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A simple localized-bond-charge model for the calculation of nonlinear optical susceptibilities is

presented. We find that there are three important contributions to the nonlinearity, namely, the bond

ionicity, the difference in atomic radii of the bonded atoms, and d-electron contributions. By including

these effects we are able with one simple theory to accurately treat a wide variety of different types of
compounds including A"'Bv (e.g., GaAs, GaP, InSb), A "Bv' (e.g. , ZnS, ZnO, BeO), A'8 " (e.g.,
CuCl, CuBr, CuI), A' 8, ' (e.g. , SiO2), multibond crystals [e,g, , A'8"'C, ' (LiGaO„AgGaS„CuInS„
CuGaSe, ), A "8' C, (CdGeP„CdGeAs„ZnGeP, ), A'"8 C, ' {AlPO„), also KH, PO4], highly

anisotropic crystals (e.g., HgS, Se, Te), as well as ferroelectrics (e,g., LiNbO3, Ba NaNb, O„, LiTaO, ).

I. INTRODUCTION

There has been a substantial effort' "devoted
to understanding the origin of the linear'

y&& and
nonlinear optical susceptibility d,», defined as

P; (t) = g(~ E, (t)+ 2d, )„E)(t)E~(t),

where P is the time-dependent polarization pro-
duced by an oscillating electric field E(t) = E cosset.
Part of this interest in d,» has been motivated by
the large nonlinearities observable with high-power
lasers, which lead to such practical devices as effi-
cient harmonic generators, optical mixers, and
tunable parametric oscillators. ' This nonlinearity
d;» is also of great fundamental interest since it is
sensitive to the asymmetric part of the charge dis-
tribution. That is, d„~ vanishes for a free isolated
atom, and hence its magnitude and sign in a crystal
are strongly related to atomic interactions in solids,
e. g. , chemical bonding.

There have been many types of theoretical calcu-
lations of the nonlinear optical susceptibility. One
approach starts with a perturbation expansion which
expresses d,» in terms of complex sums of matrix
elements and energy denominators. '0 This first-
principles method is appealing since if one knew
the complete band structure of the solid, one could
directly evaluate d,» using no adjustable par am-
eters. It is important to note that, since the many
terms in the perturbation expressions tend to can-
cel one another, highly accurate wave functions are
necessary (except in the x-ray region where an

exact evaluation of the dominant term is possible). "
An important advance in greatly simplifying these

complex-matrix-element sums was made by Robin-
son, ' who related the nonlinear susceptibility to the
octupole moment of the ground-state charge distri-
bution. A similar approach using tetrahedral bond-
ing orbitals for the ground-state wave function was
later used by Jha and Bloembergen. " Flytzanis
and Ducuing' did a more accurate calculation along
these lines, using molecular orbitals determined
from a four-parameter variational procedure.
Another approach to the problem of simplifying the
complex expressions for the nonlinear susceptibility
is the constant-matrix-element approximation.
As shown by Aspnes' and Bell' contributions to the
nonlinearity from a number of different points in
the Brillouin zone must be included, with the result
depending strongly on the various energy gaps in-
volved. Coulomb interactions (related to local-
field effects) have also been shown to be important. "

Other simple models for acentric solids include
Miller's rule, ' the free-electron model, "the an-
harmonic-oscillator model, 4 experimentally de-
termined bond nonll. near&tees, ' ' ej.ectrzc-fseld-
induced energy-band shifts in ferroelectrics, ~e

a,

charge-transfer model, a relationship between
the nonlinearity and the polarization in polar mate-
rials, '

a, two-band model using the Phillips and
Van Vechten dielectric theory, 's and the bond-
charge model. ""

This paper discusses the latter approach, which
gives better experimental agreement than previous
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calculations; but what is perhaps even more im-
portant is its capacity to deal with a wide range of
complex crystal structures, many of which have
never been treated before.

The organization of this paper is as follows:
Section II treats the important bond-charge concept
in detail and makes contact with the linear X of
Phillips and Van Vechten. ' Since the nonlinear
optical susceptibility d,» is more highly sensitive
to the crystal potentials than is the linear g, it is
necessary to generalize the work of Phillips and
Van Vechten to obtain more accurate potentials;
this is done in Sec. III.

These developments provide the basis for the
derivation of the magnitude and sign of d,» and 4,»
in Secs. IV and V. The tetrahedral AB semicon-
ductors such as GaAs are discussed in Sec. VIA;
those containing first-rom atoms or noble metals
are treated in Secs. VIB and VIC. After reviewing
the results on these compounds in Sec. VII, we
turn to more complex crystals such as SiO~ (Sec.
VIII); NaC10, and NaBrO, (Sec. IX); A'8'"C~»'
multibond compounds such as LiGa02 (Sec. X);
4"B' C2, e. g. , CdGeAsz (Sec. XI)' A'"B C '
e. g. , AIPO, (Sec. XII); X'a"'C»', e. g. , AgGaS,
(Sec. XIII); KHzPO» (Sec. XIV); ferroelectrics,
e. g. , LiNbO„BazNaNb, O» (Sec. XV); and highly
anisotropic bonds, e. g. , HgS, Se, Te (Sec. XVI).
We comment on the favorable bond properties which
lead to large nonlinearities in Sec. XVII and sum-
marize our results in Sec. XVID.

II. BOND CHARGE

It has been rather well established, both theo-
retically and experimentally, that the formation
of a covalent bond produces an excess of charge in
the bonding region. This bond formation greatly
increases the crystal susceptibility, because the
gradient of the crystal potential in the bonding re-
gion is lower than in the nonbonding directions. The
bond charge q is thus weakly bound and highly mo-
bile, whereas the spherical screening charge
around the atom is tightly bound and makes only a
small contribution to the susceptibility. We will
assume that it is the dynamics of this bond charge
q that are responsible for virtually all the measured
susceptibility, that is, not only the linear suscepti-
bility y, &

but the nonlinear susceptibility d,» as
well.

The bond charge may be thought of as arising
from two sources. One is the contribution from
the overlap of the spherical part of the atomic form
factors q0, the other contribution arises from the
incomplete screening of the ion cores q, . The
total bond charge q that is moved by an applied
electric field 8 is thus given by

q= qs+ qo ~

To evaluate q, we will use the argument given
by Phillips. 4~ Consider first an AE semiconduc-
tor having Z~ and Z~ valence electrons on
atoms A and B, respectively. The bare core of A
thus has a positive charge + Z„(-e), where e is
the electronic charge (e &0). The valence electrons
surrounding atom A will, however, screen this
bare charge and reduce it to + Z„(-e)/e, whe~e s
is the low-frequency electronic di, electric constant.
The total remaining charge on the AB pair is thus
+ (Zz+ Zs)(- e)/s =+ 8( —e)/s. Since there must be
over-all charge neutrality there is a total charge
8e/e residing in the four bonds, i.e. , 2e/s per
bond. Martin" gets good results for the elastic
constants using this value of 2e/e. More generally
q =n„e/s, where n„ is the number of electrons per
formula unit divided by the number of bonds per
formula unit. For example n„= 4 = 2 for AB semi-
conductors, while n„= ',' =-4 for quartz (SiO~).

The remaining contribution q, is related to the
rate of falloff of the atomic wave functions. For
a highly ionic crystal (small f,) the electrons are
tightly bound and hence the overlap is small; con-
versely, for highly covalent bonds (large f,) the
electrons are delocalized implying a large overlap
and a large q, . %'e represent this close dependence
between q, and f, by q, ~f,. Hence

q/e = n„(l/s + kf, ) . (&)

One may of estimating the unknomn constant k is
to assume that q obeys simple trends and that, for
example, the charge for Ge (which lies between Si
and Sn in the fourth column of the Periodic Table)
is the average of that for Si and Sn. That is

q(Ge) =,'-[q(Si)+q(Sn)]. (4)

If we use the values f,= land s =-12, 16, a-nd 24
for Si, Ge, and Sn, respectively, ~8 in Eqs. (3) and

(4), we obtain

(T8+ k) = —,'( —,',. + k+ —,', + k) = (;—', + k), (5)

which is an identity, independent of the value of A.

Although this is therefore useless for determining
0, it provides additional evidence for the validity
of Eq. (3). Trends for any other similar set of
compounds (e. g. , GaAs, InAs, GaSb, InSb) are
also insensitive to the precise value for k.

Fortunately there is a more accurate and direct
method for determining k. Since we want to use
our model to calculate the second-order (i.e. , non-
linear) susceptibility, it is appropriate to ensure
that this model is consistent with the lower-order
linear susceptibility X. We should therefore de-
termine the unknown parameters (e. g. , ionicity
f„ ionic gap C, charge-overlap constant k, etc. )
using y. In order to do this me use the bond-charge
equation of motion

~(~~)+Z,'(~r)= --'-
„ (8)
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where 4x is the displacement from equilibrium, E,
is the Phillips'~ and Van Vechten average energy
gap, m is the electron mass, and S~ is the local
electric field at the site of the bond charge. That
is S~= fS, where 8 is the applied electric field and

f is the local-field factor. The polarization P pro-
duced by this displacement is

where y is the macroscopic susceptibility and Xb
the number of bond charges per cm . Equations
(6) and (7) yield the low-frequency electronic sus-
ceptibility

(8a)

where

~, =4vN~q /m

and +, is the bond-charge plasma frequency.
In our model we neglect any bond-bond interac-

tions and so far as the localized isolated bonds
are concerned the local-field factor required is just
the full Lorentz expression fz, = &(s+ 2) (for cubic
symmetry). Other authors' who use a more de-
localized picture of these semiconductors need to
use a smaller f.

All the quantities in Eqs. (8) are known with the
exception of q, thus, using the experimental g, E,
etc. , we can determine a value for the bond charge
q(y), which is listed in the first column of Table I
for aH the 20 IV-IV and III-V semiconductors.
These crystals have been used since they are large-
ly covalent, so that the simple harmonic oscillator
Eq. (6) should be an adequate description. For
crystals as ionic as the II-VI's or I-VII's the po-
tential in the bonding region is so strong and asym-
metric that Eq. (6) may be inadequate.

We can now determine the best value for k by ob-
taining the best one-parameter fit of Eq. (3) to

q(y); i. e. , we set the average value of q()() equal
to the average of the q calculated from Eq. (3),
q(calc). This yields k =0. 33. The second column
of Table II gives the results of calculating the bond
charge from Eq. (3) withe=0. 33. We can compare
the agreement between q(y) and q(calc) by evaluating
the quantity

1 " q(x)-q(calc)
e(x)

TABLE I. Comparison between the bond charge q(x)
determined from the susceptibility [i.e. , Eqs. (8)) and

q{calc) determined from Eq. (9).

Crystal ~(calc)/ee(x)/'&

C
si
Ge
Sn
SiC
BN
BP
BAs
A1N
AlP
AlAs
AlSb
GaN
GaP
GaAs
GaSb
InN
InP
InAs
InSb

0.831
0.623
0.618
0.555
0.786
0.896
0.726
0.701
0.873
0.743
0.758
0.720
0.882
0.730
0.715
0.660
0.863
0.738
0.704
0.658

l.018
0.833
0.792
0.750
0.840
0.935
0.872
0.845
0.787
0.671
0.623
0.574
0.736
0.668
0.640
0.629
0.653
0.594
0.590
0.575

Eq (6), a. significant part of the 18% deviation we
found is probably still due to the inadequacy of this
simple equation of motion. Thus, it seems rea-
sonable to conclude that Eq. (9) may be more ac-
curate than this 18/o deviation would indicate. Since
q only enters linearly into the calculation of the
nonlinear susceptibility, this will be satifactory
for our purposes.

Fortunately, in our calculation of the nonlinear
susceptibility we do not need to know the bond-
charge equation of motion, since all we really re-
quire is an expression for the linear susceptibility.
The Phillips' and Van Vechten 8 (PV) theory of the
linear susceptibility is admirably suited for our
calculations; since it is in agreement with experi-
ment for y (by construction), it gives an excellent
account of the ionicity, and is a macroscopic theory
which automatically includes the potentially trouble-
some local field correctly. Because we can thus
calculate the macros copic nonlinear susceptibility
using bond parameters (e. g. , f„q) determined,
essentially self-consistently, from the macroscopic
linear susceptibility, we are able to obtain accurate
values for d,».

It is instructive to compare the microscopic Eqs.
(8) with the macroscopic PV expression

q/e = n„(1/e+ 3f, ) (9)

Since this turns out to be only 18%, the equation for
q~

1 (8'Qp)~

4m E~

(n n, )'= (4vve'/m) fl~,
(10)

gives a, good account of the magnitude of the bond
charge.

Even though we have carefully avoided highly
ionic crystals, so as to maximize the validity of

where D and A are correction factors of order
unity. Equating Eqs, (8) and (10) shows

(Kn~)' = (h (u, )'f . (11)
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TABLE II. Comparison between the theoretical and
experimental ratios of d;;& coefficients. The theoretical
result assumes undistorted tetrahedra.

Crystal
(II-VI)

ZnS&"

CdSe~'

(ds~/d33) e~t
—0.51
—0.55
—0. 53

Theory: d3&/d33 = d f 5/d3, = ——,
'

(d~s/d33) mpt

—0.56
—0.60
—0.58

C. K. N. Patel, Phys. Rev. Letters 16, 613 (1966).
R. C. Miller, S. C. Abrahams, R. L. Barns, J. L.

Bernstein, W. A. Nordland, and E. H. Turner, Solid
State Commun. 9, 1463 (1971).

'R. C. Miller, D. A. Kleinman, and A. Savage, Phys.
Rev. Letters 11, 146 (1963); R. A. Soref and H. W.
Moos, J. Appl. Phys. 35, 2152 {1964).

R. C. Miller and W. A. Nordland, Phys. Rev. B 2,
4896 (1970).

'R. C. Miller and W. A. Nordland, Phys. Rev. B 5,
4931 {1972).

where X' is the total macroscopic susceptibility
which a single crystal composed entirely of bonds
of type p, would have (including local-field effects),I" is the fraction of bonds of type p. composing the
actual crystal, X~ is the macroscopic susceptibility
of a single bond of type p, , and N," is the number of

This shows that the macroscopically defined plasma
frequency SQ~ of PV, which is in excellent agree-
ment with experiment, implicitly contains the local-
field factor f. Hence Eq. (10) is an attractive
starting point for our calculation of the nonlinear
susceptibility, as it avoids these complications.
This is especially important, since these local-
field effects are a much larger source of error in
the nonlinear susceptibility (d,~, ~f ) than in the
linear susceptibility ()f~f).

III. LINEAR SUSCEPTIBILITY

We will now discuss in detail the various param-
eters appearing in Phillips and Van Vechten's
expression for the linear susceptibility [Eqs. (10)]
and their dependence on the microscopic variables

(the covalent radius), Z (the core charge), and
the other relevant variables. Although PP only
considered the simple AB compounds, I have al-
ready discussed in some detail (Refs. 1 and 2,
hereafter referred to as I and D) the extention of
these ideas to a wide variety of complex multibond
crystals, and simply exhibit the results of this gen-
eralization in what follows.

If the crystal is composed of different types of
bonds (labeled p, ), then the total g can be resolved
into contributions y" from the various types of
bonds,

bonds per cm . In terms of more fundamental
variables

(ifn,")'(1+r")
4v (E')2 (13)

Equation (13) defines the appropriate average ener-
gy gap for the type-p bonds, E,", and 1" describes
the effects of conduction-band d levels (I' = 0 if
there are no such d levels).

The plasma frequency Q~ is obtained from the
number of valence electrons of type p, per cm, N,"
using

(@n,")'= (4',"e'/m)D "X', (14)

where D" and A" are correction factors of order
unity sa

It is useful to express N ~ in terms of individual
bond properties

N,' = n„"/v,',
q', = (Z"./~;. + Z,"/W~, ),

(15a.)

(15b)

Our generalized expressions for the evaluation
of E„" and C" in in A B„compound are

39. 74 1
2 (d g)8 (rg)8 1 s = 2. 48

f ~e k~rg n n Z-2 82
mr~

r„' =r 2
~ r(~) -= -,' (r,"+ rg ) = -,' d" (20)

where d' is the bond length, ~ is the atomic radi-
us, and e +"0 is the Thomas-Fermi screening
factor.

The physical interpretation of Eq. (19) is that the
antisymmetric energy gap C" is given by the differ-
ence between the screened Coulomb potentials of
the atoms o, and p (having core charges Z„and Z2)
composing the bond p, . As shown in I and II, the
implicit dependence of 5 on the covalent radii (the
position of the bond charge) is such that superior
results for the linear dielectric properties are ob-
tained by using r~ =r2 [except when Z /Z2= (nr )/
(mr, )].

The d electrons in noble- or transition-metal
atoms are weakly bound and consequently give
sizable effects. As shown in I and II, these impor-

where n„" is the number of valence electrons per p,

bond, N," is the coordination number of the z atom
composing the pth bond, and p~~ is the bond volume.

ln order to determine the ionicity f," and covalency
f, of the individual bonds, we separate (E~) into
homopolar (E„") and heteropolar (C")' parts

(@4)2 (@l4)2 (Cll)2
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tant effects can be accounted for by including all
the d electrons when calculating Q~, i. e. , X, (e. g. ,
N, = 18 for CuCl), and also when evaluating Z,
(e. g. , Z„=11 for Cu). More specifically it was
shown'~ that the ionic gap for such compounds can
be represented by

p,

f ((e ((8( rg -0( + 8 e2
0 0

(21)

s/a

( (7MB(= D. 08((((7,) (- (23)

where I" is the fractional number of conduction-
band d levels. The average coordination number
N, for A B„compounds is given by

g, = — N, (A)+ ——— N, (B),PL+5 St+8

where N, (A) is the coordination number of atom A,
We have already generalized the PV results for

the linear susceptibility to complex multibond
crystals. ' All that now remains to be done before
we can use these results for the nonlinear suscep-
tibility is to generalize the symmetric potential
E„. Although Eq. (18) gives good results for the
linear susceptibility, the nonlinear susceptibility
is more sensitive to the crystal potentials, and
hence a more accurate microscopic description is
necessary.

E„ is incorrectly evaluated at the average radius
vo and not the true bond-charge positions x and

r(( This is ea.sily seen since Eq. (18) states that
E„ is constant throughout the bonding region,
whereas one would expect E„ to be a function of the
position of the bond charge as is the case for C.
In other words, although the numerical value for
E„used by PV [i.e. , Eq. (18)] is very accurate,
to obtain a,» we need the correct functional de-
pendence of E„on x and xg in order to determine
its variation with electric field. We now generalize

where the effective noble- or transition-metal core
charge Z* can be determined directly from Eq. (21)
[in fact Z,*=Z (be '"/8), where 8 is the noble- or
transition-metal screening factor]. It should be
noted that Eq. (21) has been written so that the
Thomas-Fermi screening factor e '" is evaluated
using only the s and p electrons, since the d elec-
trons have already been included in Z*.

We found' that this prescreening factor b was
quite constant within any crystal class (e. g. ,
b = 1.62 + 14% for zinc blende, wurtzite) and that
the differing values in the various crystal classes
could be predicted quite closely by

b = 0. 089(Ã, )3.

For transition-metal bonds (TMB) this b value
should be multiplied by the factor containing I"

given as follows:

CC g ~ (28)

The proportionality constant may be obtained
from the covalent-radii and core-radii table of
Van Vechten and Phillips. ' An average of the ratio
of core radii to covalent radii, for all the atoms in
Table I of VP, 43 shows that the average core radius
is 35% of the average covalent radius. Thus in
Eq. (28)

x, =0.35m". (2'7)

To derive the dependence of the total average
gap E „on the individual gaps (E„) and (E'„)((, we
consider the average homopolar susceptibility
(x„),„ that the bond charge experiences, namely,

(xa).,=4
1 (ft g~)2

(2
h

Both atoms (2 and p will contribute to this average
susceptibility and since susceptibilities are directly
additive we have'

(xa)., = -.'[(xa) + (x~41

the symmetric gap to include this x, rz depen-
dence. Qf course since E„must be symmetric in
n and P this correction must depend on (r, —r(()
However, Eq. (18) is satisfactory for the linear
susceptibility since, for this case, the correction is
of second order in the small quantity (r„—x((). On

the other hand, as we will see, the nonlinear sus-
ceptibility is more sensitively dependent on the
crystal potentials, and this correction factor is a
first-order effect.

The contribution of atom e to E„denoted by
(E„)~ is given by generalizing Eq. (18),33 i. e. ,

(25)

where r, is the appropriate core radius. The
quantity z, must be included since the valence-
electron wave functions are orthogonal to those of
the core. Ther efor e, the probability of finding a
valence electron in the core region is small, and
this makes the effective bond length shorter.
Equation (25) is a simple way of including this im-
portant effect,

This core radius x, does not enter in the semi-
classical electrostatic expression for the ionic gap
[Eq. (19)]since the Coulomb potential of a sphere
of charge of radius x, can be taken to act at its
center and thus is independent of x„. For the
quantum-mechanical covalent gap, this is not the
case. We will treat this core correction in a sim-
ple fashion since the fine details of the core region
are not expected to affect the susceptibility in a
significant way. In conformity with our use of
average bond properties (e. g. , the average band

gap E~), and consistent with the expectation that
larger atoms have larger cores, we determine an
average core radius from



BOND-CHARGE CALCULATION OF NONLINEAR OPTICAL. . . 2605

Generalizing Eq. (28) to

1 (nn, )'
(X«)n 4 (E«)

we obtain

(31)

used the fact that d" remains constant, i. e. ,

(38)

so that (Q«") ~(d") ' is also constant. Differentiat-
ing Eq. (19) with respect to r„, we obtain

Finally the combination of Eqs. (25) and (31) re-
sults in' =-5"e «« "0[Z,"+(n/m)z,"] „;e'. (3'f)

E„'~ (r, —l,)"+ (l «
—r,)"„ (32)

or

(
„(r,- l,)"+ (r« ~,)"«« Io 2(l, l, )«s (33)

where X~ is the linea, r susceptibility parallel to (,
It should be noted that q is not necessarily a point
charge, nor even spherical; all that Eq. (34) re-
quires is that q move rigidly in response to S.
This displacement hr" will produce a change in
both E«(b.E«) and C(hC) causing X" to change by

From Eq. (13) we can write for one bond

(35)

Thus, we see from Eq. (35) that the 8 dependence
of both the symmetric and antisymmetric poten-
tlRls Rl'6 lnlpol'tR11't. In derlvlng Eq. (35) we have

where (E„')0 is the gap appropriate to r, = l'«= ro,
i. e. , the PV gap given by Eq. (18). With these
relations for the potentials in the bonding region
as well as the explicit dependence of the linear
susceptibility on these potentials, we can calculate
the nonlinear susceptibility.

IV. DERIVATION OF d;gk

%e have previously described the linear X as
arising from the motion of the bond charge q under
the influence of the symmetric and antisymmetric
potentials E„and C. The nonlinear optical sus-
ceptibility d,» arises from the total acentricity
produced by these potentials. That is, because q
is situated in an asymmetric potential, a dc elec-
tric field 8 which causes a displacement of q by
hr produces a change in the average potential.
This makes the energy gap E,($), and therefore
also the susceptibility X($), field dependent. As
we will see la,ter the coefficient describing this
electric field dependence of X is the nonlinear op-
tical susceptibility d,»,

We will now determine X($) by starting with Eq.
(13) for the )lth type of bond. As discussed pre-
viously [Eq. (11)], this formulation automatically
includes most of the local-field effects, since it
uses the macroscopic measured susceptibility y".
For the present we take 8 parallel to $, where $

is the bond direction. For one bond

Since the prescreening factor b is a constant within
a given crystal class, ' '"'" and since the Thomas-
Fermi screening constant e «& "o depends on d" (and
not r ) they remain unchanged when 6 is applied.

The use of Eq. (34) gives the electric field de-
pendence of C', which is

~C"=-4b"e""o[Z„"+(n/m)Z,"] "'„„,. (38)

By an analogous argument, Eq. (33) yields

where for simplicity we have dropped the subscript
0 on (E«)0. Defining p by

l,"= r(", (1+P), ~«« =l;"(1—P")

and using Eq. (34) again, we find

P 2 (graf q2
y, wg

where for simplicity higher-order terms of order
p' are neglected. Equations (38) and (41) substi-
tuted in Eq. (35) yield

85"e «« "0[Z„"+(n/m)z, "](X,")'C'e'8,
Xll + (E«)«(dg)z

, 4e(» —1)b'o" /(~o —l'".)]'f."(X«) p"&l
d"q"

(42)
where the subscripts $ on h@~ and 8& remind us
that this is the change in polarizability parallel to
the bond axis $ for a field applied along $.

All that is now necessary is to relate this change
~q» to the longitudinal second-harmonic coefficient
P&&& of the bond. One way of doing this is to begin
by relating 6@& to the longitudinal electro-optic
coefficient r«~, which is defined by

&H~l +( /elk) 4v+(Xb 4l /(&fl) (4s)

The second-harmonic coefficient can be expressed
in terms of the electro-optic constant (in esu
units") by"
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&Fib = - 4 (eb'b)'rb"f~/4~

and so

Pbbs 4 +(Xb 4g /~b . (45)

P~ =0. (46)

Quantum mechanically P~ = 0 because the formation
of covalent bonds mainly changes the atomic wave
functions along the bond; in the perpendicular di-
rection the wave functions remain similar to those
in the free atom, i.e. , essentially centrosymmet-

Because the factors of two in these definitions
can be confusing, we illustrate the general deriva-
tion of Eq. (45) with an explicit example in the
Appendix.

Now that we have the longitudinal nonlinearity of
a single bond, we want to obtain the full macro-
scopic tensor expression for d,». Thus, we must
now consider the transverse nonlinear suscepti-
bility of a bond P~. For example we might con-
sider P, = P«„(which by Kleinman ' symmetry is
also equal to P„,„and P„„,), where q is the trans-
verse direction. Since a displacement Ag does not
change x or xz to first order, it cannot change
either C' or E„' to first order. The lowest-order
term arising from a transverse displacement gives
a term DX($) ~ h or P~ h, which is a contribution
to the third-order nonlinear susceptibility. Thus
in our model we have the simple result that

or
P =F d(~ /G(, N„, (46)

where d,» is the total macroscopic nonlinearity
which a crystal composed entirely of bonds of type
p. mould have and E~ is the fraction of bonds of
type p, composing the actual crystal [ this is quite
analogous to the bond separation of the linear sus-
ceptibility, i.e. , Eq. (12)]. Because P, =O [i.e. ,
Eq. (46)], the geometrical factor G;» can simply
be calculated from

G,"„==—„Z n,'(X)n,'(X)nk'(X), (49)

where the sum on A. is over all n. ," bonds of type p,

in the unit cell, and n, (X) is the direction cosine
with respect to the ith coordinate axis of the Xth
bond of type p, in the unit cell. We can see that
Eq. (49) automatically satisfies Kleinman sym-
metry (i. e. , complete permutation symmetry of
the indices f, j, and k). The reason for this is
that we have neglected any dispersion in the sus-
ceptibilities, The complete expression for the
total nonlinear susceptibility can now be written as

ric. Equation (46) is in agreement with the molec-
ular orbital calculations of Flytzanis and Ducuing. '

We can now express the full macroscopic tensor
nonlinear susceptibility of the entire crystal d,» a,s

O k ~ diJk ~ &Jk+bPgbb (47)

d;;„=Z F'[d,',„(C)+ d,'~ (Ek)]k, (50)

F~dk (C)
G,"„N (6b00)b "e 'k "0 [8"+ (n/m)Zg][ e ) (Xb~)0C'

Uk (E~)2(du, )k~u

F.d~ (E )
G~'Jk&b b'(2s —&)[ro/«0"- r.")]'f.'(Xb)'p"

h~

(5l)

(52)

For convenience we have written the above equations
so that C" and E," are in eV, the other variables
are in esu, as is d&». The value of the factor r0/
(r0 —r, ) can be obtained from Eq. (27). Note that
Eqs. (47)-(52) express the nonlinear optical sus-
ceptibility in terms of known quantities, so that we
do not need to fit any parameters to the nonlinear
optical susceptibility for any crystal. In other
words, the parameters 5, q, X„C, E„f„etc. ,
have already been determined using only the B~eax
susceptibility and the radii x . In this sense our
theory does not use any adjustable parameters.

We see that there a.re two sources of bond acen-
tricity: the electronegativity diff erence C of the
atoms composing the bond which leads to d,»(C),
and the difference in the atomic sizes p= (r~ —rb)/
(r +rb) which leads to d„,(E„). The latter term is

of course only important when the two atoms have
quite different radii, as for example in a bond con-
taining one atom from the first periodic row. The
reason for this is that the homopolar gap E„ is sym-
metric in n and p so that BE„/Br vanishes by sym-
metry for x =xz. Actua. lly, when p is as small as
-0. 1, it is not really significantly different from
zero to within the uncertainties involved in the de-
terrnination ' of x . This means that for small
p's, say, p= 0. 05, a change in r, by only 4% (keep-
ing d constant) can change p by as much as a, factor
of 5. Hence, for simplicity we will take

p =0 when p" ~0. 1.
Since Miller's" 4&» is normalized to the linear

susceptibility, it is more closely related to the in-
trinsic crystalline acentricity than d&» is, and 6&»
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is therefore a useful representation for the nonlin-
ear susceptibility. It is defined by'

this b, ,» formulation;as

u&on=~ + ~&pa=~~ &gn+o+8 ~ (55)

'" x~(~~))0(~~)x.(~.) ' (54)
where b z is the Mille r 's 6 for the bond, i. e. ,

where v, are the appropriate optical frequencies
involved, and X, (&u, ) is the appropriate susceptibility
at &o, . We can express Eqs. (47)-(52) in terms of

4g = F"a,"„/G,"„fr,".
Further, we have

(56)

~g» =~ F [n 'og&(C)+ +&pa(Ea)] (57)

G,",&,"( 600)b "e """ [Z,'+ (n/m)Zs] I e I (X,")'C"
tJR~ (g)E(did)zql4X$ (56)

G,"~,N,"s(2s —1)[xo/(ro —x,")] f,"(y~ PI&
ijk( h d"q'y' (59)

b = I/Pq, (60)

where P, —= Xq/ro is the atomic polarization pro-
duced by the bond-charge electric field q/ro. This
simple relation is instructive since it gives the
correct order of magnitude for 6 and shows that 6
is given by an inverse atomic (i. e. , bond charge)
polarization. Taking typical values for q/e-0. 6,
d - 2. 5 A, y

-
& yi.elds P, -0. 9 x 10 esu and 6- 1.1

x10 esu, which is close to the average value
for h.

V. SlGN OF d;gI,

The absolute sign of d, » is of fundamental signif-
icance since it depends on whether the potentials
in the bonding region increase or decrease with an

In the denominators of Eqs. (58) and (59), X is
the total macroscopic susceptibility. This is con-
venient since then, as Eq. (5'7) shows, all the con-
tributions are directly additive. It is important to
note that no approximations have been made in de-
riving Eqs. (55)-(59) from Eqs. (47)-(52), since
we have merely divided by y' and redefined the
nonlinearity in terms of 6,». This 6&» formulation
is useful since in our calculation we use the extrap-
olated low-frequency electronic susceptibility y,
whereas the experimentally measured nonlinearity
may include a significant amount of dispersion.
As is well known, ' the effects of dispersion on

6&» are much less pronounced than for d&», and
hence for a meaningful comparison between our
theory and experiment it is appropriate to use 6&».
To obtain a theoretical value for d,» one simply
substitutes the A,z, calculated from Eqs. (55)-(59)
into Eq. (54).

It may be of interest to point out that Eqs. (55)-
(59) show that a crude estimate of a typical b, is
given by

applied electric field. In Eq. (51) the three rele-
vant quantities whi~". h possess signs are 6,», q, anc
[Z, /r, —(n/m) Zs /rz ]; the latter quantity comes
from the factor C". As an illustration let us con-
sider, say, GaP. In this example G,4= (I/v 3 )
& 0, q & 0 (the bond charge is composed of electrons
and the difference in Coulomb potentials in the
brackets above is proportional to [3 —5] & 0. The
product of these three quantities is therefore posi-
tive and so d,4(C): 0. Perhaps this result can be
seen more graphi(:ally by returning to Eqs. (35)
and (37), that is, to

d~yy(C) ~ [Z~ '(8/M)Zs ] At~ (61)

The simplest a"entric crystals are the tetrahe-
drally coordinated zinc-blende and wurtzite semi-

Figure 1 shows th.at a positive electric field 8 (de-
fined as pointing f"rom the Ga to the P along a [111]
crystallographic direction) will cause q to move in
the negative dire~"tion (q&0) and thus br &0. Since
[Z, —Zs] =[3—5"j&0, we again see from Eq. (61)
that d„(C) & 0 for GaP. "

As far as d, »(E„) is concerned, Eq. (52) shows
that the three fa~:tors determining the sign are
G&», q, and p. Thus, since q&0 and 633&0 for,
say, wurtzite crysta, ls, the sign of d33 is opposite
to that of p. A positive p means that x"&xz [see
Eq. (40)], i. e. , the metal atom is larger than the
nonmetal atom;&s in, say, ZnO. Consequently,
d„(E„)&0 for Z~nO. Since in general d, j„(C)and

d, »(E„)can have. the same or opposite signs, in-
teresting cancel. lations between these two terms
leading to anom. alously low nonlinearities can oc-
cur, as we will. see later.

VI. TK,'TRAHEDRAL AB COMPOUNDS

A. No First-Row Atoms or Noble Metals
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NONMETAL
e.g. P

contributions are implicitly included in our use of
the measured macroscopic susceptibility and our
treatment of the local-field problem. Also, our
localized real-space picture, being a Fourier
transform over k space, does include contributions
from various points in the Brillouin zone.

In order to better exhibit the interesting depen-
dence of d&» on the fundamental variables AZ and
tf, we can plot Eq. (51) as a function of d for con-

METAL
e.g. Go

FIG. 1. Schematic representatiorl of the bonding re-
gion, showing the bond charge q located a distance z~ and

g& from the g and P atoms. The pos itive electric field
(8) direction is also shown as pointing from the metal to
the nonmetal (or from cation to anion(). This positive
direction corresponds, in say GaP, to the outward nor-
mal of the Ga terminated (111) face. Crystal

III-V

gCctl C
gi'0

(10 esu)

gexyt

(10 esu)

TABLE III. Comparison between theoretical 6;+&' and

experimental g&z nonlinearities. The numbers in paren-
theses next to the crystals [(14) or (33)] refer to the ten-
sor components i'. The numbers inparentheses next to
the 2;;& values are for Id';,&'( and (d';;& 1 in units of 10
esu. The d;,&

values of ZnS and CdS are for 1.06 p, that
of InSb is the extrapolated long-wavelength value, and
the other crystals are for 10.6 p. Conversion from
relative to absolute nonlinearities was done using Ref.
77.

G,4--+ ~ (zinc blends),

G33 = + 9 t Gal = Gtl = —
tt

(wtll''tzl'te).
(52)

conductors containing neither a fi.rst-row element
(i. e. , p= 0) nor a noble metal (i. e. , no strong d-
electron effects). The geometrical factors, Eq.
(49), for the d, 4 =-d,z, coefficient in zinc blende and
the d33 =—d333 d31 d311 and d15 = d1 )3 coefficients in
wurtzite (assuming perfect tetraht. dra) are

AlP (14)
AlAs (14)
A1Sb (14)
GaP (14)
GaAs {14)
GaSb (14)
InP (14)
InAs (14)
InSb

II-VI

+0.68
+0.73
+0.76
+0.54 (130)
+0.49 (230)
+ 0.42 (520)
+0.71
+0.56 (410)
+0.50 (790)

+ 0.41@" (99)
+ 0.46~" (215)
+ 0.52" (650)

+ 0.59" (430)
+ 0.56 (870)

These geometrical factors were fjlrst derived by
Robinson. 5 As a check on our assumption that the
bonds can be treated indePersdently, i.e. , that the
bond-bond interactions can be assumed negligible
(or assumed to be already included by our use of
the measured macroscopic suscepti, bility), we can
compare the predicted ratio of d3t/433 g [from
Eq. (49)j with experiment. This is done in Table
II, where this prediction is seen to be quite accu-
rate, supporting our independent bond model.

Using these geometrical factors, together with
Eqs. (54)-(59) and the known'38 5O linearproperties
of these crystals results in the nonlinear coeffi-
cients listed in Table III. The expex imental agree-
ment is excellent in both magnitude;&nd sign and is
achieved without the benefit of any a,djustable pa.-
rameters.

The good result for InSb is especial, lly interesting
in view of its extremely small minimum gap Eo
=O. 24 eV. That is, one might expect that since Eo
is more than an order of magnitude s~naller than
E~=3. 8 eV, the I' point of the Brillouin zone would
make a significant contribution to d,»„Our good
experimental agreement shows that these I'-point

+1.04~' (45)
=+0.9&'

18~ gth

+1.10 ' (68)
+ 1.36~'" (86}
+h

ZnS (33) +l.27 (55)
Znse (14) +1.12 (65)
ZnTe (14) + 1.12 (138)
CdS (33) +1.54 (95)
CdSe (33) + 1.56 (99}
CdTe (14) +1.39 (173)

~B. F. Levine and C. G. Bethea, Appl. Phys. Letters
20, 272 (1972).

"J. J. Wynn and N. Bloembergen, Phys. Rev. 188,
1211 (1969).

S. S. Jha and J. J. Wynn, Phys. Rev. 8 5, 4867
(1972).

R. C. Miller, S. C. Abrahams, R. L. Barns, J. L.
Bernstein, W. A. Nordland, and E. H. Turner, Solid
State Commun. 9, 1463 (1970).

'R. A. Soref and H. W. Moos, J. Appl. Phys. 35,
2152 {1964).

R. C. Miller and W. A. Nordland, Phys. Rev. B 2,
4896 {1970).

R. K. Chang, J. Ducuing, and N. Bloembergen, Phys.
Rev. Letters 15, 415 (1965).

"R. C. Miller and W. A. Nord1. and, Phys. Rev. B 5,
4931 (1972).

'R. C. Miller, Appl. Phys. Letters 5, 17 (1964}, and
private communication.

'G. D. Boyd, E. Buehler, and F. G. Storz, Appl.
Phys. Letters 18, 301 (1971).
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stant AZ = 2 and 4. Unfortunately, in order to do
this we cannot use the experimental values for y
since we must calculate X in order to exhibit the
full dependence of Eq. (51) on d. Thus, the result-
ing theoretical curves (shown in Fig. 2) will not be
as accurate as the calculation given in Table III
(which uses the correct experimental ){), and are
only given to exhibit the trends in d,» more clear-
ly. There is a rather dramatic increase of d&»
with d, which is mostly due to the increasing linear
susceptibility (caused by the decrease in E~).
Another striking feature of Fig. 2 is the fact that

d,» for bZ= 4 crystals i.s lower than that for hZ
=2. This is due to the larger band gap E~ for the
more ionic hZ=4 crystals causing the linear and
nonlinear susceptibilities to decrease.

%e can better exhibit this decrease of d,» with
bZ, i. e. , ionicity, by rewriting Eq. (51). By
making several approximations we can show that a
rough estimate of the nonlinearity is given by

l 8—

l 6—

l.2

Vl

a I.Q
O

40n~ 08
o

0.6

InSb

GOSb

d,z~/ds= 5. 5x10 '[f, (1 —f, )' j 1™esu, (63)

where d is in A. This relation is plotted in Fig. 3,
where it can be seen that there is a maximum in

(d,»/d ) for f, = 6, as noted previously by oth-
ers. ' ' Thus, for a large nonlinearity it is de-
sirable to have a long bond length d (as also shown
in Fig. 2), and also an ionicity which is neither too
large nor too small.

The origin of this maximum can be seen from
the relation d, »= h,»X'. As f, increases b,,» also
increases and hence d&» initially increases. How-

0.2

0.2 04 Q.6 0.8 1.0

FIG. 3. Plot for the simple AS compounds, illustra-
ting the initial increase and then decrease of the nonlinear
optical susceptibility with ionicity. The circles are cal-
cplated from Eq. (51), while the curve is an approximate
simplification of this equation, i.e. , (d,&~/d ) =5.5&& 10
[f;(1-f;) ] esu (where d is in A). Note the interesting
maximum at f& = ~.

12

ever, for large ionicities (f, & d), y is decreasing
far more rapidly than 6,» is increasing, thus pro-
ducing a maximum.

10

lh

8'O

6

0 I

2.0 2.2 2.4 2.6 2,8 5.0
d(K)

FIG. 2. Plot for the simple AS compounds, illustra-
ting the strong dependence of the nonlinear susceptibility
d;&& on the bond length d, and the valence difference ~.
The curves are approximate theoretical expressions; the
points are experiment.

B. First-Row Atoms

For crystals containing a first™rowatom the
difference in atomic sizes can be pronounced and

p can be quite large (p= 0. 2-0. 3); hence the sec-
ond term in Eqs. (5V) and (50), i.e. , 6&&„(E„)or
d,»(E„), becomes important. sa Since the two
terms in Eq. (5V) or (50) may be of comparable
magnitude but opposite sign, interesting cancella-
tion effects can occur leading to anomalously small
nonlinearities. The two contributions to the non-
linearity as well as the total calculated nonlinear
susceptibility are exhibited in Table IV, and com-
pared with experiment. Note that the negative
signs of d33 in both BeO and ZnO are correctly ob-
tained and arise from the negative size contribution
being larger than the positive electronegativity {or
ionicity) term. The situa"ion in BeO is particularly
interesting as the two acentricity contributions
nearly cancel 3 leading to an anomalously small
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TABLE IV. Comparison between theoretical A&&~' and experimental 6&~3~ Miller's 6's. The numbers in parentheses
next to the 4 values are for Id3c&me

I and (d3&yt I in units of 10 ~ esu measured at 1.06 JM. Conversion from relative to ab-
solute nonlinearities was done using Ref. 77.

Crystal

III-V

AlN (33)
GaN (33)
InN (33)

II-Vl

+0.293
+ O. 260
+0.323

(1O-' esu)

+0.71
+0.70
+0.84

s s,.„(z„)
(10 esu)

—2.02
1 0 73
2 4 27

~CR1c
jjk

(10 esu)

1 ~ 31
—1.03
—l.43

gexyt
i k

(10 esu)

BeO (33) +0.180 +0.83
ZnO (33) + 0.287 +1.08

No experimental dielectric data are available, and it
has been estimated theoretically (Ref. 1).

"J. Jerphagnon and H. W. Newkirk, Appl. Phys.
Letters 18, 245 (1971).

—1.07
—l.94

-o.24 (o.9o)
-O. 86 (11)

—0. 13"' (0.50)
9c d (15)

R. G. Miller and W. A. Nordland, Phys. Rev. B 2,
4896 (197O).

R. C. Miller, Appl. Phys. Letters 5, 17 (1964), and
private communication.

Miller A (i. e. , approximately an order of magni-
tude lower than usual). It should be noted that,
owing to the close canceDation, the agreement be-
tween theory and experiment is better than it ap-
pears to be, being really quite good; e. g. , a de-
crease of A(E„) by only 10% is required to get coin-
cidence between the two [obviously coincidence can
be achieved with only a 5% variation of both h(C)
and h(E„)]. For ZnO a 15% increase of b, (E„)will
give coincidence between theory and experiment.
Clearly, in a search for materials with large non-
linearities for practical devices, such cancella-
tions, should be avoided.

%'e now turn to a, consideration of the tensor
character of the nonlinearity. As demonstrated in
Table V, the ratios d„/d33 and d„/d„deviate sig-
nificantly from the theoretical expectation of ——,'.
The reason that these pWO crystals are worse t+n
the p= 0 compounds (for which the theoretical ex-
pectations are well satisfied) is related to the par-
tial cancellation between the positive and negative
d„(C) and d„(E„)contributions. Small distortions
from the assumed perfect tetrahedra will thus af-
fect the total d33 more strongly. Actually for ZnQ
the cancellation is not extreme, and hence the
ratios are still in reasonable agreement with theo-
retical predictions based on perf ect tetrahedra.
However, for BeO the cancellation is nearly com-
plete with the total nonlinear coefficient being ap-
proximately an order of magnitude smaller than
usual. Thus, the sensitivity to tetrahedra, distor-
tions is roughly an order of magnitude larger,
which is apparently sufficient to invalidate the sim-
ple geometrical argument ding/d33 df5/d33
(We will see later that there is a similar situation
in I iGaOz. ) We can see this in more detail by con-
sidering the geometrical factors which enter into
the evaluation of the various tensor elements. For
the d33 coefficient practically all of the nonlinearity

TABLE V. Comparison betw'een the theoretical and

experimental ratios of d;;k coefficients. The theoretical
result assumes undistorted tetrahedra.

Crystal

II-VI
BeO
ZnQ~

(d3(/d3q) exI t

+0.73
—0.33

(d15/d33) expt

—0.33

Theory: d„/de, = d„/d33=--,'

J. Jerphagnon and H. W. Newkirk, Appl. Phys. Let-
ters 18, 245 (1971).

R. C. Miller, Appl. Phys. Letters 5, 17 (1964).
'R. C. Miller and W. A. Nordland, Appl. Phys. Let-

ters 16, 174 (1970).
R. C. Miller and W. A. Nordland, Phys. Rev. B 2,

4896 (197O).

is produced by the bond parallel to the hexagonal
axis; each of the other three bonds in the tetrahe-
dron only contribute -3% of the total. Thus, the
perfection of the tetrahedral arrangement has only
a rather minor influence on d» since it is essen-
tially determined by a large contribution from one
bond. On the contrary, for the d» or d» coeffi-
cients no one bond dominates, and the nonlinearity
of each of the three contributing bonds is severely
reduced by a small geometrical factor equal to
~4, = 15%. For comparison the full nonlinearity
(i. e. , geometrical factor 100/0) of the single bond
parallel to the hexagonal axis is effective for d33.
Since the individual bond contributions to d3, and

d, 5 are geometrically reduced by nearly an order of
magnitude from their maximum possible value, it
would be expected that distortion effects would be
roughly an order of magnitude more important than
for d33. This is especially true for BeO where
there is the additional close cancellation between
d, q~(C) and d, )„(E„). In summary, d33 is relatively
insensitive to tetrahedral distortions and is there-
fore the quantity to be compared with theory.
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C. Noble-Metal Atoms (r,*)c„»=0. 59ro. (66}

(rc)cu ro ~ (64)

We do not take (r, )«any larger, since it seems
appropriate to have these d electrons mostly situ-
ated near the Cu atom [which is consistent with Eq.
{21)in which the non-noble-metal P atom is
screened only by the s and p electrons, not the d
electrons]. It is noteworthy that this noble-metal-
atom d-core radius in Eq. (64) is almost a factor
of 3 larger than usual [i.e. , Eq. (27)] and thus has
a volume more than 20 times larger than "normal"
(i. e. , non-noble-metal) d cores. In view of the
large size difference between the noble-metal core
(r,)c„and the "normal" d core equal to 0. 35 r,
[from Eq. (27)], it is reasonable to average the
atomic-core radii of the bond constituents to obtain
an effective core correction factor for the bond,
r,*, to be used in Eq. (59). That is

(r,*)c„»= [(0.35r0)(r, )c„]'@, (65)
and with Eq. (64) this leads to

Owing to the weak binding energy of the noble-
metal d electrons, they play an important role in
influencing a number of physical properties (see II
and Ref. 34, and references therein). In particular
d, 4 of CuCl has a negative sign which is opposite to
the other zinc-blende and wurtzite crystals not
possessing a first-row atom. This sign reversal
shows that the d-electron contribution to the non-
linearity is substantial. The origin of this sign
reversal can be directly seen from Eq. (21) where,
as discussed in Refs. 2 and 34, Z* includes the
noble-metal d electrons (Z *= 15. 8 for CuC1) so that
Z*&Z0 and thus [Z,*—Zo]=[15.8 —7]&0. This may
be contrasted with the usual situation described in
Sec. VIA in which [Z„—Zo] & 0 (e. g. , for GaP,
[3—5]&0). Thus, from Eq. (61) the sign reversal
of d, 4 between CuC1 (d„&0) and say GaP or ZnS,
etc. , (dq4&0), can be understood.

In order to calculate the nonlinear coefficients of
these noble-metal compounds all we need to do is
replace Z, in Eq. (58) with Z* and r, in Eq. (59)
with the value appropriate to noble-metal bonds

The values for most of the required parameters
(e. g. , Zg, 5, C, E„, Ec, f„etc.) are given in II,
the other necessary parameters are treated below.

As discussed previously ' a large value for the
Cu-atom-core correction factor (r,)c„ is indicated
by the weak binding energy for the d electrons and
by their relatively delocalized character. ' This
delocalization is indicated by the substantial p-d
hybridization" in these compounds caused by the
significant overlap of the noble-metal d electrons
with the anion p electrons. Consistent with the ob-
served strong d-electron effects and the substantial
delocalization, we take the largest reasonable value
for (r )«,cnamely,

This averaging procedure to obtain x,* is consistent
with our averaging of all the core radii given in the
Van Vechten and Phillips radii tables43 to determine
the proportionality constant in Eq. (27).

Because Ag has a somewhat larger core than Cu,
we would expect (r,*)„,to be slightly larger than
indicated by Eq. (66). We can estimate the ratio
of these core radii by using~ r, c&n /Z, «(IV),
where n is the Slater" effective principal quantum
number (e. g. , n=3 for Cu and n=3. 7 for Ag), and
Z,« is the effective charge for the group-IV ele-
ment in the same periodic row as the element in
question [e.g. , Z,«(IV) = Z,«(Ge) = 20. 75 for Cu and
Z„,(IV) = Z„,(Sn) = 22. 25 for~ Ag]. Thus,

(r,)„,/(r, ) „=1.42.
From the VP radii tables43 we find

(r, )« /(r )c„=1.405/l. 225 = 1.15,

(67)

(68)

and therefore, the relation for Ag which is analo-
gous to Eq. (64) for Cu can be obtained from the
ratio

(r.)..i(r.)., »
(r,),./(r. )c.

This by comparison with Eq. (64) gives

(69)

(r,)„, 1.2r, . (7o)

Substituting Eq. (70) into (r, )„~=[(0.35r0)(r,)„,]
[analogous to Eq. (65)] yields the final result

(r,*)„, =O 65r, ;. (71)

i. e. , the effective Ag core r,* is -
Io%%uo larger than

the Cu core [i.e. , Eq. (66)].
Although, as just discussed, the noble-metal d

electrons are far more delocalized than those in
"normal" d cores, we found it appropriate to have
these d electrons mostly situated around the noble-
metal atom. Therefore, to be consistent with this
partial localization, it seems reasonable that these
d electrons would not participate as strongly toward
the formation of the bond charge q as do the even
more delocalized s and p electrons. Therefore
we suggest that q be evaluated using exactly the
same relation [Eq. (9)] as was used in non-d-elec-
tron materials, i. e. ,

q/e = n„(1/s + —,
'f,), (72)

where n„ is the number of s and p valence elec-
trans. In other words, the d-electron contribu-
tions to q are already included in Eq. (72) through
their significant influence on e and f,.

The only other parameters needed for the evalua-
tion of 6&» in the noble-metal halides are the
atomic radii r 0 (i. e. , p). We note that the ion-
icity of these halides f, =0.86-0. 89 is intermediate
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between the highly ionic alkali halides [e.g. ,
f&(NaC1) =- 0. 94]and the relatively covalent zinc-
blende and wurtzite crystals not containing noble
metals [e.g. , f, (CdS) =0. 68]. Thus we would ex-
pect that the appropriate atomic radii have a value
intermediate between the ionic and covalent
radll, 4' l. e. ,

y (73)

Owing to the strong influence of the d electrons on
the properties of Cu, it seems slightly more ac-
curate to determine the halogen radius rx from
Eq. (73) and then determine r c„dire ctly from the
Cu- halide bond length d~„x, i. e. ,

+Cu+ +X dCuX ~

Since fluorine is the smallest halogen its use ln

Eq. (74) should lead to the most accurate deter-
mination of xc„. Substituting x„,= 0. 6'72 A and

r„,= l. 36 A' for F in Eq. (73) yields rr =0. 96 A.
Actually this value is somewhat too large as can
be seen by reference to Table II of VP. In their
table the bond lengths calculated from the radii
are compared with experiment. The noble-metal
halides CuC1, CuBr, CuI, and AgI are all in very
good agreement with the measured bond lengths;
the only noble-metal halide in significant disagree-
ment is CuF, for which the calculated value is
0.06 A too large. This ls not, too surprlslng since
first-row atoms tend to behave anomalously. This
suggests that F is about 0. 06 A too large and so we
propose to reduce our previous estimate of x~
=0. 96 A to

x~ =-0. 90 A. (75)

Equations (74) and (75) with dc„r = 1.84 A yield

t'q„-—0. 94 A.

We can now employ Eqs. (74) and (76) to determine

rq, —-1.40 A,

y'q, ——1.52 A,

1.68 A

(77a)

(77b)

(77c)

and Eq. (77c), together with the bond length in
AgI (d=3. 80 A), to obtain

x„g= l. 12 A.

We can now calculate A...from Eqs. (55)-(59)
for these noble-metal halides. The results pre-
sented in Table VI show an interesting sharp de-
crease in b « from CuC1, CuBr, to CuI. This is
accurately accounted for by an increasing cancel-
lation between (( «(C) and b, «(Z„) along this series,
resulting from the increasing anion radius (i.e. ,
increasing p). It is interesting to note that the
signs of both the ionic and size contributions [h(C)
and r (E„)]are opposite to the usual situation (e.g. ,

In order to exhibit more clearly the good agree-
ment between theory and experiment, we plot the
results of Tables III, IV, and VI in Fig. 4. The
straight line is theory, and its satisfactory account of
both the positive and negative nonlinear coefficients is
evident. It is achieved without fitting a.ny param-
eters to the nonlinea, r susceptibilities. The good
agreement is also iodicated by the small value for
the deviation o defined as

1 j d(cele) —d(eeet))'
d(cale) (79)

This deviation is only o = 19jg for the crystals in
Fig. 4.' As previously mentioned, the interesting
ca,se of BeO, for which &» —-0, is due to the near
cancellation between b. (C) and 6(F.„). This leads
to a nea. rly centrosymmetric bond even though both

p and f,. are large. It is noteworthy that with one
simple theory we have been able to treat crystals
having a rather wide variation in their physical
properties, i.e. , III-V, II-VI, and I-VII crystals,
both high and low ionicities, large and small band
gape (a factor of -40 for the minimum gap between
InSb and BeO), bonds composed of atoms having
either the same or widely different radii, positive
or negative nonlinearities, and noble-metal d-elec-
tron contributions to d„.„. At present, the bond-

ZnO) for which the partial cancellation is produced
by a, positive ionicity term A(C) & 0 (no d electrons)
and a negative size contribution 6(Z„)& 0 (i. e. ,
p&0).

D. I.ow-lonicity First-Row Compounds

The compounds BP, BAs, and SiC all have first-
rom atoms together with low ionicities. The ion-
icities of BP and BAs are exceptionally small, f,
=0.058, 0.026, respectively, and result from a
near equality between Z /Z~ and r /r~ (i.e. ,
Z /r = Zs/y~). Therefore, the precise values for

and yz are more important for these crystals
than is usually the case, e.g. , if y = g~ in SiC then

f, =0; thu. s since hZ=0„ the entire SiC ionicity is
due to the difference in radii. As discussed in I
this sensitivity to radii means that Eq. (19) must
be evaluated using the actual radii y, and not the
average radius ro; Eqs. (58) and (51) must there-
fore be modified. Further, in view of this radii
sensitivity for these few crystals it would seem
reasonable to also modify Eqs. (59) and (52). "

The only crystal of this set which has been mea-
sured is SiC.'7 The fact that the 4 calculated di-
rectly from Eqs. (55)-(59) is approximately a fac-
tor of 2 too large also suggests the need for a
modified treatment. Because these few crystals
require special treatment we do not discuss them
here.

VII. REVIEW GF ANB ~ COMPOUNDS
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TABLE VI. Comparison between theoretical h, ~
' and experimental h&p nonlinearities. The numbers in parentheses

next to the 6 values are for )d~4 ') and (d~~4 ) in units of 10 esu. The experimental numbers are an average of the
similar values obtained at 0.946, 1.06, and l.32 p. Conversion from relative to absolute nonlinearities was done using Bef. 77.

Crystal

I-VII

CuCl (14)
CuBr (14)
CuI (14)
AgI (14)

—0.20
—0.24
—0.28
—0.20

(10~ esu)

-2.94
3 ~ 17

—3.25
—3.94

Ii 6";~~(EI,)
(10~ esu)

+1.75
+2.32
+3.07
+2.77

gcalc

(10~esui

—1.19 (13.0)
—0.85 (15.7)
-O. 18 (7)
—1.17

gegyt
ijk

(10 esu)

—l.33 ' (l4. 5)
—O. 82" (15.1)
—O. 27" (1O.2)

R. C. Miller, S. C. Abrahams, R. L. Barns, J. L.
Bernstein, W. A. Nordland, and E. H. Turner, Solid
State Commun. 9, 1463 (1971).

Q. C. Miller, %'. A. Nordland, S. C. Abrahams, and
C. Schwab, Phys. Rev. (to be published).

charge model is the only theory which gives a good
account of this wide range of crystals. This is
especially true for the more complex crystals to
be discussed shortly.

It is instructive to compare our model with other
calculations for d,». This is done in Table VII
using only the simple A"'Bv's since the other cal-
culations are most successful for these crystals.
A useful measure of the theoretical accuracy is the
deviation o [Eq. (79)j which is given along with the
ratio a/o~ of these deviations to that of our bond-
charge model g~. As Table VD shows, the bond-

charge model is significantly more accurate, even
for these simple A"'gv compounds.

Before turning to more complex compounds it
may be worthwhile to make a few general comments
concerning the successes of the bond-charge mod-
el. Since the model uses the measured macroscop-

lc susceptibility X as an input parameter, most of
the local-field effects are automatically included.
This is important since d&z, is related to the cube
of the local-field factor f, and therefore inaccura-
cies in the determination of f are a larger potential
source of error in d,.z~ than in y. Also our theory
for the nonlinear susceptibility is approximately
self-consistent since unknown parameters (e.g. ,
b, q, C, Z, , f, , etc. ) are determined from the
linear susceptibility. For example, we determine
the ionicity dielectrically, which seems more ap-
propriate for the evaluation of d„., than does say
Pauling's ionicity scale'8 which is determined from
heats of formation.

VIII. Sio~, Geo~

Having satisfactorily explained the nonlinear op-
tical susceptibility of the eight-electron A"B

CdSe

- 1.6

FIG. 4. Plot of experimental-vs-theoretical Miller's
6's for the A B compounds. The agreement between
theory and experiment is excellent as demonstrated by
the small standard deviation of only 19%.

TABLE VII. Comparison between experiment and
various theoretical calculations of di4 (in 10 9 esu) for
the simple A Bv semiconductors. The standard devia-
tion 0 between theory and experiment is given as is the
0- ratio between our calculation (oz) and the others.

gIII gV

GaP
GaAs
GaSb
InAs
InSb

FD PV" K' A" 8' Mf L Expt. "

130 99
230 215
520 650
410 430
790 870

120
190
350
320
550

375
540
965
855

1430

0 59% 56% 53% 50% 36% 26% 16%

Ratio (fT/IYI, ) 3.7 3.5 3.3 3.1 2.3 1.6 l. 0

aChr. Flytzanis and J. Ducuing, Phys. Rev. 178, 1218
(1969).

"J. C. Phillips and J. A. Van Vechten, Phys. Rev.
183, 709 (1969).

'D. A. Kleinman, Phys. Rev. B 2, 3139 (1970).
D. E. Aspnes, Phys. Rev. B 6, 4648 (1972).

'M. I. Bell, thesis (Brown University, 1972) (unpub-
lished) .

R. C. Miller, Appl. Phys. Letters 5, 17 (1964).
That is, the values in this column were obtained by using
Miller's rule and scaling 6 to fit GaP.

This paper.
"See references in Table III.
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semiconductors, we turn to consider some more
complex structures. We begin with the 16-elec-
tron quartz ABa structure (e. g. , SiOk and GeOa).
All the linear-bond parameters necessary for the
evaluation of Eqs. (55)-(59) are given in I with the
exception of p, which we obtain directly from the
covalent radii tables4k [and Eq. (40)]. The geo-
metrical factors" G»—= G», =+ 0. 0806 (for right-
handed quartz) and G,4-=Gt»= 0 are easilyevaluated
from Eq. (49). The result for right-handed quartz
SiOk(r) shown in Table VIII is in good agreement
with experiment both in magnitude and sign. Klein-
man symmetry47 is well satisfied by the experi-
mental measurements since ~;4"& 0. 02x10-, in
adequate agreement with the calculated value ~&4
=0. We note that the negative sign of &»(S10a)
is due to the dominance of the radii term b tt(Ek)
just as in BeO and ZnO. This experimental agree-
ment is achieved using exactly the same expres-
sions [e.g. , Eqs. (3), (55)-(59), etc. ] as for the
previously considered 2"Bs " semiconductors. Qf
course the bond parameters appropriate to Si02
are used, e.g. , tt„=4 in Eq. (9) as previously dis-
cussed, n/m=2 in Eq. (58), etc.

IX. NaC103, NaBr03

Although NaC103 and NaBrO, are isomorphic,
they have quite different nonlinear optical proper-
ties. The magnitude of ~&4 for NaC103 is - 5 times
larger than that for NaBr03 and of opposite sign.
This unusual behavior was first pointed out by Si-
mon and Bloembergen several years ago, but has
not yet been fully explai. ned. However, these non-
linearities can now be quantitatively understood by
substituting the appropriate values into Eqs. (9),
(55)-(59), etc. Some of the necessary parameters
are G«(NaCIOk) =+0.1386 and G«(NaBrOk)
=+ 0. 1232 (for the A configuration)'e; tt„=~» Z
+ (n/m) Z&

= 7+ 3(6) = 25; x (Cl) = 0.991 A, v (Br)
=1.077 A, r8(0)=0. 604 A (from I); a.nd N, = (4) (26)/
a3C, where there are four molecules per cubic cell
(volume ak) and the fraction 4 of the unit cell oc-
cupied by the covalently bonded C103 and BrQ3 units
is also given in I as are all other necessary param-
eters. As shown in Table IX, our simple bond-
charge theory nicely explains both the large differ-
ence in the nonlinearities as well as the sign re-

versal in these two crystals. Basically the expla-
nation of this unusual behavior is that in NaBrQ3
the two acentricity contributions nearly cancel,
leaving a small positive total nonlinearity 4«(C)
& a«(Ek), whereas the lower ionicity in NaCIOk
causes 6«(C) to decrease and b, «(Ek) to increase.
This changes the nei sign and severely reduces
the degree of cancellation.

X. MULTIBOND COMPOUNDS-AIB"'C ' NOT
CONTAINING NOBLE METALS, e.g. , LiGaO,

The method of decomposing multibond crystals
such as LiGaOa (ZnGeP2, AgGaSa, etc. ) into their
constituent bond properties is described in some
detail in I, and the necessary bond parameters are
listed there. The Lioa02 geometrical factors ' are
G33 +0.222 for both bonds, I' =-,', and the p' val-
ues are obtained from the VP covalent-radii tables.
The contributions of the individual bonds are ex-
hibited in Table X as well as the total calculated
nonlinear coefficient. The cancellation between
h„(C) and 6,)Ek) for both the Li-0 and Ga-0 bonds
is particularly pronounced especially for the Li-0
bond in which the cancellation is practically com-
plete. These near cancellations lead to a rather
small total nonlinearity in agreement with experi-
ment. It is obviously desirable to avoid such near
caneellations when searching for new nonlinear op-
tical materials having large coefficients. This
small total nonlinearity is similar to the situation
occurring in BeQ. As discussed previously, the
nonlinearity along the polar axis A»(BeO) can be
accurately obtained from the expected geometrical
factor G33, whereas the other coefficients b» and

~» cannot, because of their small geometrical
factors coupled with the strong cancellation be-
tween n(C) and rk(Ek). An analogous situation ex-
ists for LioaO~, where 433 ca,n be accurately cal-
culated, whereas the other coefficients are more
difficult.

XI. MULTIBOND COMPOUNDS-A "B C, , e.g. ,
CdGeAs2, ZnGeP~, etc.

As all the necessary parameters for the calcu-
lation are discussed and tabulated in I (except for
p = 0 and G,tt=+0. 193)' we can immediately obtain
the Miller A, e for these compounds (in Table XI).

TABLE VIII. Comparison between theoretical A&&
' and experimental A&~& nonlinearities for right-handed enantiomorphs

(z). The numbers in parentheses next to the 6 values are for )d&& '( and )d&& ) in units of 10 9 esu, at 1.06 p.

Crystal
F~D ~)k(C)

(10 esu)
S~a', ,k(E„)
(1O-' esu)

gCRl c
ijk

{10' esu)
n ekkt

t k

(10 eau)

SiO (z) (11) + 0.272
GeO, (~) (») + 0.287

~B. F. Levine and C. G. Bethea,
20, 272 (1972).

+0.46
+0.35

Appl. Phys. Letters

—O. 64 (O. 81)
—o.77

-0.63&" (o.80)—1.10
-1.12

'R. C. Miller and W. A. Nordland, Phys. Rev. B2, 4896
(1970).
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TABI E IX. Comparison between theoretical 6~&4
c and experimental A&&~ Miller's 4's for the 3, configuration of NaCl03

and NaBr03. The numbers in parentheses next to the 6 values are for Id~&4~c t and )cP~~
t

I in units of 10" esu, at 0.6943 p, .
Conversion from relative to absolute nonlinearities was done using Ref. 77.

a~s',.»(c)
(10 6 esu)

+ 0.65
+0.88

Crystal P

Na Cl03 (14) +O. 243
NaBro (14) +0.281

H. J. Simon and ¹ Bloembergen, Phys. Rev. 171,
11O4 (1968).

(10 esu)

gCR1 0
ijk

(10~ esu)

-1.O2 (1.O8}

+O. 15 (O. 31)

~exyt
ijk

(10 ' esu)

-1.0~' (1.oe)
+0.21&b (O. 43)

"R. C. Miller and W. A. Nordland, Phys. Rev. B 2,
489e (1970).

The results of calculating 4» for AlPO4 and
GaPO4 using the known~ linear properties and G»
=+0.0806 are listed in Table XII. The results
are in good agreement with the measured value for
AlPO4. We will later need the individual bond non-
linearity 68 [see Eq. (56)].of the P-0 bond and for
convenience it is

b 8~(P-0) = —1.24 &: 10 ~8 esu . (6O)

XIII. MULTISOND COMPOUNDS-W'a~"CvI, e.g. ,
AgoaS2, CulnS2, etc.

Because of the loosely bound d electrons and

strong p-d hybridization~ in A'@xr'Cv~r compounds,
we treat their noble-metal d electrons in ag. anal-
ogous manner to those in the noble-metal halides
previously discussed. Most of the necessary pa-
rameters for these compounds are given in II. For
the noble-metal-bond core radius we use exactly
the same relations [i.e. , Eqs. (66) and (Vl)] as
were used for the noble-metal halides [the non-
noble-metal bonds are treated as usual, i.e. , Eq.

For the available experimental values the agree-
ment with our theory is quite good. It is worth
noting that we have calculated these crystals using
essentially no experimental input data on these
A. B~vC~ compounds. All the necessary param-
eters are obtained in I by extrapolation of AB crys-
tals.

XII MUI.TIBOND COMPOUNDS Anrgv C4vr e
AlPO4, GaPO4

(2V)]. The bond charge for these noble-metal
bonds is taken from Eq. (V2), i.e. , g, =$, which
may be compared with g„=2 for the noble-metal
halides. Finally the covalent radii and p are ob-
tained in a manner analogous to that used for the
noble-metal halides. That is, the 8 or Se atom is
simply obtained from the average of the covalent43

and ionic radii, 6

x~ = [(l.12V) (l.64)] i = 1.44 A,

~,.= [(1.226) (1.66)]"'=l. 66 A,
(61)

and the noble-metal (NM) radius is obtained from
the nearest-neighbor distance, i.e. ,

+NM d +s,se ' (62)

The noble-metal radii obtained in this way are
within a few percent of those previously obtained
in the noble-metal halides. This is especially
notewothy in view of the different crystal struc-
tures and different anion valencies involved. The
resulting p's are listed in Ta,ble XIII.

The experimental agreement shown in Table
XQI is good and, in particular, nicely explains the
various trends in the nonlinearity, such as
&(AgGaSe, ) & b, (AgGaS~), a(CuGaSe, ) & &(CuGaS, );
i.e. , the selenides are larger than the correspond-
ing sulfides, and b, (AgGaSe2) & 4(CuGaSe, ),
a(AgGa82) &6(CuGa82); i.e. , the silver compounds
have a larger Miller 4 than the corresponding cop-
per ones. The theory further explains why one of
the indium compounds, AgInSe~, has a large 4

TABLE X. Comparison between theoretical 6 3 and experimental 233 nonlinearities. The contributions of the Li-0
and Ga-0 bonds to the total nonlinearity are also shown. The numbers in parentheses next to the 4 values are for
)des I and )des ) in units of 10 8 esu, at 1.06 p. Conversion from relative to absolute nonlinearities was done using
Ref. 77.

Li-0 (33)
Ga-0 (33)
Lioa02 (33)

+0.266
+0.287

(10 esu)

+0.16
+2.08

Lioa02
+'&gn(EI )
(10 6 esu)

—0.16
-2.46

~C81ci»
(10+ esu)

0.00
—0.38
-o.38 0..7o)

~exyf.i»
(10@esu}

-0.37~' O..ee)

R. C. Miller, W. A. Nordland, E. D. Kolb, and W. L. Bond, J. Appl. Phys. 41, 3008 (1970); R. C. Miller (private
communication). (The last two columns in Table II of this reference should be increased by 10%.)

"R. C. Miller and W. A. Nordland, Phys. Rev. B 2, 4896 (1970).
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while the other, CuIn83, has an anomalously small
value. This CuInS& example is interesting since it
illustrates the nature of the various contributions
(and their partial cancellations) to d, ,„thus the
Cu-S bond in CuInS3 has comparable contributions
from the negative electronegativity term S(C) pro-

~IIgIV( V
2

J, P gP gCRlc
ijk ijA

Bond-crystal (10 esu) (10 esu)

gexyt
ijk

(10~ esu)

Zn-P (36)
S1-P (36)
ZnSiP2 (36)

Cd-P (36)
Si-P (36)
CdSi P2 (36)

Zn-P (36)
Ge-P (36)
ZnGe P2 {36)

Cd-P (36)
Ge-P (36)
CdGe P2 (36)

Zn-P (36)
Sn-I (36)
ZnSnP& (36)

Cd-P (36)
Sn-P (36)
CdSnI, (36)

Zn-As (36)
Si-As (36)
ZnSiAS2 (36)

Cd-As (36)
Si-As (36)
CdS1As, (36)

Zn-As (36)
Ge-As (36)
ZnGeAs, (36)

Cd-As (36)
Ge-As (36)
CdGeAs2 (36)

Zn-As (36)
Sn-As (36)
ZnSnAs2 (36)

Cd-As {36)
Sn-A s (36)
CdSnAs2 (36)

+0.13
+ 0.41

+0.20
+0.48

+0.12
+0.55

+0.16
+0.64

+ 0.11
+0.89

+0.15
+0.96

+ 0.14
+0.49

+ 0.22
+0.55

+ 0.10
+ 0.42

+0.15
+0.50

+ 0.07
+0.32

+0.10
+0.39

+0.54

+0.68

+0.67 (220) + 0.55 (180)

+0.80 (290) + 0.71 (260)

+1.00

+1.11

+0.63 (250) ~ 0.44' (175)

+0.77

+0.65 {500) + 0.73@ (560)

+0.39

+0.49

'G. D. Boyd, E.
%'ernick, IEEE J.

L. Byer, H.
Phys. Letters 19,

Buehler, F. G. Stortz, and J. H.
Quantum Electron. QE-8, 419 (1972).
Kildal, and R. S. Feigelson, Appl.

237 {1971).

TABLE Xt. Comparison between theoretical di~36 and
experimental b 36 nonlinearities. The contributions of
each type of bond to the total nonlinearity is also shown.
The numbers in parentheses next to the 6 values are for

I d36 ) in units of 10 esu, at 10.6 p. Conversion from
relative to absolute nonlinearities was done using Ref. 77.

duced by the d-electron contributions, and the
positive radius n. (F.„) term caused by r, & rc„; this
partial cancellation results in a small net negative
nonlinearity for the Cu-S bond, i. e. , n(Cu-S) & 0.
This is analogous to the situation in BeO, LiGaQ2,
and CuI. What is different in CuinSz (and most of
the other noble-metal chalcopyrites) is that this
net negative n(CuS) then partially cancels the
larger positive bond nonlinearity of InS resulting
in a small net nonlinearity for the whole CuInS~

crystal.

n~(P-0) = —l. 24x 10-28 esu . (as)

It is important to note that this similarity assump-
tion can 0zly work for bonds that are in comparable
host environments. For example, the tetrahedral-
ly coordinated Al atom for the Al-0 bond in AlPO4
is not like the octahedral Al-0 bond in A1203 (their
ionicities, for example, are f,. = 0. 65 and 0.80, re-

XIV. MULTIBOND COMPOUNDS-KHqPO4

The crystal KH~P04 (KDP) is interesting from
several viewpoints. It is the prototype of several
similar compounds such as (NHS)HzP04, CsHzP04,
RbH2PQ4, KH2As04, CsH~As04, RbH, As04, and
the deuterated form of the above compounds, e.g. ,
KD2PO4. In addition KDP has a paraelectric-fer-
roelectric phase transition which has been the ob-
ject of extensive investigations. The rather com-
plex unit cell of KDP is also of interest as it en-
ables us to test further our noninteracting-bond as-
sumption,

For simplicity we will calculate the nonlinearity
in the paraelectric phase. The H-0 bonds do not
contribute to the nonlinear coefficient in this phase
since they are disordered and therefore average
to zero. (In the ferroelectric state these H-O
bonds become ordered and then do contribute sig-
nificantly to the nonlinear optical susceptibility. +)
Further, since the K' ion would only be expected
to contribute a negligible amount (this may be
slightly less true for say Rb' in RDP), almost all
of the nonlinearity resides in the P-Q bonds. Al-
though the H-Q bonds do not contribute to the non-
linear susceptibility (they are centrosymmetric on
the average), they do of course contribute to the
linear susceptibility; therefore, since their linear
susceptibility is expected to be significant, we can-
not simply evaluate 6,» for the P-0 bonds by using
the total net measured susceptibility of KDP, i.e. ,
Z'(P-0) ~ q(KDP).

In order to avoid this problem of decomposing
g(KDP) into its constituent bond susceptibilities we
can try the simple assumption that n, ~(P-O) in

KH~P04 (in which the P is tetrahedrally surrounded
by 0) has the same value as for the P-0 bond in
AlP04 [Eq. (aO)], where the P is also tetrahedral,
i.e. , in KDP,
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TABLE XII. Comparison between theoretical 6« ' and experimental h&~& Miller's d's for right-handed (z) enantio-

morphs. The numbers in parentheses are for Id«( in units of 10 esu, at 1.06 p. Conversion from relative to absolute
nonlinearities was done using Bef. 77.

Bond-crystal

Al-O (11)
P-O (11)
AlPO4(~) (11)

+0.293
+0.249

El'6; ~(C}
(10-' esu)

+0.13
+0.33

gII IgvcVI
4

(1O esu)

—0.30
—O. 85

gCRl C
ijk

(10+ esu)

—0.17
—0.52
—o.69 (o.v8)

gexpt
jjk

(10~ esu)

+ o.8o' (o.9o)

Ga-O
P-0
Gar O4(~)

—0.44
—0.51

+O. 287
+0.249

(11) +0.15
{11) +0.19
(»)

Miller, Appl. Phys. Letters 5, 17 (1964), and private communication.

—0.29
—0.32
—0.61

spectively).
Using the approximate Eg. (88) we can calculate

~ss for KDP from

~„(KDp) = G„~,~,(p-o), (84)

where the geometrical factor for the P-0 bonds in
KDP is G36= —0. 163 and the number of P-0 bonds
per/cm in KDP is N, = 4. 184x 10 . The com-
parison with experiment ' given below can be seen
to be good both in magnitude and sign:

&36(calo) =+ 0.84x 10 esu,

AM(expt) =+ 1.18x 10 6 esu .

This agreement shows that one can indeed use the
bond nonlinearity determined from one crystal in
a different compound as long as the two crystals
are sufficiently similar. This can be a rather use-
ful procedure ~ and we employ it further in the fol-
lowing section.

XV. FERROELECTRICS, c.g. , LiNb03, LiTa03, Ba2NaNb50, ~

The nonlinear optical properties of oxygen-octa-
hedra ferroelectrics such as LiNbO~ and
Ba&NaNb&O» have been studied extensively' be-
cause of their very favorable properties; e. g. ,
they are transparent in the visible, they can be
noncritically phase matched for second-harmonic

TABLE XIII. Comparison between calculated and experimental nonlinearities. The contributions of each type of bond
to the total nonlinearity is also shown. The numbers in parentheses next to the 636 are for (d36 ) in units of 10 esu at
10.6 p. Conversion from relative to absolute nonlinearities was done using H,ef. 77.

Bond-c rystal

c -s (s6)
Ga-S (36)
Cu GaS2 (36)

Cu-S (36)
In-S (36)
CuIns2 (36)

Cu-Se (36)
Ga-Se (S6)
CuGaSe2 (36)

Ag-s (36)
Ga-S {36)
Ag GaS (S6)

Ag-Se (36)
Ga-Se (36)
AgGase (36)

—0.21

—0.19
0

—O. 26
0

—0.13
0

—0.18
0

~'~'.„(c}
Oo 6 esu)

L

—0.86
+0.67

—1.43
+0.65

—1.04
+0.60

—0.77
+O. 96

—0.75
+0.96

gIgI IIgVI
2

z's', .»(E„)
(10 esu)

+1.07
0

+ l. 18
0

+0.40
0

+O. 60
0

gC81 C
if'

(10~ esu)

—0.19
+0.67
+o.48 (So)

—0.36
+0.65
+0.29 (2s}

+0.14
+0.60
+0.74 (94)

—0.37
+0.96
+0.59 (27)

—0.15
+0.96
+o.81 (V2)

~expt
jjk

(10 6 esu)

+ o.sv' (23)

0.21 (17)

~ 0.56b (V1)

+ O. 6S' (29)

+ 0.86" (79)

Ag-Se (36)
In-Se (36)
AgInSe2 (36)

—0.17
0

—0.87
+1.09

G. D. Boyd, H. Kasper, and J. H. McFee, IEEE J.
Quantum Electron. QE-7, 563 (1971).

—0.22
+ l.09
+0.87 (91)

+0.65
0

+ 0.86" (90)

"G. D. Boyd, H. M. Kasper, J. H. McFee, and F. G.
Storx, IREE J. Quantum Electron. QE-8, 900 (1972).
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generation, and the indices of refraction are sig-
nificantly temperature dependent making noncriti-
cal phase matching at various wavelengths and also
temperature-tuned parametric oscillators possi-
ble. 86 These crystals have large refractive in-
dices n& 2, and BQNaNbsQ~S has the largest pllase-
matchable nonlinear coefficient in the visible re-
gion of a,ny presently known material. s~

One of the most successful approaches for under-
standing the origin of the nonlinear susceptibility in
these materials is the geometrical analysis of
Jeggo and Boyd. ~v These authors shorn that the full
tensor character of d&,.~ can be accurately accounted
for in terms of experimentally determined bond
Iiolllitleal'lties p [i.6. , by substituting 'tllese p 8 lll-
to a relation like Eq. (4'I)]. The different tensor
elements of d,» arise directly from the geometry
of the bonds [i..e. , Eq. (49)]. From the viewpoint
of our bond-charge theory the success of the Jeggo
and Boyd bond approach can be readily understood.
The important problem which now remains is the
theoretical calculation of Jeggo and Boyd's empiri-
cally determined bond parameters P and h~, for
each of the inequivalent bonds. Only the transition-
metal-oxygen bonds are expected to make impor-
tant contributions to d,.»'~ since the other bonds
(e.g. , Li-0 in LiNbOz) are significantly more
ionic and less polarizaMe. A similar situation
can be seen in, say, LiGaOz (Table X), where 4(C)
for the I i-0 bond is more than an order of magni-
tude smaller than for the Qa-O bond.

Most of ihe parameters necessary for the evalu-
ation of Eqs. (55)-(59), (V2), etc. , are given in
II. As previously discussed for the noble-metal
compounds, the Z in EII. (58) should be replaced
by Z", the effective core cha, rge including the
transition-metal d electrons. Owing to the inter-
mediate ionicity f,. =0.83 for LiNbOz and LiTaOz,
we evaluate p in a manner analogous to that used
for the noble-metal compounds. That is, we ob-
tain the O radius" "from EII. (73),

~, =[(o.ma)(1. 4o)]'"=o.av A,
and rN» (or yT,) from the bond length. Since d
=2.00 A for LiNbOz (or d = l. 98 A for LiTaOz), we
see that the transition-metal and oxygen radii are
closely equal and

(av)

Thus we only need to consider the ionic contribu-
tion to b, ,», i.e. , Eil. (58). A straightforward
evaluation of the individual bond nonlinearity yields
the values listed in Table XIV. The comparison
between the experimentally determined values of
Jeggo and Boyd ~ and our theoretical values shows
good agreement in both magnitude and sign.

In order to calculate the full tensor 4&», we
must know not only the average values of the non-

TABLE XIV. Comparison between the theoretical
6&(calc) and experimental A&(expt) Miller's 6's for a
single bond. The numbers in parentheses are for the
nonlinear susceptibility for a single bond p in units of
10 esu at 1.06 p. Conversion from relative to absolute
nonlinearities was done using Ref. 77.

Crystal

LiNbo,-(Nb-o)
LiTao, (Ta-o)

Qg(calc)
(10 28 esu)

+2.0 (6.3)
+1.7 (3.9)

~(expt)
{lo-"esu)

+l.9 (6.0)
+1.9' (4.3)

~C. H, . Jeggo and G. D. Boyd, J. Appl. Phys. 41, 2741
0.97o).

11116RF1'ty p or 4z (wlllcil we 11Rve just evaluated)
but also its dependence on the bond length. It is
important to note here that we never required this
information before, since for all previous com-
pounds we could directly obtain 4,.» from 48 using
EII. (55). However, this is no longer true since
'tile illvei'sloll symmetry R't 'tile Nil (TR) site ls
broken only by small displacements of the Nb (or
Ta) and 0 atoms. ~ That is, b,» would eilual zero
if all the bond lengths were identical. Moreover,
even with the proper inclusion of the different bond
lengths, the result 63, =0 in LiNb03 and LiTaO3
would still be obtained unless p and ~z vary with d.
The dependence on bond length which was empiri-
cally chosen by Jeggo and Boyd'7 (JB) to give the
best fit to experiment for the Nb-0 bonds was

P~ fx: 39.7+ 0. 130d (88)

P = Po(+'do)' (9o)

where Po is the average bond nonlinearity {which
we 11Rve already CRlclllated ill Table XIV), do tile
average bond length (= 2. 00 A in LiNbOz), and o is
the power dependence P~ d'. Thus,

and by substituting EII. (89) into EII. (91) o can be
evaluated theoretically. %e see that we must now
differentiate our relation for P, which was in turn
obtained by differentiating the expression for the
linear susceptibility [see EII. (35)]; i. e. , the de-
termination of a involves something like a second
derivative. Needless to say, this is a severe test
of our simple bond-charge model, and a correct
prediction of the functional dependence of IH on d
would be a somewhat unexpected bonus. Proceed-

To compare EII. (88) with our theory we begin with
ouI' expression fol' p, 11RQlely Egs. (48) Rlld (51)

- z,~o Cg&zd z

where we have only included the quantities which
depend on the bond length d (e.g. , IV~= const), It
is convenient to write the dependence of P on d as
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l.e. y

p= po(d/dp)'~ d' .
(94)

For later reference we note that Eq. (93) also pre-
dicts P~d2 for the Ta-0 bond in LiTa03. This
Eq. (94) is to be compared with Jeggo and Boyd's
experimental determination, Eq. (88). Although

Eq. (88) may look like a d~ dependence while Eq.
(94) is only a d' dependence, this is not the case.
Substituting Eq. (88) into Eq. (91) shows that in
fact

V(0. 13)d~
~ 39.V+0. 13d' (95)

in very good agreement with our calculated value
in Eq. (94) of v=2. 0.

We are now in a position to calculate the full
tensor d„., coefficient for these transition-metal
ferroelectrics. For example, the relations for
LiNb03 are 7

d, = N(1. 104P, —1.106P ),
day ——N(0. 396pq —0. 195p2),

dss
——N(0 643p) —1..V96p2),

where P, and P~ refer to the short and long bonds,
respectively (i.e. , d, = 1.89 A and d, = 2. 11 A), and
N is the number of rhombohedral unit cells per/
cm~ (i.e. , N= I/V, where V is the rhombohedral
unit-cell volume). The application of Eq. (94) for
the dependence of P on d then yields

dsg = —0.245Npo,

dp2 =+0. 137Npo,

d33 = 1, 425Npo

or using the ~,» formulation

h3~ = —0.245N&g,

&2p =+ 0. 137N68,

a» = -1.425N~

(9V)

where h~ has already been calculated for LiNb03
and is given in Table XIV (b,6~'=2. Ox 10 '8 esu).
Thus using N=0. 943x10 cm 3, one finds

ing as indicated one finds

d ~gy d eC d ~Eg0+2 +— -~ —2 ~

ed C ed Eg ed
(92)

Then, using y, ~ Q~/Z~ with 0 ~ d"~ and Eqs. (16)-
(19), it is readily shown that

o = [6s —k,ro —9] —[6(s —1) —3k, rojf;,
where z = 2. 48 from Eq. (18). Substituting the
known parameters from II (i.e. , k,&0 = 2. 363, f,
=0.825 for LiNb03), one finds

o(LiNbO~) = 2. 0,

TABLE XV. Comparison between calculated and ex-
perimental nonlinearities. The numbers in parentheses
are for Id;&& t in units of 10 ~ esu at 1.06 p. I or & of
LiNb03 the value given is for the stoichiometric growth
mixture, which was interpolated from the measurements
of Miller et al. (Ref. c). For the other coefficients in
LiNb03, and also for LiTa03, the values used are the
averages of the various measurements in Refs. c and d,
since these coefficients do not vary strongly with compo-
sition. Conversion from relative to absolute nonlineari-
ties was done using Ref. 77.

Crystal

LiNb03 -0.46 (15)
+O. 26 (9.2)
—2.7 (73)

geKPt

—O. 40&b (13)
+0.15 '" (5.2)

7Q b (71)

Ba2NaNb50(5 Q3 f 0 56 (20) —0.92& b (32)
63) —0 ~ 66 (23) —0.90~" (31)

(33} -1 6~b (44)

—0.29 (6.7) —0.10 ' (2.4)
+ 0.15 (3.8) + 0.19 ' " (4.8)

(3g) —1.6e b (3g)

"B. F. Levine and C. G. Bethea, Appl. Phys. Letters
2O, 272 (1972).

"R. C. Miller and W. A. Nordland, Phys. Rev. B 2,
4896 (1970).

'R. C. Miller, W. A. Nordland, and P. M. Briden-
baugh, J. Appl. Phys. 42, 4145 (1971).

S. Singh, D. A. Draegert, and J. E. Geusic, Phys.
Rev. B 2, 2709 {1970).

'R. C. Miller (private communication).

LiTa03

4,","(LiNbO, ) = —0. 46&& 10 esu,

b, z'2"'(LiNb03) =+ 0.26&&10 8 esu,
b SP'(LiNbO~) = —2. V x 10 ~ esu,

which is in good agreement with experiment as
demonstrated in Table XV.

The agreement between our theory and experi-
ment for the more complex niobates is not quite as
good as for LiNb03. Considering the many close
cancellations between the contributions of the vari-
ous Nb-0 bonds, the possible small contributions
from the non-transition-metal bonds, the severe
test of our theory when predicting the functional
dependence of P on bond length, and the fact that
we have not used any adjustable parameters, we
feel that the over-all experimental agreement is
quite reasonable, adequately explaining both the
magnitude and sign of the nonlinearity of these
ferroelectrics.

Generally our results are not as good as those
of Jeggo and Boyd~~ (although, for example, our
results for the complex Ba&NaNb50» are actually
somewhat better). This is of course to be expected
since JB have two adjustable parameters (P~ and P2
in LiNbO~) for the Nb-0 bond and two more for the
Ta-0 bond in LiTaO3. Our worst discrepancy is
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b.z, (LiTaOs) which is not too surprising since it is
in fact exceedingly sensitive to the functional form
P~d' and indeed vanishes completely for 0 =0.
This hz, coefficient (in LiNb03) has been observed
to vary significantly with the ratio of Li to Nb,
whereas the other coefficients 6» and b,33 remained
practically constant; part of our error may be due
to this type of difference between the crystal used
for the x-ray determination of the atomic coordi-
nates and the crystal in which the &;z& were mea-
sured. It is also possible that the small &3/ has a
non-negligible contribution from the Li-0 bond.
It is worth noting that we do correctly predict
&3&(LiTa03) & ~3&(LiNb03), a,nd that the magnitude
and sign of the bond nonlinearity is accurately pre-
dicted for LiTa03, as can be seen from both Ta-
ble XIV and the good experimental agreement for
&22 and &33.

Jerphagnon has shown a direct linear relation-
ship between the vector part of &;» defined as &„
=- &»+ ~»+ &», and the spontaneous polarization
P, , namely,

&„=—0.7 x10 7P~ esu, (100)

&si= &sa=0 ~
f f (103)

Combining these two contributions, Eqs. (102) and
(103), results in

&,= &~3, + &3~z+ &~S = —(24/Sv 3 )&8& . (104)

where P, is in units of p, C,/cm . This relation
generally works rather well for a. large number of
materials although there are several exceptions
(which we will discuss later). Using our theory for
&;», we can derive this close relationship between
+v and Ps.

For the sake of definiteness consider the C3„
crystal structure resulting from a polarization P,
lying along the threefold cubic axis (e. g. , LiNbO3,
LiTaO, ). It is not difficult to show that a displace-
ment of the transition metal, &z, from the exact
center of the oxygen octahedron results in a change
in the bond lengths from d0 to d0(l + 3z), where &

= 4z/z = v 3 4z/d0. This results in a difference in
the bond nonlinearities 8 between the long and short
bojlds of P 60(l + 3E) where use has been made of
Eq. (94). This change in bond length for the six
bonds, i.e. , one formula unit (f) thus produces a
contribution to d;;& of

d'„= d'„=d'„= —(4/SWS)6~ (101)
ol

~as = ~u = ~si = —(4/3~3) nt & ~

There is another contribution to dq» from the rota-
tion of the bonds which is caused by the displace-
ment &z. This contribution exists even if P re-
mains constant, and can be readily evaluated to be

&„=—(12/Sv 3)&go,

It may be worth observing that for the dependence
P ~d which we have used, Eqs. (102) and (103)
show that rotation and bond stretching effects make
equal contributions to ~„. To obtain the total non-
linearity we can simply multiply the &„per formula
unit, Eq. (104), by the number of units/cm'= 2/V
(V is the rhombohedral cell volume). Thus

~„= —(8d, /V)~z . (105)

We can now relate &z to the polarization using the
relation of Abrahams, Kurtz, and Jamieson,
i.e. ,

P, = $ &z p C/cm',

where &z is in A and )=258. This yields

6„=—(8nz/V$)P, .

(106)

(107)

Using the values $ =. 258, V= 106 &&10 ' cm', and
a~=2. 0x10 ~' (from Table XIV) shows

4„=—0.6x10"7P, esu, (108)

which is in agreement with Jerphagnon's empiri-
cally determined proportionality constant of —0.7
&10 ' in Eq. (100).

As noted by several workers, ' Jerphagnon's
relation works rather well for a wide range of com-
pounds; there are, however, some exceptions, ' ' '
e. g. , triglycine sulfate, Pb5Ge, O,&, and PbTiO~. '
The reasons~' for these exceptions are twofold.
First, Eq. (106) may be inaccurate for a particular
compound in which several kinds of ions contribute
to P, „and second, there may be several types of
bonds contributing to &;;& which may not be those
which are producing the polarization. For exam-
ple, a highly ionic bond may strongly effect the
spontaneous polarization because of its large ionic
charges, but contribute only weakly to &;» because
of its small polarizability. Conversely, covalent
bonds tend to have large polarizabilities and large
P's but may make only a small contribution to P, ,

XVI. HIGHLY ANISOTROPIC BONDS-HgS, Se, Te

Owing to the unusual one-dimensional" nature
of HgS, Se, and Te (each atom is bonded to only
two nearest neighbors in a, spiral arrangement)
these crystals are highly anisotropic with the sus-
ceptibility parallel to the bond axis X„being much
larger than that perpendicular to it y, . More
specifically, this anisotropy ratio X„/1(, varies
from 3.23 to 14.8 to 38.3 in HgS, Se, and Te, re-
spectively. AD the necessary parameters for the
evaluation of the bond nonlinearity P a.re tabulated
in I (p is taken as zero). The only real difference
in the evaluation of Eq. (58}for these highly an-
isotropic bonds is that y, = N&(1(b )„and e„should be
used to determine q and (yy ) ~

The geometrical
factor G&~ for HgS is easily evaluated from Eq.
(49) and is G»(Hg8) = 0. 02'7. VITe can now calcu-
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+ gQQ
+x [3 8 2 (1 )2]1i2 (109)

where a and c are the lattice constants of the hex-
agonal unit cell and u is the positional parameter
describing the location of the atoms inside the unit
cell. The + sign indicates that the absolute direc-
tion of the very small bond dipole is difficult to
ascertain, since the ionicity is so tiny, e. g. ,
f;(Te) =0. 05. Thus, neglecting the absolute sign,
we take the e„'s of the two contributing bonds to
have the same sign (taking opposite signs would
incorrectly lead to G» = d» = 0) which then results
in the geometrical factors

G»= s(o' )

=0.15 for Se

=0.16 for Te . (110)

The rest of the calculation of the nonlinear optical
susceptibility proceeds as for HgS. The results

TABLE XVI. Comparison between calculated and ex-
perimental nonlinearities. The numbers in parentheses
are for )d&& I in units of 10 esu at 10.6 p. Conversion
for relative to absolute nonlinearities was done using
Ref e 77 ~

Crystal

Hgs (11)
Se (11)
Te (11)

~cal c

(10 esu)

0.8 (80)
1.8 (190)
0.6 (3200)

~exptif'
(10~ esu)

1.2' {120)
2.2" (230)
0 3c (1600)

'G. D. Boyd, T. J. Bridges, and E. G. Burkhardt,
IEEE J. Quantum Electron. QE-4, 515 (1968).

G. W. Day, Appl. Phys. Letters 18, 347 (1971).
'B. F. Levine and C. G. Bethea, Appl. Phys. Letters

20, 272 (1971).

late the nonlinear coefficient & from Eq. (5&).
However, it should be remembered that & is defined
so that the X used in the denominator is the aver-
age macroscopic susceptibilities (obtained from
the indices of refraction). The agreement with ex-
periment shown in Table XVI is good especially in
view of the highly anisotropic nature of this com-
pound. The absolute sign of &(HgS) is of course
dependent on definitions of axes. Since we are not
aware of any standard conventions in this crystal
it is clearest to state the sign of the bo~d nonlin-
earity is positive, P &0 (where the positive direc-
tion is from the Hg to the S).

Most of the comments made about HgS and its
anisotropy also apply to Se and Te; the major dif-
ference is the geometrical factor. There are
three inequivalent Se or Te bonds per unit cell.
One of the bonds is perpendicular to the x axis
(n„'= 0) and thus does not contribute to G» or d».
The other two bonds have a direction cosine of

&qf(intrin. ) =0.1 x10 ' esu, (113)

which is roughly one order of magnitude smaller
than usual. '

XVII, COMMENTS ON DESIRjkBLE BOND PARAMETERS

It may be useful to review here some of the fav-
orable bond properties th'tt can lead to a large non-
linear coefficient. From Eq. (47) we see that one
important consideration is the geometrical factor
G;». Obviously a small G;» can reduce the use-
fulness of a large bond norilinearity 8 as, for ex-
ample, in LiNb03, where i;he factor G»=0. 017 is
an order of magnitude sma. lier than that for zinc
blende.

The tetrahedral zinc-blende structure is an
example of a crystal with a. large geometrical fac-
tor, Gse= I/3v 3=0.192. Al.though its cubic sym-
metry does not allow birefringence for phase
matching, the similar tetr:agonal chalcopyrite
structure has the same geometrical factor and can
be phase matched. It may be worth noting that G36
in zinc blende is a factor of' v 3 larger than the
phase matchable component, G» of the similar
hexagonal wurtzite structure.

Another important conside. ration in Eq. (47) is
the number &~ of bonds per/cm'. Clearly the zinc-
blende and wurtzite crystals have the largest pos-
sible values since there is only one type of bond

(i.e. , E"= 1). In the ABC2 c,halcopyrites the BC

shown in Table XVI are good, which is especially
satisfying in view of th.e enormous anisotropy
ratios y„/X, = 14.8 and 38.3, large parallel dielec-
tric constants E( = 21 abend 78. 3, and also the small
ionicities f; = 0. 05.

It is worth noting that our calculation explains
the otherwise puzzling experimental observation
that &„(Se)and &»(Te) have rather normal values;
i.e. , the nonlinearity i,s not anomalously small as
would be expected from the monoatomic composi-
tion and consequent sm &11 ionicity for these crys-
tals. On the contrary, Se has an anomalously
large &. The reason foir this is simply the huge

anisotropy, i.e. , the large susceptibility parallel
to the bond axis X, whicl& greatly increases the
nonlinear coefficient d&&,„. A true measure of the
intrinsic Miller ~ for these materials is

&,ya(intrin. ) = d„,/(y „)'

and not Eq. (54), where the average susceptibility
y.„is used. Since, for &'.xample, in Te X„/)(„
= 2. 85, the intrinsic &;», is reduced by a factor
(2.85) =23 or

nF»'(intrin. ) = 0. 3&&10" /23 =0.01&&10 esu,
(112)

which is indeed almost bvo orders of magnitude
smaller than usual. For Se
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bond contributes most to the nonlinearity and as
E"= —,', these crystals are th. erefore not as good
as a hypothetical tetrahedra. l crystal composed
entirely of J3C bonds would lee.

The other factor in Eq. (~f7), and the most in-
teresting physically, is the individual bond nonlin-
earity J3. As mentioned pre, viously, the large C;»
and N& of the chalcopyrites, as well as their phase-
matching characteristics, ~nake them very favor-
able nonlinear materials. Since these 2"8' C2 's
have a disadvantage in bone'l density (i. e. , F'= —,')
with respect to the A B ".inc-blende crystals
(E'= 1), one might guess th.at they would have
smaller d, 6 coefficients tha.n their zinc-blende ana-
logs. This, however, is n.ot the case. To see this
we first digress slightly a!id note that Eq. (51)
shows that P increases rapidly with decreasing E~
(8~E~ when the dependent:e of y on the gap is in-
cluded) and therefore expe. rimentally one wants to
use materials with the smallest possible average
gap consistent with transparency in the wavelength
region of interest, Since the gap which determines
the transparency range is the minimum gap E,„
(not the average gap E,), it is advantageous for a
crystal to have a direct g:ap. This is true because
for the same E~ and hence P (other things being
equal) an indirect materi::tl will have a reduced
transparency range. We see, therefore, that
when comparing the relat;ive nonlinear coefficients
of various materials for a particular wavelength
range, it makes sense to compare crystals with
similar values for E &„.

We now return to our ~discussion of the relative
nonlinearities in zinc-bl~..nde and chalcopyrite com-
pounds, and compare Ga.As (E &„= 1.44 eV) with
CdGeP, (E „=1.72 eV)." In spite of the fact that
GaAs has a significa. ntly smaller E,„, and a
greater bond density (E' = 1), CdGeP2 has a some-
what larger nonlinear coefficient dM(CdGeP2)
= 260&10 ' esu'6 while d,8(GaAs) = 215&'10 esu."
This larger nonlinearity shows up even more clear-
ly in the Miller's 4's si!nce AM(CdGepz) = 0.71
&10 esu, ' which is significantly larger than the
value &,8(GaAs) = 0. 46&' 10 esu." Thus, the
A' B' C2 chalcopyrites can actually have large~
nonlinearities than their[ corresponding A"'B
analogs. This is particularly important in view of
their phase-matching cliaracteristics. The reason
for this result is that thee ionicity f; = 0. 23 of the
Ge-P bond'[which conti. ibutes most to dM(CdGeP2)]
is significantly closer to the optimum value f; =6
in Fig. 3 than is f~(GaP)= 0. 32. In view of the fav-
orable nonlinear prope&."ties of these A "B' C2
ehalcopyrites it will be. difficult to find materials
with larger nonlinearities in the infrared spectral
region. For example, even the unusual, highly
anisotropic crystal Se (which has a minimum gap
which is similar to Ga As or CdGeP2) has a nonlin-

ear coefficient d» = 230&10 ' esu which is slightly
smaller than d,s(CdGeP2).

We now turn to a consideration of the visible
spectral region, where the A"O' C2 compounds are
no longer useful since they are too covalent and
thus their band gaps a.re too small. The oxides
form one of the largest and best known ela, sses of
visibly transparent materials, and we begin with
them. It should be noted that some covalent oxides
can have a very serious drawback which may
severely reduce their usefulness. This is because
the covalent radius of the O atom is rather small
and the size term &(E„) can be comparable to the
electronegativity term &(C). This leads to a near
cancellation and a small nonlinearity, e. g. , BeO,
LiGaO~, or NaBr03. Further, since even a partial
cancellation between these contributions reduces
the over-all nonlinearity, e. g. , ZnO, SiO&, Ge02,
NaC103, AlPO4, and GaPO4, generally speaking
such materials are unlikely to have the maximum
possible nonlinearity. Such eancellations can be
avoided, however, in quite ionic oxides, e. g. ,
f; -0.8—0. 9 since then the 0 atom has a radius of

0

xo =1 A and thus the size term can be negligible as
in the Nb-O bond in LiNbO, or Ba&NaNb50, &. This
is one reason for the relatively large P in these
materials. Since these niobates have strong d-
eleetron contributions to,8, we now consider the
general question of whether such d electrons are
advantageous or not.

The usefulness of the d electrons depends on a
number of factors. Consider for example CuCl.
Owing to the strong exciton absorption connected
with the d electrons, the useful minimum gap is
reduced to E,„=3. 2 eV, which is significantly be-
low ZnS (E,„=3.8 eV).' In addition, there is a
partial cancellation in CuCl between the positive
size term (rc, &ic„) and the negative electronega-
tivity term produced by the d electrons, reducing
the net nonlinearity by over a factor of 2. (This
cancellation is even more severe in CuBr and CuI).
The result is that even with the lower E „in CuC1,
d,s(CuCI)=15&:10 esu' ' ' is significantly smaller
than dM(ZnS) = 39 &:10 esu.

It is interesting to note that in spite of this lower
d36 coefficient, CuC 1 has about the same &36 as
ZnS. This is due to the general increase of & with

f; [f,(CuCI) &f;(ZnS)] which offsets the partial can-
cellation in CuCl. Another type of cancellation in
d-electron compounds occurs between bonds having
opposite signs for P, as exemplified by the
& B C2 system. For CuInS2 this cancellation is
particularly severe. None of these deleterious ef-
fects is significant in say LiNbO, or Ba2NaNb&O&q

since p = 0, and further, the Nb-0 bond P is by far
the most significant contributor to the total non-
linear ity.

Owing to their large indices of refraction the
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sulfides are especially good candidates for large
nonlinear coefficients in the visible. In the infra-
red we just discussed the reasons why the
2"B' C~ chalcopyrites are found 6 to be excellent
nonlinear materials and for somewhat similar
reasons the more-ionic larger-band-gap A'8"'C~ '
sulfide crystals ' are also superior nonlinear
compounds. However, as previously remarked,
the noble metals are not ideal for the A atoms;
the alkali metals would be better. For example,
in spite of the partial cancellation in AgGaS&
which reduces d36 by = 2, its other favorable prop-
erties (e. g. , large G36 and N&) compensate suffi-
ciently, so that its net nonlinear susceptiblity is
comparable to that of Ba&NaNb50&5 in the visible.
Thus, if an alkali metal could be used, e.g. ,
LiGaS&, and if the structure remained the same
(i.e. , chalcopyrite) then one would expect a. non-
linear coefficient significantly larger than that of
Ba&NaNb50&5. However, there are indications
that LiGaS& is a wurtzitelike structure (similar to
LiGaOz). Since, as previously noted, the phase
matchable geometrical factor for wurtzite is &8
times smaller than that for the chalcopyrites, the
net useful nonlinear coefficient of LiGaS& will prob-
ably be comparable to BazNaNb50».

The interesting new crysta. l InPS4 has recently
been measured to have a nonlinear susceptibility
significantly larger than Ba2NaNb50», but unfor-
tunately it is not phase matchable for harmonic
generation in the visible. When its structure be-
comes known it will be interesting to investigate
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FIG. 6. Plot of experimental-vs-theoretical nonlinear
optical susceptibilities for all of the compounds considered
in this paper for which data are available (for the polar
crystals d33 is plotted). The origin for the positive quad-
rant is +0. 1&& 10 esu, while that for the negative quad-
rant is —0. 1&& 10 ~ esu. The agreement between theory
and experiment is excellent as demonstrated by the small
standard deviation of only 19%. This agreement extends
over a factor of 4000 in the magnitude of cP!I, .

it theoretically. Some new compounds (not yet
measured) which are likely candidates for visible
nonlinearities larger than Ba.,NaNb50» are the de-
fect chalcopyrites such as ZnGa~S4 and CdGa&S4.

XVIII. SUMMARY

Cdse

Se2

.6

FIG. 5. Plot of experimental-vs-theoretical Miller's
6's for most of the compounds considered in this paper
for which data are available. The agreement between
theory and experiment is excellent as demonstrated by
small standard deviation of only 18 /p.

Some of our theoretical results are summarized
in Figs. 5 and 6, where &&»(expt) or d&»(expt) is
plotted against &;»(calc) or d;»(calc). Figure 5 in-
cludes most of the compounds for which experi-
mental data are available (except for the materials
in Tables XV and XVI) while Fig. 6 includes all
the compounds. The excellent agreement between
our theory and experiment is evident, being 18 and
19% for Figs. 5 and 6, respectively, ' and is
achieved without the benefit of fitting any param-
eters to the nonlinear susceptibility. Our simple
bond-charge calculation is thus able to accurately
account for a wide variety of crystals such as
A'"8 (e.g. , GaP, . GaAs, GaSb, InAs, InSb),
A"B ' (e.g. , ZnS, ZnSe, ZnTe, CdS, CdSe),
A'8" (e.g. , .CuCl, CuBr, CuI), crystals possess-
ing widely different-sized atoms (e.g. , ZnO, BeO,
CuI, SiO„LiGaO„NaClO„AlPO, ), crystals hav-
ing high or low ionicities [e.g. , f, (Te)
= 0. 05f;(CuCl) = 0.88], large or small gape
[E,„(lnSb)=0. 24 eV, E,„(BeO)-10eVJ, positive
or negative nonlinea. rities, crystals possessing
strong d-electron contributions (e. g. , CuCl, CuBr,
CuI, AgGaS&, CuGaS2, AgGa, Sea, CuGaSe2, AgInSe&,
CuIn82, LiNb03, Ba2NaNb50, &, LiTaO, ), multibond
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crystals [e.g. , A'8'"C, ' (LiGaO» AgGaSep),
A"8'vCvp (CdGepp, ZnGepp, CdGeAsp, ZnSiAsp),
AiirfivCvpz (AIPO&), and KHpPO&], and highly
anisotropic crystals (HgS, Se, Te). The magnitude
of the nonlinearity varies by a factor of 25 for
~4,»~ [hop '(BeO) = —0. 13&&10 p esu, Sf''(LiNbOp)
=+3.3&&10 esu], while the variation in Id,z, ~

is
a factor of -4000 [d fpo'(NaBrOp) =+ 0.43x 10 ' esu,
d ff"(Te) =1550&&10 esu]. We have also treated
the difficult problem of determining the functional
dependence of P on the bond length, and were thus
able to calculate a.ll the tensor components of 4„.,
for such important materials as LiNb03, LiTaO3,
and Ba2NaNb, o„.

One of the reasons for the success of our bond-
charge model is that most of the potentially trouble-
some local-field effects are automatically included
by our use of the macroscopic linear susceptibility.
Further, our theory of the nonlinear susceptibility
is approximately self-consistent since unknown

parameters are determined from the linear sus-
ceptibility; e.g. , the ionicity is determined di-
electrically, and the single proportionality con-
stant in the relation for q is determined from a
best fit to the linear susceptibility. Finally, the
model includes in a simple way the three impor-
tant contributions to the nonlinearity, i.e. , the
bond ionicity, the difference in the atomic radii of
the atoms composing the bond, and d-electron con-
tributions.

We have also discussed some of the desirable
characteristics that lead to a large nonlinearity,
and found that in the infrared the Ar'&'vC2v chal
copyrites will be hard to improve upon, whereas
in the visible BapNaNbpO» (which presently has the
largest phase-matchable nonlinearity in this spec-
tra region) leaves some room for improvement (we
suggested, for example, CdGapS4).

Note added in Proof Recently, . the nonlinearity
of CdTe has been measured by Sherman and Cole-
man [J. Appl. Phys. 44, 238 (1973)]. Their re-
sult 6,4(CdTe) = 1. 32&&10 ' esu is in good agreement
with our calculated value from Table III, 6„(CdTe)
= l. 39&& j.0 esu. The nonlinearity of AgI has also
been recently measured [B. F. Levine, W. A.
Nordland, and J. W. Shiever, IREE J. Quantum
Electron. QE-9, April (1973) (to be published)].
The result &p, (Agl) = —1. 76&10 esu is in agree-
ment with the theoretical value in Table VI, name-
ly, nm(Agl) = (2/&3) 6,4(Agi) = —1.35 & 10 ' esu.
Also our theory has been used successfully on the
quaterniary compounds Zn3AgInS5 and Zn5AgIn87
[B. F. Levine, C. G. Bethea, V. G. Lambrecht,
Jr. , and M. Robbins, IEEE J. Quantum Electron.
QE-9, Feb. (1973)]. Finally, we have been able,

Consider the anharmonic oscillator

z+ Mp 8+ f)z = (8' cos(gf)/m (Al)

It is easily seen that the term in the solution of
(Al) that oscillates like cos2r~t is (for i,&

« ~p)

ve
z(2(0) =

p p 8& cos2t'df
2 ~&o (A2)

This produces a polarization at 2~ of P,(2')
=ez(2'). Since the second-harmonic coefficient
P„, is simply defined by P, (2~) —= P„,EPcos2~t we
have

pzgg
—

o v8 /m Qjo
3 (A3)

Let us now ask how the resonant frequency of the
oscillator (Al) changes when a dc field 8, is ap-
plied. For clarity assume 8, »F., so that E, is
an infinitesimal oscillating probe field.

The equilibrium position of the oscillator will
change from z = 0 to zo = e8, /m~o while the fre-
quency of oscillation for an infinitesimal displace-
ment nz from this new equilibrium position (&do)

has changed to

—(ap) nz+ ~ohz+ 2vgonz = 0,2 2

(mo) = rzo+2vzo=rdo+ 2veg /mego .2 2 2 2
(A4)

Using y = e /m(~o) we find that the change in the
susceptibility caused by the field 8 is given by

ngzz. = 2ve gz/m (dp

Comparing Eqs. (A3) and (A5) we find

p, ,= l &(Xp )„/h (,

(A5)

(A5)

showing that the numerical factor of —„' appearing
in Eq. (45) is correct.

for the first time, to directly and accurately cal-
culate the higher-order acoustically induced op-
tical harmonic generation coefficient, using exactly
the same theory described here [e. g. , Eq. (93) in
particular]. [B. F. Levine, Phys. Rev. Lett. 30,
171 (1973).]
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It has been established in the present work that the expressions obtained by Kumar, Srivastava, and Verma

for the relaxation rates due to the resonance scattering of phonons by bound donor electrons can account

very well for the phonon-conductivity results of Sb-doped Ge for donor-electron concentrations less than
10" cm '. Elastic scattering alone can account for the drastic reduction in the phonon conductivity with

doping. For donor-electron concentrations greater than 5&(10"cm ', the observed drastic reduction in the

phonon conductivity can be accounted for by the scattering of phonons by electrons in the conduction state.
This is possible because of the merger of the impurity states with the conduction states for such heavily

doped materials. The density-of-states effective mass is found to vary from 0.56m 0 to 0.82m 0 in the
temperature range 6-80 'K.

I. INTRODUCTION

Extensive measurements of thermal conductivity
of n-type Ge in the low-temperature range have
been carried out by Pearlman's group at Purdue
University. The experimental results are usually
depicted as phonon-conductivity-versus-tempera-
ture curves, which show a maximum at about (10-

15) 'K. At temperatures below the conductivity
maximum, electron-phonon scattering plays a very
important part in determining the resistivity of the
material. For high concentrations of dopant, pho-
nons are scattered by donor electrons in the con-
duction state, and for low concentrations by bound
donor electrons. The theory of the scattering of
phonons by bound donors has been considered by


