals by expand-
ing the incomplete I' function as a power series in

However, this expansion is only useful for rela-
tively small &.

Therefore, the integrals (815) and (816) are
evaluated numerically. Bomber g's quadrature
pxocedul"e 1s used aftex' the substltutlon cotang = t
is carried out. The integrand then satisfies the
conditions to apply this procedure in an efficient
manner. Good efflclency is 1 equ11 ed since the
final result is a sum of 2~256 integrals of the
type (815) for every value of e and n. For each
(e, II) point the numerical work takes about 10 min
on an IBM 1130 computer.

In Appendix C some remarks are made concern-

ing the accuracy of the results. The computer
programs are given in Ref. 7,

APPENDIX C: COMPARISON GF SOME NUMERICAL
II'RGCEDURES USED TG CALCULATE R

The integral 8, occurring in the "special case"
(see Sec. III), has been treated numerically in
three different ways: (a) using the series (A5) and
(A6) of Appelldlx A' (lI) us3Ilg tfle expl'essloIls (815)
and (816) obtained for R and applying the numeri-
cal procedure described in Appendix 8; (c) using
Homberg's procedure for the direct calculation
of the 1ntegral

1+x t

ln = — dx .
1+@ &-x '

This results in the information in Table I.
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%e present calculations of the band structures and densities of states of Ge and Si in the diamond,
wurzite, Si-III (BC-8), and Ge-III (ST-12) structures using the empirical-pseudopotential method and the
tight-binding model used recently by %'eaire. The increasing complexity of the crystal structures
indicates that short-range disorder is able to account well for the density of states and optical
properties of amorphous Ge and Si. This calculation also provide- a method for explaining various
features in the amorphous density of states and shows what structural aspects of the amorphous state

- are responsible for these features.

I. INTRODUCTION

The optical properties and density of states of
amorphous Si and Qe obtained from experiment' 4

exhibit some very interesting and sometimes novel
features when compared with the corresponding
ones of their crystalline phases. For example,
the distinctive one-hump form of the imaginary
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part of the dielectric function, s~(v), for arnor-
phous Si and Ge has no counterpart in any known

crystal except for the ST-12 structure in this cal-
culation. For the density of states one finds ex-
perimentally the retention of a "gap" in the amor-
phous phase. This has been shown theoretically
for some special models by Weaire and Thorpe'
and McQill and Klima. However, the conduction-
band density of states seems to have none of the
structure found in the crystalline phase [see Fig.
9(a)j. Furthermore, the form of the valence-
band density of states in the amorphous phase con-
sists of a smoothed blue-shifted peak at the top of
the valence band and a seemingly large broad peak
at the bottom of the valence band ' (see Fig. 11).
This is in contrast to the three strong peaks found
in the valence bands of the crystalline phase.

Amorphous samples can be prepared in a variety
of ways with a range in bulk density from 25/p less
to approximately the same as the bulk density of
the crystalline case. There also exists a lot of
speculation as to the structural nature of the amor-
phous phase. On this point there have been pri-
marily two main schools of thought. First, the
amorphous structure is made up of small domains
of perfect crystals separated by disordered bound-
aries, which is called the "microcrystallite model. "
For example, Rudee and Howiev found that their
amorphous films gave consistent diffraction-ring
patterns with a microerystallite model if their
amorphous sample were made up of "wurtzite" mi-
erocrystals. Another approach is that the amor-
phous phase can exist in a completely disordered
structure while each atom retains an imperfect
tetrahedral arrangement of nearest neighbors. In
this ease if all the bonds are satisfied the model
is called a "random-network model. " Spicer and
co-workers' seem to be able to prepare their
amorphous samples in an "ideal" manner such that
they have a negligible presence of microvoids and
dangling bonds and have the same nearest-neigh-
bor distance and approximately the same bulk den-
sity as that of the crystalline case. It is this type
of sample that we will have in mind when we dis-
cuss and compare our results with the "amorphous
phase. "

It is clearly a formidable task to perform a re-
alistic calculation on a structure with long-range
disorder. However, we could ask the following
question: How much disorder is necessary to
achieve the distinctive features evident in the
amorphous data? To explore the possible answers
to this question, we have calculated the band Struc-
ture and density of states for Qe and Si in the
diamond, wurtzite, .Si-DI, ' and Qe-DI' structures
using the empricia, l-pseudopotential method (EPM)
and the tight-binding model used recently by
Weaire. From the pseudopotential band structure

we have also calculated the optical properties of
these structures. The diamond structure is face-
centered cubic with two atoms per primitive cell
(FC-2), wurtzite is hexagonal 2H with four atoms
per primitive cell (2H-4), Si III is body-centered
cubic with eight atoms per primitive cell (BC-8),
and Qe III is simple tetragonal with 12 atoms per
primitive cell (ST-12). The Si-III and Ge-III struc-
tures are complicated dense metastable crystalline
phases which are recovered from high-pressure
experiments and persist at normal pressures.
When Qe occurs in the Si-III structure it is called
Ge IV. ' Because of this rather unfortunate ter-
minology we shall use the notation just described
in parentheses for the specification of these var-
ious structures.

FC-2, 2H-4, BC-8, and ST-12 provide us with a
series of structures that become more and more
locally disordered. What we imply by local dis-
order is that we have a crystal (long-range oreler)
and yet the atoms in the primitive cell of our crys-
tal are in a "disordered" tetrahedral-like arrange-
ment. The FC-2, 2H-4, and BC-8 structures are
all similar in that they have sixfold rings of bonds
and one type of atomic environment. The ST-12
structure, however, is very novel in that it has
fivefold rings of bonds and two types of atomic
environment. The electronic properties of these
structures should then provide us with some inter-
esting tests for the microcrystallite and random-
network models and should provide us with an idea
of how much disorder is necessary to reproduce
the important features of the experimental amor-
phous data.

In this paper we shall concentrate on the band
structure and density of states for the FC-2, 2H-4,
BC-8, and ST-12 structures and we shall leave a
detailed" discussion of the optical properties for
a subsequent paper.

In Sec. II we shall give a description of these
structures and the parameters that were used. In
Sec. III we shall give a brief description of the
calculations, and in Sec. IV we shall discuss our
results. Finally, in Sec, V we shall make some
concluding remarks.

II. STRUCTURE OF POLYTYPES AND THEIR PARAMETERS

Si has been found experimentally to exist in a
2H-4 structure by Wentorf and Kasper' with a 2%
increase in density as compared to Si FC-2. The
lattice constants they obtained were a = 3. 80 A and
c= 6. 28 A. In our calculations we assume, in
addition, an ideal u= 0.375. Qe, on the other
hand, has not yet been found, to our knowledge,
to exist in a hexagonal structure so that we as-
sumed an ideal Qe 2H-4 with the same density and
nearest-neighbor distance (2. 45 A) as that of Ge
FC-2.
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Si and Ge have both been found to exist in the
BC-8 ' ~' structure which can be specific complete-
ly by a. lattice constant a and an internal parame-
ter x. The lattice constant for Si is a = 6. 636 A
and for Ge we have a = 6.92 A. The internal param.
eter x was taken to be x = 0. 1. Each linked pair
of Si (Ge) atoms has one bond length 2. 30 A (2. 40
A) and three bonds of length 2. 40 A (2. 50 A), with
an average bond length approximately equal to 2. 37
A (2. 48 A). There are also two types of bond an-
gles approximately equal to 118' and 100' for
both Ge and Si. All the eight atoms in the primi-
tive cell are of one type in that they exist in the
same type of environment with the same relative
arrangement of neighboring atoms. For Si (Ge)
there is one next-nearest neighbor at 3.45 A (3. 60
A), six at 3. 57 A (3. 73 A), six at 3. 87 A. (4. 04 A),
etc.

Ge has been found to exist in the ST-12 struc-
ture whereas Si has not. The ST-12 structure is
specified by two lattice constants a, c and four
internal parameters x&, x~, x3, andx&. For Ge
(Si) we used a= 5. 93 A (5. 69 A) and c = 6. 98 A (6. 70
A). The Si lattice constants were chosen so that
the c/a ratio is the same as that of Ge ST-12 and
the fractional density change from Si FC-2 to Si
ST-12 is the sa.me as Ge FC-2 to Ge ST-12. For
Ge and Si the internal parameters were taken to
be x, = 0. 09, x~= 0. 173, x, = 0. 378, and x, = 0. 25.
In this structure the bond lengths are all about the
same length and approximately equal to 2. 49 A.

(2. 39 A) for Ge (Si). The bond angles, however,
are quite dissimilar. They range from 20O/o less
to 25% greater than the ideal tetrahedral angle
(109 28'). In this structure the Ge or Si atoms
are positioned in two different types of environ-
ment. In the primitive cell there are four atoms
of type 1 and eight atoms of type 2. The atoms of
type 2 form long fourfold spira, l chains along the
c direction while atoms of type 1 fo m bonds be-
tween atoms in the different spirals. For Ge,
atoms of type 1 have two next-nearest neighbors
at 3.45 A, two at 3. 64 A, two at 3.81 A, etc.
Kasper and Richards' neglected to mention the
presence of the first two pa, irs of next-nearest
neighbors. Atoms of type 2 for Ge ST.-12 have one
next-nearest neighbor at 3.45 A, two at 3. 56 &,
one at 3. 64 A, etc. Finally, the ST-12 struc-
ture is quite unusual because of the presence of
fivefold rings of bonds.

It is evident that Ge ST-12 and Si ST-12 have
many of the properties one would intuitively attrib-
ute to an "ideal" amorphous structure. That is,
(i) no dangling bonds, (ii) variations in bond length
and angle, (iii) atoms in different environments,
and (iv) the occurrence of five numbered rings of
bonds. Qn the other hand, Ge and Si in the BC-8
structure are more closely associated with the

2H-4 and FC-2 structures since they have even
numbered rings of bonds and only one type of atom-
ic environment.

The bulk densities of Ge ST-12 (Si ST-12) and
Ge BC-8 (Si BC-8) differ by about 1/o. However,
they areboth about 10%%uo greater thanthose of Ge FC-2
(Si FC-2) and certain types of amorphous Ge (Si).
Therefore a comparison of the differences between
the optical properties and density of states of Ge
FC-2 (Si FC-2) and Ge BC-8 (Si BC-8) can be at:—

tributed primarily to structural and symmetry dif-
ferences. Hence comparisons of the polytypes
provide a method of filtering out the effects of
greater density which should be small since the
nearest-neighbor distances in the ST-12 and BC-8
structures are slightly larger than those in the
FC-2 and 2H-4 structures.

Since we have been discussing the structural as-
pects of the ST-12 structure we would like to men-
tion that we were able to build a crystal with the
same symmetry and number of atoms in the primi-
tive cell as Ge ST-12 but with the same nearest-
neighbor distance and bulk density as amorphous
Ge. The method consisted of finding three inde-
pendent bond lengths 5„52, 53 which were func-
tions of a, x» x2, x, , x4, and V such that c= V/a .
Once the density was fixed through t/" we minimized
the function

M(x„x2, xa, x4, a)
3

K[5'(xg x2 x3 x4 a) —l, ]2, (1)

where the tt,. are the bond lengths desired, by a
method of steepest descent. Although we obtained
the correct bond lengths and bulk density, and a
good radial distribution function, we obtained some
bond angles that were 40'%%uo larger than the ideal
tetrahedral angle. These large deviations in our
modified crystal produced large deviations in the
Hamiltonian matrix elements and we found that we
obtained a semimetal. This is in large contrast
to the fact that we found quite a sizable gap for Ge
ST-12. This will be of interest later when we dis-
cuss what structural aspects affect the size of the
energy gap.

[P'/2m+ V(r)j t)"„(r)= Z(k) P(r), (2)

III. CALCULATIONS

The empirical-pseudopotential method has been
discussed extensively in an article by Cohen and
Heine. The EPM essentially entails removing the
large potential of the core along with the many
oscillations of the wave functions in the core. The
valence pseudo-wave-function P(r) is then in es-
sence the true valence wave function minus the core
states and satisfies the Schrodinger equation
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where V(r) is the pseudopotential and the E(k) are
the eigenvalues of the real valence-electron wave
functions. The weak periodic pseudopoten'tial V(r)
can now be expanded in a small number of plane
waves:

V(r)=XV(G)e' ' for iGi ( iGoi, (3)

where jGOI represents some cutoff reciprocal-lat-
tice vector. For the case of one type of atom V(G)
can be written

V(C) = V,(C) S(G),

where 8(G) is the structure factor and V&(G) is a
form factor of the atomic potential which is fitted
to experimental optical data S(.G) and V~(G) are
given by

~(G) g&-&6 |;.
'0

4

V~(G) =— V, (F) e 'o 'd'x,

where g is the number of atoms per primitive cell,
g; is the position of the ith atom in the primitive
cell, Q is the volume of the primitive cell, and

V,(r) is the atomic potential. If we assume a
spherical atomic potential then V~(G) depends only

on the magnitude of Q. For Si and Qe in the FC-2
structure, Cohen and Bergstresser' used only
three form factors to obtain a good agreement of
calculated optical properties with experiment.
Gnce one has a good set of form factors, the atom-
ic-pseudopotential «rm factors can be obtained
from Eq. (6). If one now assumes the atomic po-
tentials do not change very much from one type of
crystal structure to the next, the form factors can
be used for a variety of crystalline structures. In
this sense the EPM is extremely useful. The pro-
cedure essentially involves obtaining a continuous
Vz(i@i) by a suitable interpolation scheme and
reading off the V&(iG [) for the set of G spanning
the reciprocal lattice of the particular polytype
structure. The first calculation of this type was
done by Bergstresser and Cohen' for CdSe, CdS,
and ZnS in the 2H-4 structure.

Since no experimental data are available at this
time for the polytypes we have studied, the form
factors we have obtained might have to be adjusted
slightly to give better agreement with experiment.
In Tables I and D we list the unnormalized form
factors for Ge and Si and the corresponding re-
ciprocal-lattice vectors for the 2H-4, BC-B, and
ST-12 crystal structures. For the 2H-4 structure
we used 50-60 plane waves as a basis set along
with another 140 plane waves through a perturba—

TABLE I. Reciprocal-lattice vectors, their magnitudes, and form factors for Ge in the 2H-4, BC-8, and ST-12 struc-
tures. The reciprocal-lattice vectors are expressed with respect to the primitive translation vectors for each structure
and the magnitudes of these vectors are in units of (gz/go), where ao is the lattice constant for Ge in the FC-2 structure.
The form factors are in Ry and should be multiplied by a factor equal to the ratio of bulk density of the particular Ge
structure to the Ge FC-2 structure. Some of the form factors of Ge 28-4 are omitted since the structure factors are
zero for these 6's.

6
Ge ST-12

6

(o, o, 1)
(1,o, o)
(O, o, 2)
{1,0, 1)
0., o, 2)
(o, o, 3)
(1,1, o)
(1 11)
0., o, 3)
(2, o, o)
(1,1, 2)

(2, o, 1)
(o, o, 4}
(2, o, 2)
(1,0, 4)
(1,1,3)

0.750
2.667
3.000
3.417
5.667
6.750
8.000
8.750
9.417

10.667
11.000

11.417
12.000
13.667
14.667
14.750

—0.255
—0.230
—O. 200
—0.075

0.010

0.045
0.060
0.060

0.060

0.035

(1,o, o)
{1,1,—1)
(1,1, o)
(2, o, o)
(2, 1, —1)
(1,1, 1)
(2, 1, o)
{2,2, —2)
(3, o, o)
(3, 1, —1)
(2, 1 1)

1.338
2.$76
4.014
5.352
6.690
8.028
9.366

10.704
12.042
13.380
14.718

og 380
—0.255
—0, 165
—0.093
—0.035
—0.010

o.o45
0.060
0.053
0.038
0.018

(o, o, 1)
(1,0, 0)
(1,0, 1)
{1,1,o)
(1,1, 1)
{o,o, 2)
(1,o, 2)
(2, o, o)
(2, o, 1)
(1,1,2)
(2, 1, o)

(2, 1,1)
(o, o, 3)
(2, o, 2}
(1,0, 3)
(2, 1,2)
(2, 2, o)
(1,1,3)
(2, 2, 1)
(3, 0, 0)
{3,o, 1)

0.658
0.911
1.569
1.822
2.480
2.630
3.541
3.644
4.302
4.522
4.555

5.213
5.918
6.274
6.829
7.185
7.288
7.740
7.946
8.199
8.857

—0.470
—0.435
—0.350
—0.325
—0.270
-0.258
—0.193
—0.188
—0.148
—0.140
-0.135

-0.098
—0.065
—0.050
-0.030
—0.018
-0.013

0.003
0.010
0.018
0.035

(3, 1,o)
(2, o, 3)
(3, 1, 1)
(2, 2, 2)
(2, 1,3)
(o, o, 4)
(3, 0, 2)
(1,o, 4)
(3, 1,2)
(3, 2, o)
(1,1, 4)

(3, 2, 1)
(2, 2, 3)
(3, o, 3)
(2, 0, 4)
(3, 2, 2)
(4, o, o)
(3, 1,3)
(2, 1,4)
(4, 0, 1)
(4, 1, o)

9.110
9.562
9.768
9.918

10.473
10.521
10.829
11.432
11.740
11.843
12.343

12.501
13.206
14.117
14.165
14.473
14.576
15.028
15.076
15.234
15.487

0.040
0.048
0.050
0.053
0.060
0.060
0.060
0.060
0.055
0.055
0.050

0.048
0.040
0.025
0.025
0.023
0.020
0.013
0.013
0.010
0.008
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TABLE II. Reciprocal-lattice vectors, their magnitudes, and form factors for Si in the 2H-4, BC-8, and ST-12 structures.
The convention is the same as Table I.

(o, o, 1)
(1„o,o)
(o, o, 2)
(1,o, 1)
(1,o, 2)
(o, o, 3)
{1,1, o)
(1,1, 1)
(1,o, 3)
(2, o, o)
(1,1, 2)

(2, O, 1)
(o, o, 4)
(2, o, 2)
(1,o, 4)
(1,1,3)

Si 2H-4
Q2

0.748
2.723
2.991
3.470
5.713
6.729
8.168
8.915
9.451

10.890
11.158

11.638
11.962
13.881
14.684
14.896

-0.510
—0.245
—0.210
—0.165
—0.035

0.001
0.045
0.063
0.073
0.080
0.080

0.079
0.078
0.058
0.040
0.035

(1,o, o)
(1,1,—1)
(1,1,0)
(2, o, o)

(2, 1,—1)
(1,1, 1)
(2, 1, o)
(2, 2, —2)
(3, o, o)
(3, 1, —1)
(2 11)

Si BC-8
Q2

1.339
2.678
4.017
5.356
6.696
8.035
9.374

10.713
12.052
13.391
14.730

—0.420
—0.250
—0.120
—0.050
—0.001

0.041
0.070
0.080
0.078
0.065
0.040

(o, o, 1)
(1,o, o)

(1,o, 1)
(1,1,o)
0., 1,1)
(o, o, 2)
O. , O, 2)
(2, 0, 0)
(2, o, 1)
{1,1,2)
(2, 1, o)

(2, 1,1)
(o, o, 3)
(2, o, 2)
(1,o, 3}
(2, 1, 2)
(2, 2, o)
(1 13)
(2, 2, 1)
(3, o, o)
(3, o, 1)

0.658
0.911
1.569
1.822
2.480
2.630
3.541
3.644
4.302
4.522
4.555

5.213
5.918
6.274
6.829
7.185
7.288
7.740
7.946
8.199
8.857

Si ST-12
Vg

—0.520
—0.480
—0.380
—0.350
—0.270
—0.255
—0.160
-0.153
—0.105
-0.093
-0.090

-0.058
-0.030
-0.015

0.005
0.015
0.020
0.033
0.040
0.045
0.063

G

(3, 1,o)
{2,o, 3)
(3, 1„1)
(22 2)
(2 1 3)
(o, o, 4)
(3, o, 2)
(1,o, 4)
(3, 1,2)
(3, 2, o)
(1,1,4)

(32 1}
(2, 2, 3)
(3, o, 3)
(2, o, 4)
(3, 2, 2)
(4, 0, o)
(3, 1, 3)
(2, 1, 4)
{4,0, 1)
(4, 1, o)

9.110
9.562
9.768
9.918

10.473
10.521
10.829
11.432
11.740
11.843
12.343

12.501
13.206
14.117
14.165
14.473
14.576
15.028
15.076
15.234
15.487

Vg

0.068
0.073
0.075
0.078
0.080
0.080
0.080
0.080
0.078
0.078
0.075

0.075
0.068
0.055
0.054
0.047
0.045
0.030
0.030
0.025
0.015

tion scheme developed by Lowdin. We calculated
E(k) in ~~~ of the Brillouin zone at 275 grid points.
For the BC-8 structure we used approximately
60-65 plane waves as a basis with about 160 addi-
tional plane waves through perturbation theory.
We diagonalized our Hamiltonian in ~8 of the Bril-
louin zone at 240 grid points. Finally, for ST-12
we used about 70 plane waves as a basis set along
with approximately 270 more plane waves through
the Lowdin scheme. The eigenvalues were ob-
tained in ~6 of the Brillouin zone at 251 grid points.
For all these structures we obtain a convergence
of &0. 1 eV for almost all the states in valence band
and for the states in the conduction band in the vi-
cinity of the gap.

In our tight-binding calculation we took the model
used recently by Weaire and Thorpe. 5 The Bloch
wave functions for each band have the form

P „(r)=Z C"„X"„(r),

where the Xg (r) form a basis set of order M of
tight-binding Bloch states given by

where m -=i, l; N is the number of primitive cells
and the y are localized orthonormal states which
can be taken as (sp ) hybridized directed orbitals
(four to each atom). The position of the ith atom
in the primitive cell is given by r;, and P, desig-
nates the direction and center-of-mass position of

the lth directed orbital of the ith atom. Further-
more, for i 4i', l' = l will imply that —p, = p, & and
that )g; —7;& ) is equal to a bond length. Thus
states y.. . and cp. .. are orbitals from different
atoms which lie in the same bond and y, , and y, ,.
represent different orbitals defined with respect
to the same atom.

In this model there are only two important non-
zero matrix elements given by

The parameters V, and V~ for the FC-2 structure
were obtained by fitting them to the valence-band
density of states of Ge FC-2 using the EPM. The
values obtained were V, = —2. 22 and V~= —6. 20
and were taken to be the same for the BC-8 and
ST-12 structures. The Weaire model of course
assumes all the bond lengths are equal and a per-
fect tetrahedral arrangement for the atoms. The
most prominent features of this model are a flat
band at the top of the valence band containing two
states per atom, a rather inadequate conduction
band due to the limited number of basis functions,
and an energy gap which is the same for all struc-
tures with even-numbered rings of bonds.

Once the band structure is known the density of
states can be obtained using the following expres-
sion:

where X, is the number of atoms in the primitive
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FIG. 1. Brillouin zones and as-
sociated symmetxy points and lines
for the 2H-4, BC-S, and SY-12
structures.

SIM,PLE TETRAGONAL

cell, N is the number of primitive cells, and N(E)
is normalized to the number of states per atom.
The method used to evaluate the integral in Eq.
(10) is due to Gilat and Raubenheimer. '6 The en-
ergy derivatives required by this method were ob-
tained using k p perturbation theory.

IV. RESULTS

In Fig. 1 we show the Brillouin zones for the
28-4, BC-8, and ST-12 structures and the sym-
metry notation used by Leuhrmann. '~ The band
structures of Ge and Si in these structures are

FIG. 2. Band structure of Ge in the
2H-4 or vrurtzite structure.

—l2
A U e I l

Wave vector k
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FIG. 3. Band structure of Si in the
28-4 or wurtzite structure.
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—12,
A u ~ x I b,

Wave vector k

shown in Figs. 2-7.
Certain symmetry directions in the 28-4 struc-

ture can be compared with analogous ones in the
FC-2 structure through an alignment of the Bril-
louin zones &4, &8 One finds that the I'I. direction
(FC-2) maps into the FAF direction (2H-4) so that
the indirect gap at L for Ge FC-2 becomes a direct
gap at 1" in Ge 2H-4 and is equal to 0. 55 eV. Al-
though the I'X direction (FC-2) is not associated
with any symmetry direction in 2H-4, the X point

is found to lie -', along the U axis from M to L
(2H-4). Si, however, which has an indirect gap at
X in the FC-2 structure, has an indirect gap at
M in the 28-4 structure equal to 0.85 eV.

In the BC-8 structure we find direct gaps for Si
and Ge and they both occur at H. For Ge we obtain
a zero gap whereas for Si we obtain 0. 43 eV. It
is interesting that in the Weaire BC-8 band struc-
ture we find the bottom of the conduction band also
occurs at Z.

0)
IL 4

LLl

FIG. 4. Band structure of Ge in the
BC-8 or Si III structure.

N X
Wave vector k

I D N
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FIG. G. Band structure of Si in the
BC-8 or Si III structure.
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—12
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P D N

In the ST-12 structure we find a direct gap for
Ge 0. 7 of the way from 1" to M, . The magnitude
of the gap is 1.47 eV. For Si we obtain an indirect
gap with the top of the valence band 0.4 of the way
from I' to M, and the bottom of the conduction band
about 0. 75 of the way between 1" and Z„. The Si
gap is equal to 1.6 eV. It should be mentioned,
however, that since the valence band is rather flat
along many symmetry directions and the conduc-
tion band has many dips at very nearly the same
energy, the actual experimental gap could be direct
or indirect and could lie in a variety of places. It
is interesting, nevertheless, that we find using the

Weaire tight-binding model that the ST-12 gap lies
at M, .

What is striking in this calculation is that the Ge
and Si ST-12 gaps are about 50%%uo larger than those
of all the other structures. This is probably due
to the influence of the large numbers of fivefold,
and sevenfold rings in the ST-12 structure which
would prevent the presence of low-lying antibond-
ing s-like states in the conduction band. Weaire
and Thorpe have suggested this might happen in
structures with odd-numbered rings, but the de-
gree to which it happens is shown in Fig. 8. Here
we show the results of our calculation on an "ideal"

Ge ST-l2

FIG. 6. Band structure of Ge in the
ST-12 or Ge III structure.

—10

—12
Z„U„ Z I' 4, Z

Wave vector k
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0 -.= Si ST-12

FIG. 7. Band structure of Si in the
ST-12 or Ge III structure.

Z„U„e, Z
I

Z 5

Wove vector k

ST-12 and BC-8 structure using the Weaire model.
At the top of the valence band we have the P-like
5-function peak containing two states per atom,
while the rest of the valence band is s like and also

contains two states per atom. We notice in Fig.
8(b) that we now have a "valence gap" and a "con-
duction gap. " The conduction gap for ST-l2 is con-
siderably larger than that of BC-8 and FC-2 (dot-

1.2
(a) 8C-8 (Weaire)

g 02-
0

'w
. (h) ST-12 ( We a ire)

Ql 1.0—

08—

1 I

FIG. 8. Density of states for the {a)
BC-8 and {b) ST-12 structures calcu-
lated from the tight-binding model used
by %'eaire. The BC-8 structure is
shifted slightly to lower energies with
respect to the ST-12 structure so as
to agree better with Ge BC-8 {KPM}.
The dotted line in {b) represents the
bottom of the conduction band for the
FC-2 structure using the Weaire model.

0 —12
. .1 . .

—10 —8

Energy (eV)

I
I ~ I

0 2



2653

in Fig. 10. Su
sity of states is a sk

Superimposed on the
s is a sketch of the amo

of states obtained b
amorphous densit

and Spicer ). The
d Spxcer (Pierce

e sharp peaks are
to Bragg gaps dan mould be s

re primarily due

no periodicity. Kee ieeping this in mind

th ese structures d
e in cresting corn
an we can exaamine the trend

to BC-8, to ST-12 tot

First we notice th t
more and more

a the conduct'
re smoothed out as

ion band becommes

to ST-12. Thiis lack of lar e str
as we go from FC-2

to be evident ' thin e amorphous h
ge s ructure also seems

notice that the two
us p ase. Next we

valence band in FC-2
e o large peaks at the bottom of the

seem to aigain more struct ure
e

e ain most of their di '

thorough mixing of t
ruc re, homever , there is a

to t

'
ing of the two peaks. T '

o the suggestion b T
This is similar

amorphous case.
y hor ep and %eairea' for the

us case. Experimentall op

tom of the valenc
y arge broad peak at the bot-

ence band for amor
sof t-x-ray spectro

rphous Si using

~ 4
ec roscopy. Recentl '

n

ey et al. for amomorphous Si and Ge
oe ectronic s

lt hs own in Fig. 11. The es
t d d' t

valence-band peaks in Fi
in he valley betwe en the two lower

pe s in Figs. 9(a) and 10(a) for the

ted line&. In fact, we find a 20
gap if we include

a ~ increase in the
u e an ad hoc 2. 0-eV

the 5-function kpea at the to of t
-e broadening of

In this model the
p he valence band.

~ ~

e valence and. cond
e . This is becau

anal t t f
are associated thr

s ormation (aside fro
eigenvalues of a one-statee-state Hamiltonian. ' Th

ave unction is then equal

fou
e coefficients of the po g

ou
' e o Hamiltonian ' ' ' e

s coefficient of th
ian which is just the

o hese four states.
sion of antibondin

Thus the omis-
ing states in the on-
i self in the o

th
ofo the conduction band.

e op of the valence baand and bottom

In the EPM case we do not e e
fects since me obtain

expect such large ef-

structure. Never th
o ain a much more realistic band
ver eless, the low-...b..d.t,tes are rather loca '

e i luence of odd-m
n fact, we can

valence gap in F'
even observe a

ST-12. In Ge ST-1
igs. 6 and 7 for Ge ST-12 and Si

e - 2thes-and
ra e while in Si ST- j

around —4. 4 eV.
In Figs. 9(a)-9(d) we show lots om plots of the density

e in the FC-2 28-4H-4, BC-8, and ST-
es. imilar results fo S'r i are shown

ELECTRONIC PROPEP ER TIES OF COMPE PLEX. . . I. . .

1.2
(a) Ge FC-2 {EPM)——

Ge amorphous ———

I t I I I

(b) Ge 2H-4 {EPM)

I I I

0.8—

I~ '0.4—

4A

0
1.2

(c) Ge BC-8 (EPM)

CI
Cl 0.8—

t I I I

(d) Ge ST-12 {EPM)

0.$—

ol—12 0
I I I I

8 —12
I I I I

FI6. 9. Density of states of 6
Energy (eY)

{)
one in (d) represents

6 — y, C-8, and {d) ST-12 stru28-4, (c) 8 ing



J. D. JQANNOI'GUL QS AND MAHVIN L. COHEN

I I

(a) Si FC-2 (EPM)—
Si amorphous ----—-

t I I I

(b) SI 2H-4 (EPM)

0.8—

cn 0.4
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0

0
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(c) Si 8C-8 (EPM)
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(d) Si ST-12 (EPM)
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IlG. 10. Density of states of Si in the (a) FC-2, (b) 2H-4, (c) BC-8, and (d) ST-12 structures using the EPM. The
dotted line in (a) represents a sketch of the amorphous density of states obtained by Pierce and Spicer (Ref. 2). The
dotted line in (d) represents the averaging of Bragg gaps for Si ST-12 in this calculation.

amorphous and ST-12 phases, in such a way as to
obtain a large hump where the valley used to be,
can be primarily attributed to the presence of odd-
numbered rings of bonds. This is suggested by
the following simple argument. The FC-2 struc-
ture can be considered to be made up of. six-num-
bered rings in the "chair" configuration. That is,
we can pick a set of rings which can be brought to-
gether to make an FC-2 structure and we will as-
sume for the moment that they do not lose their
identity. Let us now isolate one of these rings and
place one localized orbital at each of the atomic
sites. We are thinking in terms of the one-state
Hamiltonian mentioned earlier. The symmetry of
this ring is D3~ and if we assume that these local-
ized states transform into one another under D3„,
they then form a basis for the six-dimensional rep-
resentation I 6 = +] + Ey + E2 ++g ~

states consisting of two single states of symmetry
A& and S, , and two doubly degenerate states of
symmetry E, and E2. If we now assume only near-
est-neighbor interactions II~ we obtain

E(x,)= —2la, l, z(z, )= —la, l,

z(z, )= la, l, z(a,)=2la, l.

Let us now isolate N rings at infinity. The density
of states for this system is just an%-fold-degener-
ate single-ring density of states. As we bring
these rings closer together, to make an FC-2 or

2H-4 structure, the rings will interact and the
states are going to spread. Since we are consider-
ing only nearest-neighbor interactions we do not
expect any drastic or significant differences when
the inter-ring interactionbecomes equal to the intra-
ring interaction. For example, we can bring two
rings together in such a way as to make a total of
five rings. However, the energy spectrum for this
system consists of just a splitting of each energy
level of the two single-ring systems by about }HI ) .
This is what we expected and thus the N-ring sys-
tem should have a density of states which consists
of two big humps and some type of valley in between.
This density of states is then analogous to the two
peaks at the bottom of the valence band in Figs.
9(a) and 10(a).

Consider now the same analysis with a five-num-
bered ring which we may take to have symmetry
D~. Assuming again that the localized states trans-
form into each other under D5, they span a five-
dimensional representation 1"5=A, +E, +E~. Thus
we have five states consisting of a single state of
symmetry A, , and two doubly degenerate states of
symmetry E, and E2. We then obtain

«&i) =-2IH.
I

E(zi)=-2o»5~1~.
l

E(E2) = —2 cos—5p lHzl.

The states of symmetry E, and E~ lie intermediate
in energy to those of the sixfold rings with symme-
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FIG. 11. Experimental x-ray photoelectron spectro-
scopy (XPS) results which are related to the density of
states for Ge and Si in the F C-2 and amorphous phases.
Top, experimental curves (dots) for Si and Ge in the FC-
2 structure along with a sharp theoretical and a broadened
theoretical {EPM) calculation. Bottom, XPS results for
Si and Ge in the amorphous phase compared with the cal-
culated density of states for Si and Ge in the ST-12 struc-
ture (EPM) from this work. The relative sizes of the
humps in the Si experimental curves differ from those in
Ge because of the differences in scattering cross sections
of the 3s, 3p and 4s, 4p electrons.

try E, , E~, and 8, . Thus fivefold rings will in-
troduce states in the valley between the two density-
of-states peaks at the bottom of the valence band.
In fact, the eigenvalues of any ring of order N are
given by

E„=-21&zi cos(2nm/&), n=0, I, . . . , Ã —1.
(11)

Therefore sevenfold rings will also introduce states
in the valley. Thus fivefold and sevenfold rings
will help to produce a one-hump type of structure
with a peak where the valley used to be. These
results are consistent with those obtained by
Weaire and Thorpe' for "Husumi cacti" made up
of fivefold and sixfold rings.

The valence-band density-of-states edges of Ge
and Si in the FC-2, 2H-4, and BC-8 structures
(Figs. 9 and 10) are all similar in that they have
gradual slopes. Qn the other hand, Ge and Si in
the ST-12 and amorphous phases have very sharp

edges. Along with this is the fact that there is a
very noticeable shift of the hump at the top of the
valence band to higher energies in the amorphous
and ST-12 structures. We believe that the reason
for this is an increase in the Coulomb-repulsion
energy and kinetic energy because of variations in
the bond angle in the amorphous and ST-12 phases.
This can be shown by the following argument. Con-
sider a system with a perfect tetrahedral arrange-
ment of atoms like Ge FC-2, for example. The
states in the large hump at the top of the valence
band localize the electrons primarily in the bond
whereas the states in the two large peaks at the
bottom of the valence band localize the electrons
primarily on the atoms. It is the electrons in the
bonds which are more sensitive to changes in bond
angle. Now the states at the high-energy side in
the hump have a larger kinetic energy than the
states at the lower-energy side in this hump. This
reflects itself in the fact that the former states
are very localized in the bonds whereas the latter
states are more spread out in the bonds. Let us
now consider an amorphous system and let us na-
ively assume that we have just as many larger bond

angles as smaller bond angles. Since the inter-
action between the bonds is not linear we will have
an increase in the energy of each electronic state.
However, the states at the lower-energy side in
the large hump will have a larger overlap and a
larger increase in energy than the states near the
gap. This will produce an increase in the number
of states near the gap and a steepening of the band
edge. A simple calculation shows that the increase
in the energy involved is of the same order as that
observed in the amorphous ca,se [Fig. 9(a)]. In the
pseudopotential calculation for ST-12, Coulomb
effects are not taken explicitly into account and
the shifting of the peak is mainly due to an increase
in the kinetic energy. We may argue in the same
manner as above since variations in bond angles
will produce a larger decrease in the effective
volume occupied by the electrons at the lower-en-
ergy side of the hump than the electrons in states
near the gap which are more localized in the bonds.
This will result in an increase in the kinetic ener-
gy and we should obtain the same effect as in the
amorphous case. This is evident in Fig. 9(d). Al-
though the BC-8 structure has much smaller de-
viations in bond angles than ST-12 we can still
notice an introduction of states near the gap when
we compare BC-8 with 2H-4.

Finally, we would like to make some compari-
sons between our results for the BC-8 and ST-12
structures using the EPM and the Weaire model.
If we compare ST-12 (Weaire) with Ge ST-12 (EPM)
we notice a very good matching of gross structure.
The 5 function at —2 eV represents the large hump

at the top of the valence band. The two strong
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peaks near -4 eV and —6 eV are obtained in both
cases and reveal a characteristic property of the
structure. In Si ST-12 the peak at -4 eV has
merged with the forward hump. In the BC-8 struc-
ture the comparisons are not as good. However,
we still get a characteristic dip near —8 eV for
both cases. The peak near —6 eV seems also to
be well reproduced.

V. CONCLUSIONS

We have shown that long-range disorder is not
necessary to reproduce the essential features of
the amorphous data. By studying a series of struc-
tures that became more and more locally disor-
dered we were able to draw some interesting conclus-
ions as to what properties of the amorphous struc-
ture are important. We have found that deviations
in bond angles will produce an enhancement of the
states near the gap and what seems like a shift of
the hump in the density of states at the top of the
valence band to higher energies. The presence of
local disorder also seems to smear out the strong
structure in the region near the bottom of the con-
duction band, The presence of five- and seven-
numbered rings will enhance the number of states
in the valley between the two low-energy density-
of-states peaks at the bottom of the valence band.
The odd-numbered rings also have an effect in pro-
ducing a "valence gap" and perhaps it is this fea-
ture that helps to retain the dip in the amorphous
density of states shown in Fig. 11. Finally, the
odd-numbered rings seem to have an effect on the
size of the intrinsic energy gap. We found this to
be a very large influence on the gap in the Weaire
model. Now one may argue that this is of no realistic
consequence since the conductionband in theWeaire
model is inadequate and insufficient. Nevertheless,
in the EPM calculation we find that the states near
the gap at the bottom of the conduction band are s
like and are rather localized. In this sense the
predictions of the Weaire model may still be valid
for these states. However, we are not implying
that the presence of fivefold rings will produce an
increase in the energy gap. As we found in our
modified crystal the gap depends very critically on
the Hamiltonian matrix elements. Furthermore,
the amorphous phase is less dense and hence has

probably fewer five-numbered rings than the ST-
12 case. Therefore, this fact along with variations
in the Hamiltonian matrix elements could produce
a gap in the amorphous phase which is very nearly
the same as that of FC-2,

We also believe that a microcrystallite model
with 2H-4 microcrystallites is not substantiated by
our calculations. This is clearly the case in the
optical properties even if we average the c2(~)
function, since the peak lies higher in energy than
the amorphous hump. This is also the case in the
density of states for 2H-4 since an averaging does
not reproduce in any way the amorphous features.
One might suggest an amorphous structure made
up of ST-12 microcrystallites and argue that small
regions of microvoid structure could make up for
bulk density differences. However, the radial dis-
tribution function for these structures would be
quite different. The next-nearest neighbors in the
Ge ST-12 structure at 3.45 and 3. 64 A would be
hard to lose.

The random-network model seems like a reason-
able model for the amorphous state. Its major
problem is, of course, that of nonuniqueness. It
is clearly obvious that one could make a random-
network model and obtain a zero gap. Thus effects
of stability must be very important in determining
the particular types of random-network structure
that can exist in a metastable state. The fact that
amorphous samples are always prepared with very
nearly the same gap clearly reflects this.

Finally, we hope this work will invite experi-
mentalists to study the BC-8 and ST-12 structures
which may have a variety of interesting applications.
In particular, the ST-12 structure may have about
34 valleys in the conduction band. This feature in
itself is interesting for several reasons. For ex-
ample, it raises the question that ST-12 may be a
superconducting semiconductor or that it may be
a good host for the exciton droplet.
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The density response function (X~), the longitudinal spin-correlation function (X«), the trans-
verse spin-correlation function (X ), and the cross-correlation function (Xp8) involving the 'den-

sity and the z component of spin density are computed by employing two generalized moment-
conserving (MC) schemes for a magnetic electron gas. The two schemes differ in their treat-
ment of the one-electron states. These functions are also computed in the random-phase ap-
proximation (RPA) including exchange processes, in two different ways, by solving the re-
sulting integral equations by a variational method due to one of the authors. We prove that in
the absence of spin-orbit interactions, Xp~(q, ~) X8p(q, ~), which enables us to set up a con-
sistent MC scheme. In the paramagnetic state, only

happ

and X«are independent, and in the
long-wavelength static limit they yield results in accordance with the RPA scheme. The
plasma dispersion law for lorg wavelength is also found to be identical in the MC and RPA
scheme. In the ferromagnetic case, one of the MC schemes gives the same results as the
RPA results for the Stoner model, and vexy different results for the Coulomb gas. The long-
wavelength spin-wave dispersion is found to be different in the two schemes. A new nonlocal-
zero-moment-conserving scheme is set gp which gives the same equations as the RPA. It is
thus concluded that a local-MC scheme ip different from the RPA by virtue of the actual struc-
ture of the correlation functions, even though in the paramagnetic limit the results are similar
for the static long-wavelength limit.

I. INTRODUCTION

Some time ago, one of us (A. K.B.)~ in collabora-
with Brooks and Ranga, nathan, examined in some
detail the various spin-correlation functions of
the paramagnetic and ferromagnetic (unsaturated
as well as fully saturated) interacting electron
gas. These calculations were based on the ran-
dom-phase approximation (RPA) and included ex-
change contributions for the appropriate vertex
functions. One-electron energies were calculated
in a Hartree-Pock (HF) scheme. Such a formal-
ism, without the exchange contributions to the
vertex functions, is known to be valid for high
electron densities x, & 1, of the paramagnetic
state. (The density of the system is related to r,
by the condition that a sphere of radius r, times
the Bohr radius contains an average of one elec-
tron. ) It is not yet clear that a formalism which
includes these additional exchange processes will

improve the validity of the RPA results without
exchange for lower densities, which correspond to
the electronic densities of alkali metals (2&r, &6).
The work presented here is in part an investiga-
tion of this question.

Attempts have been made previously to calculate
the exchange effects for response and correlation
functions. However, these calculations failed to
satisfy both the "compressibility sum rule" and
the condition that the pair-correlation function be
positive. As pointed out in an article by Singwi
et gl. , many of the calculations resulted in a
negative pair-correlation function evaluated at the
origin for densities corresponding to r, & l.
Singwi et gl. original. ly proposed an ansatz which
yielded positive or nearly positive pair correla-
tions for x, ~ 6, but the compressibility sum rule
was badly violated for x, ~ 3. In a modification of
their Ansatz, Singwi et gl. obtained solutions
yielding good agreement with the compressibility


