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A deep-defect level in a semiconductor is simulated by a cluster of host atoms surrounding the defect.
The system is then treated as a "large molecule, " the energy levels and wave functions for the entire.
cluster being obtained using molecular-orbital techniques. As examples„ the substitutional nitrogen-atom

impurity and the lattice vacancy in diamond are treated in some detail. The molecular-orbital technique

used in these examples is extended Huckel theory (EHT) and clusters of up to 70 atoms are
considered. The results of an EHT treatment of bulk diamond are shown to provide an adequate

description of the bands. Lattice relaxations are investigated and shown to be an important part of the

deep-level pxoblem. %'ave functions are obtained and compared to EPR results for nitrogen in diamond.

The agreement between theory and experiment is found to be very good. For the vacancy, the

theoretical results are compared to experimental work on the vacancy in silicon. A comparison to the
Coulson-Kearsley —Yamaguchi "defect-molecule" treatment of the vacancy is also provided. It is

concluded that this cluster approach is a highly promising one for the deep-level problem. Throughout,

the physical insight provided by the calculations in understanding the features of the defect centers is

stressed.

I. INTRODUCTION

The problem of describing the electronic states
of defects and impurities in semiconducting cova-
lent solids is one of great importance, both from a
fundamental and practical point of view. The ef-
fective-mass theory and corrections to it have
been highly successful for shallow impurity levels
in silicon and germanium. However, for deep
levels (& 0. l eV from the band edges), which make
up a large number of impurity states in covalent
solids and practically all defect states produced
by radiation damage4 in these materials, no geg-
eyal theoretical description of even moderate suc-
cess has yet been devised. One complicating fea-
ture of the deep-level problem, which is absent in
shallow states, is the importance of lattice relaxa-
tions and distortions around the defect or impurity
in determining the nature of its associated levels. ~ 6

The method of Koster and Slater~ for treating
localized defects has provided valuable insight in
application to model problems. However, the gen-
eralization of the method needed to treat real de-
fect problems results in rather involved computa-
tions since the method is formulated in the Wannier
representation. Callaway and Hughes have shown
that such calculations are indeed feasible and have
investigated the levels produced by the vacancy
and divacancy in silicon. Due to the complexity
of the calculations, however, the problem was
truncated to a small number of perturbed atomic
sites, and lattice distortions and relaxations were
neglected. More recently, Callaway has estimated
the formation energy of the vacancy in silicon, '
using the same basic approach in conjunction. with

scattering theory. ' Parada ~ has also investigated
the Pb and Te vacancies in PbTe. Both calcula-
tions neglect lattice distortions.

A Green's-function approach closely related to
that of Koster and Slater has been proposed by
Bassanl et al. , which provides information about
resonant states in addition to the bound states ap-
pearing in the gap. Solutions to one-dimensional
models were considered. A simple approximate
Green's-function approach has been applied to the
single vacancy in diamond'4 and silicon. '~ The re-
sults, however, seem to be quite sensitive to the
various approximations considered. ' Another
method, somewhat related to the Green's-function
approach, is the t-matrix formulation of Benne-
mann. ' Although his formulation seems to be the
most general, in practical application to vacancy
and interstiti. al problems, '6 rather severe approxi-
mations are made and lattice distortions neglected.

A rather different approach based on a scattered-
wave formalism has been proposed by Beeby~v and
also Johnson. 8 It has the advantage that the explic-
it knowledge of Wannier or Bloch functions for the
perfect crystal is not required. The calculations
would be carried out on a cluster of atoms, ' which
would then be "renormalized" by energy-band
effects. The method seems to have many advan-
tages, but as yet no calculations have been carried
out. Another method using a modified Korringa-
Kohn-Rostoker (KKR) theory has been proposed by
Grossens and Phariseau, no calculations have
been made, however.

All of the approaches mentioned above, with the
exception of that of Beeby" and Johnson, ' can be
considered from a common viewpoint. That is,
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they start with the solutions to the perfect crystal
(Bloch functions) and introduce a perturbation (a
defect or impurity potential). By using perturba-
tion theory of various forms, they then try to de-
scribe the perturbed states using the Bloch func-
tions as a basis set. However, there is a rather
different point of view which has been adopted by a
number of other authors. In this approach, one
starts with the local environment of the defect in
order to describe the electronic structure of the
defect rather than starting with the perf ect- crys-
tal states.

The first calculation which used this approach
for a defect in a semiconductor was that of Coulson
and Kearsley, who treated the vacancy in diamond
as a "defect molecule" made up of electrons in the
sp "dangling orbitals" from each of the four neigh-
boring atoms. They then constructed many elec-
tron states from these orbitals, carried out a
configuration interaction calculation, and predicted
some optical transitions. Yamaguehi carried out
similar calculations for the vacancy and extended
them to treat the carbon interstitial in diamond. '
More recently, similar calculations have been car-
ried out by Coulson and Larkins on the divacancy
in diamond34 and on the vacancy in diamond 5 in
somewhat more detail. This approach has also
been extended to treat the lattice vacancy in sili-
con,

In order to evaluate the effect of lattice distor-
tions on the energy states of the Coulson-Kearsley
model, the approximation of attaching the "defect
molecule" to the rest of the lattice by equilibrium
force constants has been used. Although the valid-
ity of this procedure is somewhat doubtful, it has
enabled the workers who employed items-Gi to esti-
mate the importance of Jahn-Teller and otQer re-
laxation effects.

Another approach which deals only with the lo-
cal environment of the defect is the point-ion mod-
el3~ which has been applied to the diamond vacan-
cy. '3~~33 However, this model is of questionable
validity for covalent solids.

The two general approaches to the problem have
therefore been eitherto start with the infinite crys-
tal states or to start with highly localized defect
dangling orbitals. Each approach has provided
valuable physical insight into various aspects of
the problem. However, neither so far has demon-
strated that it can provide a satisfactory theoreti-
cal treatment of the deep-level problem. To be
specific, a satisfactory treatment must have the
following ingredients: (a) it must locate the elec-
tronic levels, introduced by the defect or impurity,
with respect to the band edges; (b) it must provide
wave functions for the electrons in the deep levels
which can be compared to experimental informa-
tion, e. g. , EPR studies; (c) it must provide for the

possibility of investigating lattice distortions, and
relaxation around the defect; and (d) it must be the
basis of a practical computational scheme.

The highly localized models emphasize (b) and

(c), but supply no information about (a). Also, of
course, in constructing a highly localized molecule
one is imposing a solution on the problem which
may or may not be realistic. Approaches start-
ing from the perfect band states, on the other hand,
emphasize (a) but, so far, have supplied little in-
formation about (b) or (c). All approaches suffer
in various degrees in requirement (d).

We have recently suggested a different appro3ch34
which is somewhat intermediate between these two
extremes and as such embodies many of the ad-
vantages of both. The basis of the method is to
simulate the problem by a large cluster of host
atoms containing the defect. The system is then
treated as a "large molecule, '" the energy levels
and wave functions for the cluster being obtained
using molecular-orbital techniques. If the cluster
can be made large enough to approximate a small
crystal, the position of the defect levels ean be
estimated with respect to the band edges. At the
same time, wave functions are produced which
have a clear physical interpretation in terms of the
local and extended character of the defect. Fur-
ther, elastic restoring forces are automatically
included allowing local lattice rel.axations to be
handled as an integral part of the treatment. Fi-
nally, useful semiempiri. cal molecular-orbital
schemes exist which allow sizable clusters to be
handled with modest computing times. Such an
approach therefore appears highly promising, sat-
isfying to some extent each of the above require-
ments.

The concept of a cluster approach is not new.
Very early Inui and Uemura3' described what they
termed the "large-molecule" approach to the I'
center in the alkali halides. Here they expanded
a linear-combination-of-atomic-orbitals (LCAO)
model involving the near neighbors of the negative-
ion vacancy to include the effective crystalline field
produced by the next neighbors. More recently,
Birmanss and Walter and Birmans~ treated the cop-
per impurity i.n ZnS by using a cluster consisting
of the central copper atom surrounded by four
S(Zn)~ groups to represent the host lattice. They
employed the molecular-orbital treatment of
Wolfsberg and Helmholtz38 in an attempt to match
the copper d-level splittings and their electrical
level position in the ZnS band gap.

A cluster approach has also been used to calcu-
late the phypica/ properties of defects in solids.
In particular„Moore and Carlson39 used extended
Huckel theory40' ~ on a 24-atom cluster of carbon
atoms arranged in the graphite lattice to obtain
activation energies for vacancy migration and
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Frenkel-pair formation. They did not investigate
the electronic properties of the defects, however.

Our approach therefore represents a logical ex-
tension of the work of Birman and Moore and Carl-
son. We will take larger clusters than Birman to
better match the more extended electronic states
of the solid. However, the basic concept is the
same. At the same time we will take advantage of
the fact that elastic properties of the cluster are
also described, as in the work of Moore and Carl-
son, to treat lattice relaxations around the defect.

It is this molecular-cluster approach to the deep-
level problem mhich me wish to discuss in this pa-
per. As examples, we will explore in detail its
application to two model problems: (i) the substi-
tutional nitrogen donor and (ii) the lattice vacancy
in diamond. The outline of the presentation is as
follows. In Sec. II we detail the molecular-cluster
description and choose a particular molecular-or-
bital (MO) approximation, extended Huckel theory
(EHT). In Sec. I1I we consider the elastic and

electronic properties calculated for a diamond
cluster inthe absenceof a defect. Also in Sec. IG
we explore the problems associated with the finite
size of the cluster, its surfaces, etc. , by com-
paring the electronic states of the cluster to those
of the infinite crystal, as determined from a band-
structure calculation using the same MQ method.
Comparison of these results in turn to ab initio
band-structure calculations are used as a test of
the validity of the MO method. Problems asso-
ciated with charge dist."ibution and self-consistency
in the MQ treatment are also considered. In Sec.
IV results of calculations on the nitrogen donor are
presented and compared to experiment. In Sec.
V results on the lattice vacancy are described and

in Sec. VI a summary of the main conclusions are
given.

II. DESCRIPTION OF MOLECULAR CLUSTER

First let us consider a perfect infinite crystal
whose electronic structure we choose to represent
by using an I CAO approach. The one-electron
crystal orbitals P, will be given as

where the g„are the atomic orbitals and the index
v runs over all atomic orbitals on each atom and
over all atoms. The c„, are the solutions to the
one-electron Hartree-Fock equations for the crys-
tal, which are

Z (F„„—S,„e,)c„,= 0, i = 1, 2, .. . ,

The &,. are the one-electron crystal-orbital ener-
gies; F,„ is the matrix element between atomic
orbitals p, and v with respect to an effective one-

electron operator F, and S„„is the overlap integral
between these atomic orbitals. 4~ This infinite set
of equations can be reduced, or to put it another
way, the square matrices E,„and S,„of infinite
dimensions can be factorized by taking account of
translational symmetry. The resultant set of re-
duced equations can be solved to give an accurate
band structure of the perfect solid. 43 Homever, if
the solid is not perfect, i. e. , if there is a defect
or impurity in the lattice, then the translational
symmetry of the perfect crystal no longer exists
and the set of Eqs. (2) can no longer be simplified
on this basis.

Therefore, in order to treat an impurity or de-
fect in the solid, we must start with the whole set
of Eqs. (2). But then let us focus our attention on
the defect or impurity and its local environment.
If we start with the defect and include a large num-
ber of atoms surrounding it, we should obtain a
good description of the defect problem. In the lim-
it of including all the bulk atoms surrounding the
defect, we would, of course, be solving Eq. (2)
exactly. However, from a practical point of view,
the latter problem is impossible to solve. We
therefore restrict ourselves to the consideration of a
finite number of host atoms surrounding the defect.
In this case, Eqs. (2) reduce to a finite number:

N

Z (E,„—S,„c;)c„,=O, i=1, 2, . . . , ti. (3)

The value of N mill depend upon the number of host
atoms included in-the cluster. The solutions of
Eq. (3) give the molecular orbitals and their ener-
gies for the molecular cluster. The larger the
molecular cluster, the better the approximation
Eqs. (3) will be to the Eqs. (2).

This method me have just outlined satisfies con-
ditions (a)-(c) described in Sec. I. However, for
a cluster larger than about 15 atoms, condition (d)
is not satisfied. That is, the computational part
of the scheme becomes too burdensome. In order
to circumvent this difficulty, we must make ap-
proximations in Eqs. (3). This is the essence of
the method we have proposed: Apply Eqs. (3) to a
molecular cloister representing a defect and its sur-
roundings and use an apProjri ate molecular-orbital
technique to simplify Eqs. (3). In the preliminary
applications of this method, "4 4 we have chosen
a particularly simple approximate MO scheme,
namely, the extended Huckel theory. ' ' We will
now discuss briefly this MO scheme and in Sec. III
show that even with the approximations it imposes
on Eqs. (3), the resultant equations satisfy condi-
tions (a)- (d).

A. Extended Huckel Theory

Extended Huckel theory ' ' is a noniterative
approximation to Eqs. (3).4~ We can completely
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specify the method by giving the explicit form of
the matrix elements E,„:

E „=——'K „(I +I„)S„, (4)

where p and v are valence orbitals only and where
r

K for pWv
1 for p. =v ~

(5)

where N, is a normalization constant, g is the
principal quantum number of the orbital p, , and g
is an orbital exponent obtained for the calculations
to be presented here by Slater's rules. A mea-
sure of the total energy of the system is given by
the sum of the energies of all the occupied one-
electron molecular orbitals. That is,

Etot =+ B& Cl

where &, is the energy and g,. the occupation num-
ber of the ith orbital.

The total energy of the system of course is got
rigorously given by Eq. (7). It should be corrected
by the subtraction of two™electron terms and the
addition of nuclear-nuclear core-repulsion terms.
However, in the EHT method, explicit a,ccount is
not taken of either the electron-electron repulsion
or nuclear-nuclear repulsion terms; therefore,
the correction terms to Eq. (7) are not well de-
fined. Fortunately, studies on the deformation of
molecules4 '~ ' have shown that arguments based
on Eq. (7) often turn out to be quite good. The
reason for this has been discussed by a number of
workers. 54 It results from a tendency for these
two terms to cancel each other, particularly as
regards their variation with the internuclear
framework as reflected in the elastic properties
of the molecule. This cancellation is best for
molecules of low ionicity. For instance, the stud-
ies of Allen and Russell" and Allen'3 show that in
ab initio calculations the actual total energy and
g, ~, q& considered as a function of bond angles have
parallel behavior for molecules whose constituents
are relatively close in electronegativity. Allen
also shows that Eq. (7), used with EHT, is a good
approximation to this behavior and thus, for sys-
tems with a relatively uniform distribution of
charge between the atoms, predicts reasonably
good values for the equilibrium bond ang1es. Also,
more specifically, we will show in Sec. III that
for a cluster of carbon atoms on the diamond lat-

Here 1& %&2 and is an adjustable parameter (usu-
ally E= 1.75 in applications to organic mole-
cules40), I, is the pth valence-orbital ionization
potential, 4 49 and 9„„is the overlap integral be-
tween two Slater-type atomic orbitals. The radial
part of the Slater-type orbital is given by

n-1 - gt'

tice, the elastic properties inferred by Eq. (7)
are remarkably close to the experimental diamond
values. This gives us confidence that Eq. (7) can
be used in treating lattice distortions. The fact
that successful predictions using EHT depend upon
a relatively uniform charge distribution has also
been pointed out by Blyholder and Coulson. ~s

A few words should also be mentioned with re-
gard to the effects of the trunctation of the infinite
matrix to a finite size. Since EHT is a nonitera-
tive scheme, the matrix elements E,„will not be
modified due to surface effects as they would be in
a self-consistent procedure. A fully self -consis-
tent procedure would give a solution to the cENstex
pe~ se, which we are not interested in. There-
fore, a scheme like EHT has the adva, ntage that it
is more appropriate to the bulk than the cluster
per se, and that in this way the calculation is in
some ways a better approach to the problem than
a fully self-consistent treatment of the cluster.
These points will become clearer in the discussions
of calculations in Sec. IG.

III. EHT CALCULATIONS IN ABSENCE OF DEFECT

For most of the calculations to be described, we
have used the 35-atom cluster of carbon atoms
shown in Fig. 1. The cluster includes a central
atom plus all of its first (1, 1, 1), second (2, 2, 0),
third (8, 1, 1), and fourth (4, 0, 0) nearest neigh-
bors in the diamond lattice. The choice of this
cluster represents a compromise between the ob-
vious desire, on the one hand, to have it as large
as possible and the practical limitations, on the
other hand, of the computing time andcore storage
required in the calculations. '

In the calculations, the atomic orbitals were
taken to be one 2s and three 2p Slater orbitals on
each carbon atom. The exponent f [Eq. (5)] for
both orbitals was taken to be 1.625. The valence-
orbital ionization potentials I„were 19.44 and
10.67 eV for the 2s and 2p orbitals, respective-
ly. 8' 9 The constant K in Eq. (5) was taken to be40

1.75. The input parameters were therefore de-
termined in advance entirely from atomic data (I
and f) or small-molecule calculations (K) and were
not empirically adjusted in any way to reflect the
diamond properties.

A. Effect of Cluster Size, Surfaces, etc.

In Fig. 2 we show the calculated molecular-or-
bital energies as a function of the size of the clus-
ter, starting from a central carbon atom and then
adding successive shells. Also shown is the re-
sult for the infinite cluster, determined by an
EHT band-structure calculation~~ using the identi-
cal parameters. We see immediately that as the
size of the cluster increases, the "band structure"
begins to emerge, with the bonding MQ's grouped
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FIG. 1. 35-d, tom cluster used
for most of the LCAO-MO calcula-
tions.

into what can be identified as a valence band, the
antibonding MO's forming a conduction band, and
with a forbidden gap between.

The bonding molecular orbitals appear to con-
verge to the infinite valence-band width rather
quickly, the 35-carbon-atom width (measured as
the difference between the highest and lowest ener-
gy states) already giving 20. V eV compared to
21.5 eV for the infinite cluster. The bottom of the
conduction band on the other hand, and correspond-
ingly the band gap, converge to their infinite values
somewhat more slowly. For the 35-atom cluster,
the band gap is 9. 5 eV compared to the infinite val-
ue of 4. 7 eV. For the 71-atom cluster, the band

gap is 7.4 eV.
A closer look a.t the valence-band states reveals

one reason for its more rapid convergence. For
each cluster there are 8 more orbitals in what we
have called the valence band than in the conduction
band, where S is the number of dangling bonds on
the surface. The "surface states" associated with
these dangling bonds have therefore turned out in
this model to be energetically within the valence
band. This is not surprising. An isolated carbon
2p orbital has an energy -I, =- —10.67 eV, which is
mell below the infinite-cluster band edge of —8.73
eV. As a result such an orbital on the surface
should admix with the bulk valence-band states and
tend to become delocalized, penetrating into the

bulk. In effect, the effective "size" of the cluster
for the valence band is larger, extending beyond
the surface atoms into the space occupied by these
surface orbitals. For the conduction band, how-
ever, this space is not available, the wave func-
tions being restricted to the region between the
atoms, and the effective "size" of the cluster is
smaller.

Figure 3 shows the electronic states near the
top of the valence band on an expanded scale. In
all cases for clusters of 17 or more atoms, states
exist which are above the top of the infinite cluster
valence-band edge. This must be a result of the
surfaces. For some clusters, the corresponding
wave functions reveal a greater concentration on
ihe surface atoms and thus they can be viewed as
"surface states. " However, for the 35-atom
cluster, the uppermost Iz state is found to be
spread quite uniformly throughout the cluster,
suggesting it to be viewed as a bulk state whose en-
ergy has been shifted by confining it to the small
cluster. "

There are several ways that one might attempt
to reduce surface effects and better simulate the
infinite crystal at the boundaries. garison and
Moores have suggested tying up the surface orbi-
tals with bonds to hydrogen atoms as they had
done previously on graphite calculations. 39 Such a
modification has recently been performed for the
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FIG. 2. Energies of the one-electron MO's for a dia-
mond cluster as a function of cluster size, starting with
the central atom (1) and adding successive shells of
neighbors up to and including the sixth-nearest-neighbor
shell (71). The result for the infinite cluster comes
from a band-structure calculation using the same EHT
parameters.

35-atom cluster by Larkins. ' He finds, for in-
stance, that the band gap is reduced from 9. 5 to
8. 5 eV with the hydrogens. Another approach
would be to place periodic boundary conditions on

a cluster. We are currently using this approach
on a 64-atom cluster and these results will be the
subject of a future publication.

In the present paper, however, we will use the
35-atom cluster of Fig. 1 and we will not attempt
to "tie up" the surface orbitals in any way. We
conclude from the preceding discussion that such
a cluster actually does a rather good job of simu-
lating the valence-band states of the infinite crys-
tal. There are, however, effects of the surfaces;
for example, in some cases "surface states" ex-
ist, and "truncation effects" can serve to shift the
energies of the bulk states somewhat. However,
they are not great, being apparently rather less
than ™1eV, as seen in Fig. 3. The effects on the
conduction-band edge, on the other hand, are
somewhat greater. We expect, therefore, that our
treatment of localized defects may be somewhat
more reliable for states near the valence-band edge
than for those near the conduction-band edge.

B. Validity of. EHT

In Sec. IGA, we considered the approximations
resulting from truncating the problem to a finite
cluster. A second question is how well EHT ac-
tually approximates the correct Hartree-Fock solu-
t(ons, Egs. (2) and (3); and, in particular, how

well such a simple tight-binding LCAO-Mo ap-
proach can reproduce the more extended states of
the bulk crystal. This question can be separated
from the approximations involved in truncation to
a finite cluster by comparing the band structure
calculated using EHT with that obtained by ab initio
methods. The band-structure solution is, of
course, the solution of the infinite cluster, with
no surfaces.

The band-structure calculated'~ using EHT, with

5 l7 29 55 {4l} 47 7l {7l }
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FIG. 3. Expanded view of
the states near the top of the
valence-band edge for a dia-
mond cluster vs cluster size.
In addition to the simple pro-
gression of adding successive
neighbor shells (Fig. 2) we
include a 41-atom cluster
which is made up of first,
second, third, and fifth shells
(Ref. 61), and a 71*-atom
cluster constructed to have
only (111) surfaces (Ref. 58).
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FIG. 4. Comparison of the diamond band structure (a)
calculated by EHT, with (b) ab initio results of Painter
et al. (Ref. 62). The zero of energy has been shifted in
each case to coincide with the F25 ~ point.

the identical parameters as used in the cluster
calculations, is shown in Fig. 4(a). For compari-
son, a recent ab initio calculation by Painter et
al. 62 is shown in Fig. 4(b). This comparison is
given in more detail in Table I for several points
in the Brillouin zone. We note that the EHT re-
sults agree remarkably well with those of the ab
initio treatment for all of the valence bands.
Some of the conduction bands as defined by L3,
I'&5, and X3 also agree mell.

On the other hand, certain features of the con-
duction band appear quite poorly described. In
particular, the conduction-band width is much too
large and the minimum in the conduction band in
the (100) direction is not reproduced. These
features reflect a poor description of the bands
associated with X» I'~, and L, , L„.

In spite of this poor agreement on two of the
four conduction bands, the over-all agreement
must be considered surprisingly good when one
considers that the EHT parameters have been de-
termined in advance entirely from atomic data, (I, ,
f) and small-molecule properties (K) and have not
been adjusted in any way to match the diamond
properties.

In this regard, it is instructive to compare these
results to those of a recent pseudopotential calcu-
lation, ~ also given in Table I, which employed six
parameters empirically adjusted to match selected
symmetry points in the diamond band structure.
It is apparent that EHT actually does a much better
job of matching the valence band and the two con-

TABLE I. Comparison of band structure of diamond
calculated by EHT with that of other methods (energies in
eV). The zero of energy in each case has been shifted to
coincide with the F» ~ point.

Symmetry
point

Valence bands

1»i
F(
X4
X(
L)i
L(
L2i

Conduction bands

F~5

X3
L3

I"2 ~

Xg
L)
L2'

EHT

0.0
—21.5
—4.4

—10.5
2 0 3

—9.0
—15.4

+4.7
+16.8
+ 9.1

+69.8
+28.1
+28.3
+46.5

ab initio

0.0
—19.6
—5.3

—11.6
—2.4

—11.7
—14.5

+6.0
+14.3
+8.9

+10.8
+6.3
+8.2

+14.1

Pseudo-
potential

0.0
—29.1
—6.0

—19.6
-2.8

—15.9
—24. 3

+8.1
~26. 0
+10.3

+6.9
+5.9

&20.0
+5.6

'G. S. Painter, D. E. Ellis, and A. R. Lubinsky,
Phys. Rev. B 4, 3610 (1971).

"L. A. Hemstreet, C. Y. Fong, and M. L. Cohen,
Phys, Rev. B 2, 2054 (1970). The values given here
have been estimated from Fig. 1.

duction bands associated with I',~, J3, and L3 than
does the pseudopotential method. The pseudopo-
tential values, on the other hand, are considerably
better for I'~, , g„and L~, , but, of course, these
particular points are empirically matched.

We therefore interpret the agreement in Fig.
4 and Table I to indicate that EHT, in the simple
form which we use for the defect cluster calcula-
tions to follow, reproduces enough of the essential
features of the perfect-crystal band states to pro-
vide a meaningful "connection" between a localized-
defect state (for which the LCAO approach is clear-
ly meaningful) and the perfect-lattice states (i. e. ,
band edges, etc. ).

It should be mentioned that the agreement with
the band structure can be improved considerably
by small adjustments of some of the EHT param-
eters, as has recently been pointed out by one of
us (R. p. M. ). In future publications, we will
explore such empirically adjusted EHT parameters
as possibly providing a better starting point for
defect calculations. In this paper, however, me
will make no such adjustments of parameters in
the calculations.

C. Elastic Properties

As described in Sec. II, a measure of the total
energy of the system is given by

@tot ~+i e$ r
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where g, is the occupation number and q,. the ener-
gy of the ith MG. In this section we will investi-
gate the elastic properties implied by (7).

In evaluating Eq. (7) for a, cluster, our proce-
dure will be to fill all of the "valence-band" orbit-
als. This means, of course, that we are also
filling the 8 "surface" orbitals. This must be
done because, as discussed in Sec. IIIA, these
orbitals are not really distinguishable. All of the
"valence-band" orbitals have some surface and
some bulk character and it is necessary that all of
them be occupied in order to completely fill the
bulk states.

We note that in following this procedure, we
are not dealing with a "neutral" cluster, but rather
have added S additional electrons (36 for the 35-
carbon-atom cluster), and the cluster ca.rries a
net charge of —$e. Gne might have been tempted
instead to make the cluster neutral. If this were
done, however, there would be partially filled,
closely spaced states near the top of the "valence
band" which would reflect the elastic softness of
the cluster surfaces. Since we are not interested
in the cluster per ge, but are rather using it only
as a means of approximating the larger bulk sys-
tem, filling all of the valence-band orbitals to a
large extent avoids these extraneous surface ef-
fects.

We calculate the change in energy (7) per unit
volume of the cluster for each of three small-uni-
form-distortion modes: (i) hydrostatic (A, ),
(ii) tetragonal (Z), and (iii) trigonal (T,). For this,
we define the effective volume of the cluster to be
(N —,

' S) Vo, wher- e Vo is the volume per atom
(5. 65 A ), N is the number of atoms, and S is the
number of surface orbitals. These results, in con-
junction with conventional elasticity theory, ~ allow
evaluation of the elastic constants c», c», and c44.

The results for the 35-atom cluster are given in
Table Q along with experimentally measured values
for diamond. The agreement is seen to be re-
markably good. The fact that all elastic constants
are successfully calculated means that not only are
"bond-bending" force constants reproduced, as dis-

TABLE Il. Comparison of calculated (EHT) and observed
elastic constants (10 dyn/cm ) for diamond.

EHT Experi ment al

C(1 8.6 10.76
C12 2.7 1.25, ' 2.75"
c44 5.0 5.76
B= 3(cff +2cfg) 4+6 4y

H. J. McSkimin and%. L. Bond, Phys. Rev. 105,
116 {1957).

"Markham, as reported in Physica/ P~ope&ies of
&avond, edited by R. Herman (Oxford U. P. , London,
1965), p. 415.

cussed by Allen et al."~ (Sec. II), but bond-
stretching force constants as well. For instance,
the bulk modulus E obtained from the A, hydro-
static compression mode is pure bond stretching.
We conclude, therefore, that through Eq. (7), the
model contains elastic forces which are realis-
tic.s~ 68 We will take advantage of this to treat lat-
tice relaxatlons around a defect,

The 35-atom cluster is stable against F and T
distortions, the total energy rising quadratically
with strain for small distortions. This is not true
for the hydrostatic A~ mode, however, which also
exhibits a linear change with distortion. In calcu-
lating the elastic constants, we have therefore
determined 8 = —,'(c»+2cq2) from the quadratic part
of the dependence, which is, of course, that part
of the energy that reflects the elastic properties
of the cluster.

The existence of a linear term means that the
cluster is actually not "stable" at the experimen-
tally observed interatomic separation (l. 54 A) for
which the calculations were performed. Allowing
the lattice to relax for minimum energy (7), we
find that the lattice expands 19/&. At this sepa. ra-
tion, the agreement of calculated elastic constants
and band structure with the diamond properties is
poorer. We have elected, therefore, in all of our
calculations to fix the atoms initially at their nor-
mal experimental positions and treat only distor-
tions that maintain constant volume for the cluster.
This is automatically satisfied for all except those
of A, symmetry. With caution, we will also treat
local A, modes around a defect, but in doing so,
we will constrain the outer shells from expanding
or contracting. (We are, in effect, cancellingthe
linear term in the energy by applying the necessary
external "force" to hold the outer shells of atoms
in their proper positions. )

This failure of EHT to predict correct equilib-
rium bond distances was first pointed out by Hoff-
mann. He found that the predicted single bond
C-C equilibrium distance wa.s too large (-25/& in
ethane). This is in large part the reason that the
bond angle predicting properties of EHT have been
emphasized. Gur results demonstrate, however,
that the bond-stretching force constants, as well,
can be accurately reproduced by EHT (at least in
certain eases) when the atoms are held at their
proper internuclear separation.

D. Further Discussion

As discussed in Sec. IIA, the success of EHT
depends upon a relatively uniform charge distribu-
tion existing over the atoms (low ionicity). This
is basically because EHT is not a self-consistent
treatment. It works well for pure covalent bonds
between atoms, but cannot properly handle ionic
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bonds where a significant amount of charge is
transferred from one atom to another. So far, we
have used it here, therefore, under the ideal cir-
cumstances; i.e. , a cluster of identical atoms,
for which the correct solution, at least for the in-
finite cluster, must be a, completely uniform
charge distribution.

In the defect studies to follow, however, we will
consider replacing one of the carbon atoms with an
impurity atom. As the electronegativity difference
increases between the impurity atom and its car-
bon neighbors, we anticipate that EHT will become
an increasingly poorer approximation —at least for
the immediate environment of the impurity. As a
guide, we note that Allen has concluded that when
the electronegativity difference between a pair of
adjacent atoms exceeds about 1.3 on the Pauling
scale ' or 1.0 on the Sanderson scale, v EHT be-
gins to fail as regards its ability to predict "bond-
bending" elastic properties. ' The impurity that
we will treat is nitrogen, which has a difference
from carbon of -0. 5 on either scale. We tenta-
tively conclude, therefore, that, if used and inter-
preted cautiously, EHT can continue to provide a
useful approximation for impurities such as nitro-
gen as well. A Mulliken charge-population analy-
sis7' of the cluster is performed for each calcula-
tion and serves as a. useful monitor of charge dis-
tribution. In the defect calculations to follow, this
can be used as an indicator of the degree to which
problems may exist from this source.

As described in Sec. III C, our procedure of fil)-
ing all of the valence-band orbitals is equivalent
to adding 36(S) extra electrons to the cluster. A

Mulliken population analysis reveals that this extra
charge resides primarily on the surface atoms with
the (2, 2, 0) and (3, 1, 1) atoms having a net charge
of - —e and the (4, 0, 0) atoms, - —2e. We have in
effect put an extra electron on each surface dangl-
ing bond to saturate it. Therefore, in the analysis
to follow, we will define as "uniform charge den-
sity" that distribution which gives an extra elec-
tronic charge or& a. surface atom for each of its
dangling bonds. Departures from this will be ta,k-
en as evidence of ionicity.

It is important to remember that this procedure
of filling the orbitals is purely a computational one
after the calculation. It in no way affects the wave
functions or electric level positions of the orbitals.
The apparent concentration of charge that results
from this procedure in no way affects the validity
of the EHT approximation because in the real
crystal, with no surfaces, and no excess charge,
the charge distribution will be uniform.

Finally, since EHT is not a, self-consistent
treatment it approximates best the neutral charge
state of the defect, where the charge density is
relatively uniformly distributed over the system.

IV. SUBSTITUTIONAL NITROGEN IN DIAMOND

Substitutional nitrogen is the only point defect in
diamond for which detailed unambiguous experi-
mental information is available and as such it
serves as a key test for our theoretical approa, ch.
Nitrogen is known to introduce a deep donor level
which, from photoconductivity, and luminescence
studies ' is estimated to be at -E, —4.6 eV, or
only about 1.5 eV above the valence-band edge. '

The reason for its being so deep has been a mys-
tery of considerable concern in the literature.
Nitrogen in diamond is the direct counterpart of
phosphorus in silicon, which is a shallow donor at
-E,—0.05 eV. A simple extension of the Kohn-
Luttinger effective-mass treatment, 3' which has
been so successful for shallow donors in silicon,
predicts, for the nitrogen in diamond, E, —0.4
eV. This is a full order of magnitude low'er than
the experimental estimate. The effective-mass
treatment therefore appears to fail completely in
this case.

A great deal is known as well about the micro-
scopic structure of the defect from EPR and
electron-nuclear-double-resonance (ENDOR)'
studies. In particular, a large trigonal Jahn- Tell-
er distortion has been inferred for the defect. In
addition, analysis of the EPR and ENDOR results
has given detailed information about the wave func-
tion of the donor state.

In Fig. 5(b), we show the one-electron molecu-
lar-orbital energies that result from the calcula-
tion when the central atom of the 35-atom cluster
is replaced by nitrogen (Slater exponent 1.95, ion-
ization potentials 25. 58 and 13.19 eV for the 2s and
2P orbitals, respectively ). A triply degenerate
orbital now appears in the forbidden gap, having
emerged from the conduction band. It is approxi-
mately 1.5 eV below the conduction-band edge of
the cluster and the molecular-wave-function coeffi-
cients c„; reveal that it is highly localized on the
nitrogen and its immediate carbon neighbors. Be-
cause neutral nitrogen has five valence electrons
(one more than carbon), this orbital will be singly
occupied in the neutral" cluster. We therefore
identify it as the nitrogen donor state.

Because the donor state is triply degenerate, it
is a candidate for a Jahn-Teller distortion. Let
us therefore investigate this at the outset.

A. Jaho-Teller Distortion

As is usual in the treatment of Jahn-Teller
problems, a substantial simplification is acheived
by taking advantage of the symmetry of the prob-
lem. In our ease, the point group symmetry of the
cluster is T&, and each of the molecular-orbital
wave functions can be classified according to the
irreducible representations A. &, A~, E, T~, or T2
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later. ) The Jahn-Teller modes are therefore of
E and T2 symmetry.

There are many E and T~ modes associated with
the cluster and the problem is still potentially a
very complex one. However, because the defect
wave function is highly localized, the distortions
should also be primarily local ones. We will
therefore limit ourselves in this treatment to the
distortions associated with the nitrogen atom and
its four nearest carbon neighbors only.

A set of normalized symmetry modes of distor-
tion for these five atoms are given in Fig. 6. The
A„E, and T& modes correspond to the normal
modes for four isolated carbon atoms located at the
nearest- neighbor positions. The T~ mode describes
in turn the vibrational motion of the central nitro-
gen atom alone. There are therefore only two
modes of T2 symmetry and one mode of E symme-
try which must be considered.

The problem of a T~ electronic state coupled to
E and T& modes of distortion has been treated in
considerable detail in the literature 0 I and will
not be repeated here. In our case, the complete
solution would lead to three complex energy sur-
faces in the eight-dimensional space spanned by the
two E distortion coordinates and six T2+ T& coor-
dinates. However, since we are interested here
only in the minimum-energy configuration, the

FIG. 5. (a) Energies of the one-electron MO's for a
35-carbon atom "diamond. " (b) Energies with nitrogen
as the central atom, no lattice relaxation. (c) Effect of
trigonal Jahn-Teller distortion. The total energy has a
minimum when the amplitude of the normalized distortion
mode (shown in inset) is 26.2% of the nearest-neighbor
distance. The distortion causes a lowering of the donor
level to E„+2.2 eV.

of the T~ group. The completely filled valence
band must transform according to A& so thaf the
transformation properties of the wave function of
the total system are simply those of the singly oc-
cupied one-electron MO donor state in the gap. By
inspection of the molecular-wave-function coeffi-
cients e„, for this orbital, it is found to be T~.

The distortions of the cluster can also be classi-
fied according to their symmetry. For an elec-
tronic state belonging to the irreducible represen-
tation 7, only those distortions whose symmetry
is contained in the symmetric direct product
[l"x I"] can give rise to a linear shift or splitting
of the energy states vs distortion, a necessary re-
quirement for lattice relaxation involving these
modes to occur. For an electronic state Tz,
[T2x T~]~Ag E++ Ta. The A, modes are symmetric
"breathing" modes that do not lower the symmetry
and are therefore not associated with the Jahn-
Teller effect. (We will return to these modes

Al Ql
=—(Ul+U2 U&-U4tvl-V2-V&+V4+ Wl-W2+W&-W4)

I

l2

I

&24Qe
=—(-UI-U2+U&+U4- v, + V2+v&-v4+2wl-2w2+2w&-2w4)

I

48Q~
=—(UI+U2-U~-U4-VI+V2+V~ V4)

Qx = ~ (VI" V2+V~-V4+WI-W2-W~+W4)q8
I

T2, Qy
= ~ (Ul" U2+U3-U4+WI+W2- W~- W4)v'8

I

IQZ
=—{UI-U2- U~+U4+VI+V2-V~- V4)

r
Qx=UO

T2'Qy vo

Qz=WO

FIG. 6. Set of normalized symmetry modes of dis-
tortion for the central nitrogen (0) and four nearest-
neighbor carbon atoms (1,2, 3, 4) used in the Jahn-Teller
calculation. The displacement coordinates of atom i are
Q)s Vt» ZUg) ~
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problem is greatly simplified. In particular, it
has been demonstrated that the lowest-energy state
is a singlet electronic state produced by either a
pure-tetragonal (F, mode only) or pure-trigonal
(72 modes only) distortion depending upon whether
the coupling to the P. or T~ modes dominate, re-
spectively. ' %'e can therefore investigate each of
these modes separately.

For the tetragonal mode, we take q, (see Fig.
6). For the trigonal modes we take the linear com-
binations

q. =s'"(q. q, q.),
Q' = 3 i (Q'+ Q'+ Q,'),

associated with distortions along the [ill] direc-
tion. For small amplitudes of each of these modes

(Q„,), the T2 electronic state splits linearly with
distortion into a singlet (- Vr Qr,. ) and a, doublet
(+-,'- Vrqr, ), where Vr is the Zahn-Teller coupling
coefficient for the mode of I' symmetry. The en-
ergy for the singlet state can then be written

F. = —v„q„,+ —,'u, (q„,)'+ ~ ~ ~ .
A simple calculation with a. small amplitude dis-
tortion (- l/0) for each mode is therefore sufficient
to estimate both p~ and P~) P„being given as —,

'
the energy splitting produced in the t2 molecular
orbital and kr being derived from (9) using the
total energy. The results for each mode are given
in Table III.

We note that the coupling coefficients V„ to the
trigonal modes are substantially larger than the
tetragonal one indicating that a, trigonal distortion
should take over. To further simplify the prob-
lem, we now construct two new orthogonal sets of
trigona. l modes as follows:

q."= (v.q. - V.'q,')/(v'. .V.')"',
q.'= (v„' q, —v„q„')/(v„'+ v„')"',

where A designates the T3 representation. In do-
ing this, the linear coupling coefficient to Q, is made
zero and we approximate the problem as that of
coupling to a single trigonal mode Q,

z=- v q +-'u (q )'+ ~ ~ ~

where
(v2 i v/2)l/2

The q,' mode is illustrated in Fig. 5(c).
%e now perform the EHT calculation for the

cluster as a function of the amplitude of this Q,
trigonal mode. The results for the molecular-or-
bital energies near the gap and the total EHT ener-
gy are given in Fig. 5(c). We see that a, very
large Jahn-Teller distortion is predicted. The
total stabilization energy is - 5. 0 eV. The ampli-
tude of the distortion that minimizes the total en-
ergy is 0, 4 A, or 26. 2% of the nea, rest-neighbor

TABLE III. Jahn-Teller coupling coefficients (Vz) and
local force constants (k&) determined for the 34C+N and
35C clusters.

Mode
(~)

34C+ N
V

(eV/A)

+5.1
+10.1
—18.3

k

(eV/A')

15.5
—2. 1

1.9

35C
k

(ey/A2)

(32.4)
(26. o)
(30.9)

distance (l. 54 A). Further, we note that the nitro-
gen donor state has dropped to within 2. 2 eV of
the valence band.

Our results, therefore, provide for the first
time a simple explanation of why the nitrogen do-
nor state is so deep. In our model, it is the direct
consequence of a large Jahn-Teller distortion.
One of us (G. D. W. )2 has previously pointed out that
Jahn-Teller effects can be important in determin-
ing the electrica, l level position of a deep level in

the gap. However, we believe the results we pre-
sent in this paper represent the first quantitative
demonstration of this point.

Experimental. ly, it is known from EPH studies
that the nitrogen does indeed undergo a trigonal
Jahn —Teller distortion. v 7 The magnitude of the
distortion has not been estimated directly from
these studies but a barrier height of -0.7 eV has
been estimated for the reorientation from one
trigonal distortion to the other as inferred from
FPH linewidth studies. ' From this, a lower
bound estimate of the Jahn-Teller energy can be
made using the theory developed by Opik and

Pryce. ' They have ca,lculated all of the stationary
points for the lower energy surface of a T~ state
coupled to F and T, modes a,ssuming only that it is
sufficient to include terms up through quadratic in
the displacement. As pointed out by O' Brien) the
stationary point they designate as "intermediate"
(a, combmed Q2 and q, mode) is actually the saddle
point through which the system must go for reori-
entation. Their results give therefore84 F»
& 4E„„., The experimental reorientation of 0. 7
eV therefore implies a Jahn-Teller energy & 2. 8
eV, confirming that the Jahn-Teller energy is in-
deed very large. Alternatively, we can estimate
the barrier height directly from our cluster calcu-
lations for comparison to the experimental value.
%'e estimate the saddle-point energy by first mini-
mizing the total energy vs a Q distortion alone
and then by further minimizing with respect to a,

Q~ distortion. The energy is determined to be
—3.8 eV with respect to the undistorted posl'tlon,
glvlng an estimated ba, rrler height of 5. 0 —3.8
= 1.2 eV. In view of the simple nature of the EHT
approximation, this agreement must again be con-
sidered satisfactory.
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(P~)'=~ (P;,)' (14)

gives the total 2)I) character on site j. [In this
analysis, values for lg„(0) I and (r )» have been
estimated from published Hartree-Pock wave func-
tions for the neutral atoms. ~ For carbon they are
2. 79 and 1.69 a. u. and for nitrogen they are
4. 80 and 3. 10 a.u. ,

89 respectively. ]

TABLE IV. Wave-function coefficients determined by
the EHT cluster calculation for the nitrogen and nearby
carbon atoms and comparison to experiment.

Cluster
Site(j) size

X(0, 0, 0) (c,.D)'

(p D)2

C(1, 1, 1) (~,.D)'

(p D)2

C(1, 1, 1) (n&D)2

(p D)2

C(2, 2, 0) (0,&D)'

(p D)2

35
atoms

0.004
0.174

0.029
0.834

EHT

atoms

0.004
0.363

0.022
0.765

71
atoms

0.004
0.224

0.017
0.738

& 0.001 & 0.001 & G. 001
0.003 0.010 0.003

0.006 0.000
0.146 0.002

0.000
0.012

Expt.
hf analysis

0.060
0.23

0.066
0.73

B. Donor-State Nave Function

1. Comparison to Magnetic Hyperfine Interactions

A great deal is known experimentally about the
donor wave function from EPB and ENDOR studies.
We have already mentioned in Sec. IV A that the
trigonal Jahn- Teller distortion is clearly indicated
by anisotropy in the spectrum which reveals a
(111)axis of symmetry. In addition, strong mag-
netic hyperfine interactions have been observed
for the nitrogen atom~5 ~ (N' ) and for a single
carbon atomv' (via C") both of which display axial
symmetry around the (111)defect axis. Partially
resolved C'3 satellites have also been detected and
tentatively assigned to weak interactions with
three other sets of carbon neighbors. ~ The quad-
rupole interaction for nitrogen has also been mea-
sured. 79

The magentic hyperfine data can be used directly
to infer experimental values for the donor molecu-
lar-orbital coefficients c„,, Eq. (1).88 For conve-
nience, we rewrite Eq. (1) for the localized donor
state in terms of the 2g and 2p character of each
atom site,

( )a )i~1)), 4'.s„);) .
j k=1

Here k denotes the three coordinate axes and j
labels each atom site. Analysis of the hyperfine
data for the two principal atomic sites gives the
results in Table IV, where

In Table IV we also tabulate the wave-function
coefficients as determined from the EHT calcula-
tion at the equilibrium 26. 2% local Jahn-Teller
distortion configuration. In addition to the nitro-
gen and the (1, 1, 1) carbon, we include the values
for one each of the other nearest neighbors to the
nitrogen, (1, I, 1), and to the (1, 1, 1) carbon,
(2, 2, 0). Also given are the corresponding values
for large clusters where one or two extra shells of
carbon atoms have been added (47- and 71-atom
clusters, respectively). For these, the Jahn-
Teller configuration was kept the same as for the
35-carbon-atom cluster and the extra atoms sim-
ply placed at their normal lattice positions.

Comparing these values to those determined
from experiment, we note that the s character
tends to be underestimated somewhat. The p char-
acter, on the other hand, which accounts for most
of the wave function, is remarkably accurate. For
the 71-atom cluster, the agreement is extremely
good. This, of course, must be somewhat fortu-
itous. The experimental estimates themselves have
uncertainties in them. They rely, in particular,
on estimates of 1/2, (0) I and (~ )» calculated for
neutral isolated atoms and the appropriate value
for the atoms in the solid may be somewhat differ-
ent. Also, alternate methods for estimating these
quantities for the free atoms can differ by 20-
30%. 0'9' The important point to be learned from
Table IV is that the wave function estimated from
the present calculations is remarkably good. It
is highly localized on the nitrogen and the (1, 1, 1)
carbon neighbor with the major portion on the car-
bon.

The variation with the size of the cluster is in-
formative and gives us some idea of the limita-
tions imposed by the cluster size, The value on
the (1, 1, 1) carbon is relatively insensitive to the
size but the central nitrogen value appears to os-
cillate somewhat. Also we note that the rather
large value found for the (2, 2, 0) site for the 35-
atom cluster disappears as the next shell is added
and it is no longer a surface atom. From this we
conclude that the 35-atom cluster already does a
rather good job of reproducing the essential fea-
tures of the wave function. It can give erroneous
results for neighbors which are surface atoms but
otherwise the general character is clearly ac-
counted for.

The tendency to underestimate the s character
may result from a number of sources. In the first
place, our molecular orbitals are not orthogonal
to the 1s cores. Orthogonality would induce small
admixtures of jLs into the orbitals which in turn
could bring the predicted isotropic hyperfine inter-
action closer to that observed. In addition, there
is evidence from the band-structure calculations
of Sec. III B that our treatment of the g character
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2. Comparison to Electric Quadrupole Interaction

Also plotted in Fig. 7 is another monitor of the
wave functions afforded by the nuclear electric
quadrupole interaction. The quadrupole interac-
tion constant P is given by

P = Se q Q/4I (2I —1),
where I is the spin of the nucleus, eQ its nuclear
electric quadrupole moment, and eq the gradient
of the electric field at the nucleus. Like the mag-
netic hyperfine interaction, the magnitude of the
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FIG. 7. Properties of the nitrogen donor wave function
calculated for the 35-atom cluster and comparison with
experiment. Solid lines: calculated percentage 2p
character on the nitrogen (0, 0„0) and its (1, 1, 3.) carbon
neighbor vs distortion. Dashed line: percentage unbal-
anced 2p character for the total el.ectronic charge density
on the nitrogen atom. The experimental points were de-
rived from published EPB and ENDOR hyperfine data.

of the system is inherently less accurate. The en-
ergy at I'2, is the most in error (Table I), being
much too high in energy. This state is made up of
pure g orbitals on the atoms. This indicates that,
in our treatment, s character in the conduction
band is very unfavorable energywise and a state
made up from the conduction band will therefore
tend to have low g character. Future calculations
using EHT parameters adjusted to match the band
structure may overcome this difficulty.

Figure 7 shows how the p character (p~n)' on the
two principal atom sites varies as a function of the
distortion for the 35-atom cluster. We see that
the wave function leaves the nitrogen as the distor-
tion increases but is relatively constant on the
(1, 1, 1) carbon atom. Also plotted in Fig. 7 are the
experimentally estimated values of Table IV. They
have been plotted at the predicted 26. 2% distortion
position, where the agreement is seen to be good.

electric fieM gradient also receives its greatest
contribution from unbalanced charge density in the
orbitals of the atom itself. Unlike the magnetic
hyperfine interaction, however, to which only the
donor molecular orbital contributes, the electric
field gradient arises from the total electron densi-
ty and therefore will have contributions from all
occupied molecular orbitals.

The electric field gradient at the nitrogen nu-
cleus arising from the surrounding electronic
charge density p(r) is given by

eq= —e I (S cos'8 —l)~ ' p(r)dr, (16)

where 8 is the angle between r and the N-C (1,1, 1)
axis of symmetry. In terms nf the molecular ob-
bitals, this becomes

eq = —e Z (P, ~
(S cos 8 —1)/r t P, ) g, , (1V)

where z, is the occupancy of the ith molecular or-
bital. Retaining only the atomic orbitals on the
nitrogen atom, this leads directly to

eq~ = —~5 e (& '
)ap ~ (P~. PN, + PN, P~ + P'N, Ppr. )~( .

(la)
For a single p orbital (n, = 1, all others zero) point-
ing along the (ill ) direction (P,„„=P„,= P„,= 3 '~'),
this would give

(eqnr)p = ~s e (& )ap ~

Therefore,

eq~/(equal, = ~ (P~. P~, + Pg, Plv. + 4.P~.)~;
(20)

which expresses the field gradient conveniently in
terms of the fraction unbalanced p character of the
total electronic charge density on the atom. ~

Since all of the molecular-orbital coefficients are
determined for each cluster calculation, (20) can
be evaluated in straightforward fashion, and the
result is plotted in Fig. V. We see that although
the donor-state wave function is decreasing on the
nitrogen vs distortion (as evidence by the magnet-
ic hyperfine interaction), the electric field gradi-
ent is increasing.

The nitrogen quadrupole coupling constant has
been measured from ENDOR studies to bev
—3.971 MHz. To determine the electric field
gradient from this [Eq. (15)] the nitrogen quadru-
pole moment eg must be known. Unfortunately, it
is not known accurately, estimates ranging from97
+0.00V to'~+0. 02 (e&10 4 cm3). The problem
here is that quadrupole interactions for nitrogen
have only been observed in molecules or solids
and, as a result, extracting the quadrupole mo-
ment ultimately falls back again to estimating the
field gradient, essentially the same problem as we
have here. No good ab initio calculations have
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been performed to extract the quadrupole moment,
the estimates in the past being relatively crude.

Therefore, we attempt to circumvent this prob-
lem as follows: We first select a molecule of
known structure which has an environment for the
nitrogen somewhat similar to that in diamond and

for which the quadrupole interaction has been mea-
sured. For this we select hexamethylene tetra-
mine CSN4H» which has each nitrogen bonded to
three carbon atoms at approximately the tetrahe-
dral angles, a situation similar to that of the trigo-
nally distorted nitrogen in diamond. We then per-
form an EHT calculation for the molecule and cal-
culate the field gradient via (20). We obtain

+50—

+40—

+30—

+20—

co + l0—

(C~N4H»): e'qQ/(e'qg)~ = 0.903 . (21) 0—

With the measured value of P= —3.424 MHz for
this molecule in a solid, we obtain a value of (0

~(e qQ)q = —3. "I93 MHz (22)

for the quadrupole interaction per unbalanced p
electron.

Using this, the experimental value for nitrogen
in diamond of P = —3.974 MHz gives us 1.05 frac-
tion unbalanced p character. This point is plotted
in Fig. 7, also at the 26. 2% distortion position,
and the agreement is seen again to be good.

The value of the quadrupole interaction per un-
balanced p electron deduced from the CSN4H» cal-
culation [Eq. (22)] can in turn be used to estimate
the quadrupole moment via Egs. (19) and (15).
With the value for (~ ~)3~ used in Sec. IV 8 1, the
result is @=+0.0087x10 '4 cm2. This is in line
with other estimates9 ' 9'0 and indicates that
our EHT procedure is giving reasonable results.
However, we feel our procedure of using the same
EHT method for calibration on a separate molecule
and for the calculations of the nitrogen in diamond
makes the comparison in Fig. 7 actually more
meaningful than results in either of the individual
systems. It is, ineffect, amore accuratetest than
is indicated in the absolute accuracy of the quadru-
pole moment determination.

C. Effect of Cluster Size

We have already explored (Table IV) the effect
of enlarging the cluster size on the wave function
of the donor state. The effect of cluster size on
the energies of the molecular orbitals is shown
in Fig. 8. As in Fig. 2 for the pure carbon clus-
ter, we show the results starting from the central
nitrogen as each shell is added. The 26. 2% com-
bined trigonal distortion of the nitrogen and its
four nearest carbon neighbors was held fixed
throughout. It is apparent that the electrical level
position for the donor state is sensitive to the size
of the cluster, with the level position shifting -1
eV in going from. the 35- to the 47- and 71-atom

-20—

N +4 +16 +28 +34 +46 +70

FIG. 8. Energies of the one-electron MO's for a dia-
mond cluster containing nitrogen as a function of cluster
size, starting with the central nitrogen and adding suc-
cessive shells of carbon atoms up to and including the
sixth-nearest-neighbor shell (+70). The 26.2% trigonal
distortion of the nitrogen and its four nearest neighbors
was held fixed throughout.

clusters.
Figure 8 brings up a question. For the purposes

of locating the electrical level position of a defect
state in the gap, what should we take as the va-
lence-band edge? In Sec. IV A we referred to the
level position of the defect as measured from the
"valence-band edge of the cluster, " referring to
the uppermost "valence-band" state for the 35-
carbon-atom solution. The arguments of Sec.
IIIA, concerning the role of surface orbitals as ef-
fectively "matching" and extending the valence-band
states, gives a kind of rationale for this. Because
the surface states for these small clusters tend
not to be well "resolved" but rather spread through
the bulk, they really are bulk states and, as such,
contribute to an effective valence-band edge ener-
gy from which localized states in the bulk should
be measured. In particular, we have already
pointed out that the uppermost g2 state for the 35-
atom carbon cluster is spread uniformly through
the cluster. On the other hand, it is clear that
as the cluster size increases, the defect level will
eventually approach its value for the infinite crys-
tal and we should begin to measure its position



B. P. MESSMER AND G. D. WATKINS

TABLE V. Electrical level position (eV) for the nitro-
gen donor state vs cluster size. The valence-band edge
is defined as (a) that of the cluster (E„P or (b) that of the
infinite crystal {E ).

No. of atoms
in cluster

(a) E-E
(b) Z- Z„„

2.26 2.87
1.23 3.02

2.27
2.92

2.21 1.25 0.76
2.80 1.48 1.70

from the "true" valence-band edge -8.73 eV de-
termined from the band-structure calculation.

It is obviously difficult to define a simple un-
ambiguous procedure for handling this. At what
size should the cluster be considered "small" and
the "valence-band edge" of the cluster used, and
at what si.ze should it be considered large and the
"true" valence-band edge be used'P Table V illus-
trates this problem. In the table we show the level
position defined in both ways vs the size of the
cluster.

Table V suggests that the correct infinite clus-
ter solution is closer to E~+1.7 eV. We interpret
this to confirm that a somewhat better way to treat
the 35-atom result alone is to define, as we have
done in previous sections, the highest molecular
orbital below the forbidden gap as the valence-band
edge and measure the electrical levels from it. In
doing this, the result is F~+2. 2 eV, which is
closer to the larger cluster result.

D. Elastic Properties and Charge Distribution

We have not discussed symmetric "breathing"
modes of relaxation around the nitrogen. These
may also be important. If we start with the nitro-
gen in the original T„position (no trigonal distor-
tion) and allow the four nearest carbon neighbors
to relax symmetrically we find that the total EHT
energy lowers dramatically as they relax outward.
This is shown in the last column of Table VI. It
is still decreasing at 30% expansion.

We do not trust this result for the following rea-
son: In the table is the result of a Mulliken charge
population analysis averaged over each shell of the
cluster. We note that the electronic charge on the
central nitrogen is increasing rapidly with distor-
tion, having increased by -28 at 30/& distortion.
As we have discussed earlier in Sec. IIID, this is
a warning that EHT is giving erroneous results.
Because EHT is not a self-consistent solution,
there is no mechanism to prevent charge from
building up on an atom. In the calculation, this
lowering of energy comes from the fact that charge
is being transferred to the nitrogen which has a
lower ionization potential. Although this tendency
is a real phenomenon and undoubtedly occurs, in
the absence of a self-consistent treatment which

t = (1/2s) (f/~i)'", (23)

where the effective mass M for the mode is given
by

J(f=(v'„~, + v„'~„)/(v„'+ v„') . (24)

Here Mc and M„are the masses of the carbon and
nitrogen atoms, respectively. With the values
given in Ta,ble III for V~ and V„', thi. s gives 1110
cm ' for the vibrational frequency.

Experimentally, a broad band with maximum at
1130 cm has been identified with isolated nitro-
gen. 'o ' The close agreement with our value is
striking and serves as additional confirmation that
the proper elastic properties are being reproduced.

We have also estimated a vibrational frequency
associated with motion of the nitrogen perpendicu-
lar to this axis. For this we displace the nitrogen
perpendicular to the axis determining a force con-
stant k-25 eV/A'. With M= M„, this indicates a
perpendicular vibration frequency of 690 cm '. A
broad weaker band at 850 cm ~ has also been ob-
served in type Ib diamonds that can be identified
with isolated nitrogen. ' 3' Qur results suggest
that this may be associated with modes involving
the perpendicular vibration of the nitrogen.

Both of these bands are very broad because they
are "resonant modes, " being below the Baman fre-
quency for diamond (1332 cm '). The modes that

gives a restoring force to oppose this, the results
cannot be trusted. We conclude therefore that A,
relaxa, tion modes may be important but that the
EHT treatment cannot handle them in this case.
We have, therefore, not included them in our cal-
cula.tions.

No such difficulty apparently occurs for the
other modes as can also be seen in Table VI. For
the trigonal mode the charge on the central nitro-
gen is relatively constant. A Mulliken charge-
population analysis serves therefore as a simple
test as to whether difficulties are being encountered
as a result of the differences in electronegativity
of the atoms in the cluster.

Another confirmation that the elastic properties
ot' modes (other than the A, mode) are realistic
comes from calculating the vibrational frequency
of the nitrogen at the equilibrium Jahn-Teller dis-
tortion configuration. This in turn can be com-
pared to the experimentally observed infrared ab-
sorption spectrum that has been associated with
isolated nitrogen in diamond. For the vibration
parallel to the (111)Jahn-Teller axis, we use the
Jahn-Teller mode Q„which from Table III and

Eg. (10) involves mostly nitrogen motion (-75%).
From the curvature of E„, vs distortion at the
minimum-energy point (Fig. 5), the force constant
is determined to be 0 = 61. 5 eV/A . The vibration-
al frequency in turn is given by
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TABLE UI. Charge distribution for various 35-atom-cluster calculations. The total charge resulting from a Mulli-
ken charge-population analysis averaged over the atoms of each successive shell is shown in brackets. The unbracketed
value is the departure from "uniform, " as defined in the text.

System

35C

Distortion

None

0, 0, 0

—0.1452
(4.1452)

+ 0.0192
(3.9808)

—0.0332
t5. 0332)

+ 0.0618
(4. 9382)

Typical atom site of each shell
1,1,1 2, 2, 0 3, 1, 1 4, 0, 0

—0.0459
(6.0459)

Total
energy

(eV)

34C+ N

34C+N

34C+ N

34C+N

34C+N

34C+ N

34C+U

None

10% trig.

20% trig.

30% trig.

+5% hydr.

+10% hydr.

+ 30% hydr.

None

+13% hydr.

—0.7314
(5.7314)

—0.7396

—0.7586

—0.7759

—1.0232

—1.3537

-2.6313

+ 0.1489
(3.8511)

+ 0.1396

+ 0.1263

+ 0.1071

+ 0.1656

+ 0.1798

+ 0.0448

—0.4910

—0.5349

—0.0266
(5.0266)

—0.0239

-0.0177

—0.0101

-0.0076

+0.0193

+0.1679

+0.1113

+0.1389

+ 0.0619
(4.9381)

+ 0.0625

+ 0.0622

+ 0.0621

+ 0.0592

+ G. 0563

+ 0.0558

+0.0739

+ 0.0608

—0.0480
(6.0480)

—0.0469

—0.0466

—0.0462

—0.0465

—0.0454

—0.0386

—0.0430

—0.0428

—3.10

—4.73

—4. 91

—2.56

—4. 69

—11.81

we calculate are therefore broadened by coupling
to allowed lattice modes. Another interesting fea-
ture of the observed infrared spectrum is a weak
but very sharp band at 1347 cm, which is
above the Baman frequency and appears to corre-
late with nitrogen content. This is a surprising
result because the heavier nitrogen atom would not
normally be expected to give rise to a true local
mode with a frequency higher than the highest fre-
quency available for the carbon atoms in the per-
fect lattice. We have not attempted to identify such
a mode specifically in our calculations. However,
we believe our general results provide a possible
explanation: Because of the large Jahn- Teller dis-
tortion, the local interatomic separations are sub-
stantially altered leading to substantially modified
local force constants. Some will be increased,
some decreased. A local vibration, primarily
carbon in character, but with increased force con. -
stants resulting from the distortion could there-
fore emerge as a local mode.

Finally, for completeness, let us make one
further observation regarding the force constants
associated with the local Jahn-Teller modes of
distortion. In Sec. IVA, we determined both the
Jahn-Teller coupling coefficients Vr and the force
constants k~ at the undistorted T„position. These
values mere given in Table III. Also shown in the
table are the force constants determined for the
identical modes in the 35-carbon-atom cluster,
i.e. , mhen the central atom is carbon. We note
that the presence of nitrogen has altered the force
constants considerably for this undistorted config-
uration. Our previous arguments concerning the

constancy of the charge on the atoms (Table VI)
would suggest that EHT is not giving us difficulty
here and that the effect may be real. However,
there is no way of checking it experimentally. All
of our experimental checks (wave functions, ener-
gy-level positions, vibrational frequencies, etc. )
refer to the equilibrium distorted configuration and
there they seem to confirm that the final conclu-
sions we are led to using EHT are essentially cor-
rect.

V. LATTICE VACANCY IN DIAMOND

Another logical defect to treat with the EHT ap-
proach is the lattice vacancy. For this, one sim-
ply removes the central atom of the cluster and
solves the set of Eqs. (3). This is in many re-
spects an ideal problem for EHT in that all atoms
are identical and problems associated with partial
ionicity and charge unbalance are not involved.
We have previously published results of such a
calculation for the 35-atom cluster. In this sec-
tion, we will summarize some of the more impor-
tant conclusions of that work. We mill also pre-
sent some nem results mhich allow an improved
perspective on some aspects of the problem.

The principal result of the 35-atom cluster cal-
culation was that a localized level of ta symmetry
is produced in the forbidden gap when the central
atom is removed. The level was found to be close
to the valence-band edge with the mave function
primarily localized on the four carbon atoms neigh-
boring the vacancy. This result is shomn in Fig.
9 for the levels near the valence-band edge. In
Fig. 9 we also show new results for larger cluster
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sizes. We see that, similar to the case of the ni-
trogen donor (Sec. IV), the exa.ct position of this
level is sensitive to the cluster size.

This, in turn, leads to the same degree of
ambiguity in defining the level position with re-
spect to the band edges as was found for the nitro-
gen donor. The level position defined with re-
spect to both the cluster-valence-band edge and
that of the infinite crystal edge is given in Ta-
ble VII.

The degree of localization also changes some-
what vs cluster size as can be seen from the mo-
lecular-orbital coefficients ~~ and P,. for the lo-
calized level i.n Table VII. (The value in the pa-
rentheses in Fig. 9 is Ryyg o.goal +P1y1 &

2 2

of the total localization on each of the nearest car-
bon atoms. ) However, the essential features
clearly remain the same: In all cases, a partially
filled t2 level (occupied by two electrons for the
neutral state of the vacancy) is in the gap, close to
the valence-band edge and the wave function re-
mains highly concentrated on the nearest-neighbor
carbon atoms.

[In Fig. 9, for clarity, we have shown only the

FIGo 9 ~ Qf (dashed lines) and t2 (solid lines) states
near the top of the valence-band edge calculated for dia-
mond clusters containing a central atom vacancy. Shown
are clusters containing (a) four, (b) five, and (c) six
neighbor shells. The cluster in (d) is a 70-atom cluster
constructed to have only (111)surfaces, see Ref. 58. In
(e) an approximate location of the Coulson —Kearsley
"defect molecule" states is indicated as inferred from
(a)—(d). The numbers shown in brackets are the sum of
the molecular wave-function coefficients on a (1,1, 1)
nearest-neighbor atom and serve as a measure of the
localization of the state.

8&=cos '
P,, 3 P, ,

TABLE VII. Properties of the T2 localized state of the
unrelaxed vacancy vs cluster size. The wave-function
coefficients are given for the nearest (111) and next-
nearest (2, 2, 0) neighbors to the vacancy. 8~&& is the
"tilt" of the dangling orbitals (see text), and the defect
level position (eV) is given both with respect to the
valence-band edge of the cluster (E„,) and the infinite
crystal {E„„).

No. of atoms
in cluster

2

2
P»~

&220

2
P»o

34

0.010

0.189

0.001

0.048

46

0.006

0.154

0.000

0.006

70

0.005

0.098

0.000

0.013

70+ 8

0.005

0.130

0.000

0.011

+5.4' +18.7' +6.7'

0.17
1.12

E Evc 1 42
E —E~ 2.01

Cluster with (111) surfaces, see Ref. 58.

0.58
1.06

a& and t, levels. Since the central atom functions
are of a~(2s) and t~(2p) symmetry, their removal
can only alter a& and t& levels of the cluster. It is
therefore sufficient to consider only these levels,
for only these are related to the defect. j

Lattice relaxations of the four neighboring car-
bon atoms were also considered. A symmetric A,
outward relaxation oI 12% '0' was predicted. (Here
the charge on the atoms remained relatively unaf-
fected, signalling no difficulty with the A, breath-
ing mode, see Sec. IV D and Table VI. ) Jahn-
Teller coupling coefficients to the local E and T~

distortion modes were also estimated which indi-
cated Jahn-Teller energies of - —,

' eV for the neu-
tral state of the vacancy. However, a complex
nonlinear coupling to the various modes seemed to
be indicated and whether the lowest energy con-
figuration involved a tetragonal or trigonal mode
was not determined.

Another interesting feature concerning the t,
defect wave function was that the molecular-orbital
coefficients for the p functions (p,.„, P... and p,,)
on a given near-neighbor atom (j) were not equal.
In particular, for the wave function that transforms
as Iz„ the magnitude of P,, was greater than that
for P,.„or P,, This means that if we view the lo-
calized state as made up of "dangling" orbitals
from the neighboring atoms, these orbitals are not
pointing into the center of the vacancy (the usual
sps physical chemist's concept) but rather are
tilted somewhat toward the z direction. For the
atom in the (1, 1, 1) position, this angle is given by
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TABLE VID. Dependence of the tilt (g~~~) of the
"dangling bonds" of the near neighbors (1,1,1) to the
vacancy on the localized-defect electrical level position.
The level position was altered by changing the ionization
potentials I„on the four (1,1,1) atoms in a 34-atom-clus-
ter calculation.

I,(111)
(eV) W„(111)

(ev)

—1.0
0

+1.0

a(z-z„)
(ev)2p

—11.67
—10.67
—9.67

-20.44
19

-18.44

+6.8'
+5 4'
+3.9'

—0.31
0

+0.39

For the 35-atom cluster this was found to be
+ 5.4 . IQ TRble VII we give the corresponding
angle for the larger cluster results. The actual
value varies somewhat vs cluster size but again
the existence of the ti.lt, plus its magnitude and
sign, seem to be independent of the elustex' size.
%6 tRke this Rs evidence that this 18 Qot RQ artifact
of the finite size of.the cluster or its surfaces, but
rather an intrinsic feature of the defect.

In our previous publication, 4 we speculated that
the origin of the tilt was the close proximity of
the level to the valence-band edge. The valence-
band edge at I'», is pure p on the atom sites and
the corresponding symmetry orbital that ean mix
with the localized t~, defect level is therefore pure
p, on the atoms. Since this orbital displays a.

+ 64.7' tilt with respect to the (ill ) dangling bond
directions, small admixtures into the defect wave
function can serve to provide the tilt.

A test of this explanation can be obtained by
shifting the defect level with respect to the band
edges Rnd monitoring the tilt. One way to accom-
plish this is simply to change the ionization poten-
tials (I ) slightly on the four atoms surrounding the
vacancy. The results of such a calculation are
given in Table VIII. The correlation of the tilt
with level position Rpp6ax'8 to confirm thi8 inter-
pretation. Much of. the variation vs cluster size in
Table VII probably finds explanation simply in the
change of electrical level position vs size.

A. Comparison vrith Experiment

A direct, comparison with experiment is not pos-
sible in that an unambiguous identi, fication of the
lattice VRcRncy in diamond does Qot exist. On
the other hand, in silicon a great deal has been
learned about the lattice vacancy through EPR
studies ' ' Rnd a comparison with the results
in this diamond lattice material is instructive.

In silicon, the EPB results indicate that the
eleetx'ical level position associated with the neutral
state of the vacancy is very close to the valence-
band edge. EPR in the singly ionized state (V')

has been observed'0' and reveals a wave function
which has been analyzed to have 66Po (g, '= 0. l66)
on the four nearest neighbors. A static tetragonal
Jahn-Teller distortion is observed in the EPR
spectrum. The Si '9 hyperfine interactions reveal
a tilt of the neighbor atom orbitals of g =+'7. 2
from the (ill ) direction.

This agreement with the calculated tilt of the
neighbor ing atom orbitR18 is pRx'ticulRx'ly remark-
able in that prior to these calculations, no satis-
factory explanation for the observed tilt had been
proposed. The origin was a mystery, although
it, had been suggested that it might result from
1Rrge atomic relaxations RssociRted with the JRhn-
Teller distortion. Our calculations here demon-
strate that it has nothing at all to do with the dis-
tortion but rather is a sensitive monitor of the
proximity of the state to the valence-band edge.
Consistent with this, V and other vacancy-asso-
ciated centers which have been observed by
EPBS' '~ are farther removed from the valence-
band edge and display negligible tilt.

The magnitude of the Jahn-T60er effect has
been, estimated directly from EPB studies by ana-
lyzing the response of the silicon vacancy to ex-
ternally applied uniaxial stress. ~ From these stud-
ies the Jahn-Teller stabilization energy has been
estimated to be -1.5 eV for the neutral state. ~'6

This is to be compared with the value -—,
' eV esti-

mated from our 35-atom-cluster calculations in
diamond.

B. Comparison to Other Theoretical Approaches

In the "defect-molecule" approach of Coulson
and Kearsley, 2' and Yamaguchiaa (CKY), a single
sp3 dangling bond pointing into the vacancy from
each of the four neighboring atoms formed the
basis for a molecular-orbital treatment of the va-
cancy in diamond. This leads immediately to four
one-electron molecular orbitals, one of g~ symme-
try, and the other three forming a triply degener-
ate g~ state, These molecular orbitals were then
used by these authors Rs R basis for R mRQy-elec-
tron conf igurational interaction treatment.

In our previous treatment, 4~ we attempted to
make a connection between the CKY "defect-mole-
cule" approach and the large cluster results. For
this purpose, we identified the ta and g& states of
the 35-atom cluster which are just above the va-
lence-band edge in Fig. 9 with the corresponding
one electron "defect-molecule" states. The sepa-
ration between the two states (l. 6 eV for the unre-
laxed vacancy, Fig. 9) was observed to be consid-
erab]y less than the corresponding splitting de-
duced in the CKY model (-6-10 eV) and we used
this as an indication of the effect of delocalization
of the g& and t& states in the solid.

This has been subsequently criticized by I ark-
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ins ' who found, in extending our treatment to 41-
and 46-atom clusters, that such an identification
appears to break down, particularly for the a,
state. His point is well taken, as can be seen in

Fig. 9 for the larger clusters as well. There are
really many t2 and a& states in the cluster and
more than one of each have substantial localized
character. In Fig. 9 we have indicated in paren-
theses the localization (q,.') for those a& and fz

states which have a large value on the nearest
neighbors. All others in the cluster are signifi-
cantly smaller. A simple 1:1 connection is ob-
viously not possible.

A connection, however, is highly desirable in
order to be able to relate the two approaches. Fig-
ure 9 suggests that a more meaningful way to make
this connection is to define an "average" position
for the localized t~ and a& character of the cluster
states. The progression as the cluster size in-
creases indicates that such an average energy for
the localized t2 character mould be very close to
the valence-band edge at - —8. 5 eV and the corre-
sponding average a& energy would be - —12 eV.
This is also shown in the figure. The effective
splitting of these states would therefore seem to
be -3.5-4. 0 eV, a value somewhat closer to the
CKY result.

With this connection, it. is instructive to visual-
ize the defect as being constructed in the following
simple way: First remove the central atom and
construct the highly localized "defect molecule"' of
CKY, keeping the electronic structure of the rest
of the lattice unchanged. Our preceding arguments
suggest that the localized t, state will be close to
the valence-band edge at - —8. 5 eV. The a~ state
in turn will be --12 eV. We now let the electronic
states of the rest of the lattice readjust. Ex-
pressed in perturbation theory language, the near-
by t~ and a, states of the cluster will interact and
admix with the corresponding CKY states. The
"defect molecule" will tend to spill out into the
cluster distributing between the various nearby t~

and a& cluster states. The t~ state that has been
pushed up into the forbidden gap becomes a true
"localized" state in that it is detached from the
valence band. It can be considered as deriving
from the original CKY t2 state as modified by its
interaction with the cluster t~ states. It retains
only part of its original near-neighbor-only char-
acter, however. The remainder of the localized
character reemerges in the states with which it
has interacted. The extra t2 states in Fig. 9 which
also display localized character are, therefore,
simply a manifestation of the delocalization of the
defect orbital in the gap. For the a& state, there
is no true "localized" state in the usual sense of the
word, the states with significant localization being
"resonant" states within the band.

TABLE IX. Relative total EHT energies (eV) deter-
mined in a 34-atom-cluster calculation for configurations
involved in vacancy migration.

Vacancy
position

(a)
172 electrons

(b)
136 electrons

Saddle
configuration

Average
mlgr ation
barrier

—1.0

+2.4

2.9

+1.9

3.2

In summary, our cluster calculations can be in-
terpreted to define an approximate location with
respect to the perfect-lattice states for the simple
one-electrona& and t2 "defect molecule" states of
CKY, as shown in Fig. 9. The crystal-field split-
ting between the two states is - 3. 5-4. 0 eV, which
is somewhat smaller but comparable to that esti-
mated by CKY (-6-10 eV). Delocalization of these
states occurs due to interaction with the perfect-
lattice states. (Approximately one-half of the lo-
calized CKY state remains for the t& defect state
in the gap. ) Since electron-electron interactions
originate from terms that reflect the square of
electron density, such delocalization should sig-
nificantly reduce configurational interaction ef-
fects. As indicated in our previous paper, this
suggests that these terms may have been signifi-
cantly overestimated in the CKY treatment.

C. Migration Energy

A rough estimate of the migration energy for the
vacancy can be obtained by monitoring the total
EHT energy of the cluster as mas done by Moore
and Carlson for the graphite lattice. 39 For this we
have calculated the total energy for the 34-atom
cluster (a) with the vacancy in the center (0, 0, 0)
position, (b) with the vacancy in the (1, 1, 1) posi-
tion, and (c) with a carbon atom placed in the

(—,', —,', —,') position, halfway between vacancies at both
the (0, 0, 0) and (1, 1, 1) sites. This last config-
uration was used to simulate the saddle point of the
migration. Relaxations of the neighboring atoms
were not treated.

The results are shown in Table IX. Our normal
recipe for filling all of the cluster valence and sur-
face states (IV2 electrons) gives the result in col-
umn (a). If the cluster were infinite, the value for
the (1, 1, 1) or (0, 0, 0) site would be identical. We
see instead that the (1, 1, 1) vacancy site is lower
in energy by 1 eV, an indication that surfaces are
giving us some trouble. We note that filling the
levels to make the cluster neutral (136 electrons),
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column (b), reverses the order and the difference
is twice as great. This at lea.st serves to confirm
our arguments of Sec. IIIC that the elastic arti-
facts of the surfaces are reduced by our proce-
dure. "~ However, they are still clearly evident
and larger clusters with better termination of the
surfaces would be required before accurate results
could be expected.

It is interesting to note, however, that if we de-
fine an average barrier height between the (0, 0, 0)
and (1, 1, 1) positions it is approximately 3.0 eV
in either case. We, therefore, take this value as
an indication of the magnitude that a more detailed
calculation would give.

No direct experimental information is available
for this quantity in diamond. Other theoretical
estimates have given 1.85'6 and 2.02 eV." The
EHT cluster result is, therefore, not out of line
with these other estimates. However, our experi-
ence in silicon where the experimental value of the
migration activation energy' (0.38 eV) is much
smaller than the corresponding estimates by these
same approaches (1.09'8 and 1.06 eV "8) suggests
a word of caution here. It remains to be seen
whether the EHT cluster approach (properly ex-
panded to avoid surface effects and to include lat-
tice relaxations) can be sufficiently accurate to give
meaningful results for this difficult problem.

IV. SUMMARY AND CONCLUSIONS

In this paper we have described a possible theo-
retical approach to the problem of the deep level in
a semiconductor using molecular-orbital techniques
on a large cluster of host atoms surrounding the
defect. As examples we have treated the nitrogen
donor and the lattice vacancy in diamond in some
detail. In these examples we have used the sim-
plest representation of molecular-orbital theory,
namely, extended Huckel theory.

We interpret these results to indicate that this
approach is highly promising. It appears to supply
all of the essential ingredients for a proper theo-
retical treatment, as outlined in Sec. I.

(a) If the cluster is large enough, the electrical
level position of a. localized defect state can be
estimated with respect to the band edges. Our re-
sults demonstrate that a cluster of 35 atoms is al-
ready large enough to begin to give a meaningful
connection to the states of the infinite crystal.

(b) Wave functions for the localized defect
states are produced in a form which allows direct
comparison with experimental information, e. g. ,
EPR and ENDOR results. The examples we have
given demonstrate that the wave functions so pro-
duced can be highly realistic.

(c) Elastic forces are implicitly included allow-
ing local relaxation around the defect to be explored
as an integral part of the treatment. The large

Jahn-Teller distortion predicted for nitrogen, and
confirmed by experiment, serves as a dramatic
example of the necessity of including these relaxa-
tions in any treatment of the deep level problem.
The complete character of the defect is changed as
a result-the wave function, the eleetrieal level
position.

(d) It is a practical computational scheme.
Clusters of 35 atoms can be solved in a few min-
utes on a modern high-speed computer.

The examples given were ones in which compari-
son with experiment could be made. This is an im-
portant role of theory-to make contact with and
explain experimental results. Another important
role of theory is to be able to supply insight and
guidance in areas where no experimental informa-
tion exists. One example of such an area is the
complete lack of direct experimental information
on the properties of the host interstitial atom in
any crystal of the diamond structure (C, Si, Ge).
Recently, the MO cluster approach has also been
applied to this problem in diamond with the inter-
esting conclusion that highly mobile "interstitial-
cy" configurations may be the most stable. 48 A

charge-dependent "athermal" migration mechan-
ism ~ along the lines recently proposed by Bour-
goin' was suggested by the calculations. This .

may serve to explain much of the mystery as to
why isolated interstitials have not been detected in
radiation damage experiments. This work, which
includes calculations on some interstitial impuri-
ties as well, ' ' will be treated in detail in a sub-
sequent publication. '~ Substitutional boron44 and
other substitutional impurities have also been
treated. Because of the ease with which the calcu-
lation can be performed, a. wide variety of defect
problems in the elemental semiconductors can now

be explored by this method.
Let us now briefly review some of the limitations

of the approach, how they might be avoided, and
possible future extensions of the method. For this
it is convenient to separate two aspects of the ap-
proach. One is the model itself-the finite cluster,
problems of surfaces, etc. The other is the par-
ticular molecular- orbital technique used.

First consider the model. It is clear that larger
clusters would be desirable. Unfortunately, how-
ever, the computing time increases rapidly as the
number of atoms is increased. A considerable
gain in this regard can be achieved by taking ad-
vantage of symmetry, i.e. , factoring the secular
equation first according to the irreducible repre-
sentations of the symmetry group, and then solving
each representation separately. We have not cho-
sen to do this in this paper, preferring to retain
the flexibility for handling arbitrary distortions.
However, for very large clusters this would be-
come mandatory. For instance, Shimizu and
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Minami 3 have recently treated a cluster of 275
atoms by considering only the A, states in an
I.CAO treatment for S' in silicon.

However, no matter how large a cluster one
takes, surfaces will still exist and are a nuisance.
%'e believe therefore that the best solution is to
remove them completely by providing periodic
boundary conditions for the cluster. Vfe are cur-
rently making such calculations on a 64-atom unit
cell. The advantages are considerable. In the
absence of a defect, the states of the cluster now

have a direct one-to-one connection with the in-
finite-band states (they are, in fact, the infinite-
crystal states). Upon introducing a defect, the
local (and resonant) states of the defect can now be
conveniently related to the perfect-lattice states
from which they are constructed, " as viewed
from the conventional solid-state approach such as
Koster and Slater, ' Bennemann, ' etc. Adding peri-
odic boundary conditions therefore serves to com-
plete the bridge between the two extreme approach-
es —the "loca,l" and "infinite-crystal" starting
points —described in Sec. I. This extension thus
serves to remove most of the difficulties of the
finite cluster and should be used for future calcu-
lations where possible.

We now consider the molecular-orbital tech-
nique. In this paper we have considered only ex-
tended Huckel theory, which is a simple non-self-
consistent semiempirical theory. Our results in-
dicate that it does a rather good job in the elemen-
tal semiconductor diamond, where self-consisten-

cy is not important. As mentioned in the text,
adjustment of the parameters to match selected
symmetry points of the band structure prior to the
defect calculations represents a promising exten-
sion of the method„and we are currently employ-
ing this approach for problen ' in diamond and
silicon.

For partially ionic crystals, however, such as
the III-V and D-VI compounds, EHT should prob-
ably not be used, '~ and a self-consistent treatment
would be required. This is also true for studying
charged states of defects in the elemental semi-
conductors. There are several molecular-orbital
techniques which may be useful here. A promising
new one is the self-consistent-field-scattered-
wave method of Johnson' which employs Slater's
X~ scheme, 6 It is currently being applied to the
17-atom-cluster problem (a transition element in
ZnS) considered by Birman~s and Walter and Bir-
man3~ and is yielding encouraging results. ' ~

Finally, either with EHT or more elaborate
molecular-orbital techniques, the cluster approach
that we have described is still a one-electron the-
ory and as such gives no direct information about
the importance of electronic correlations. The
importance of such effects in localized defects is
one of current controversy, ' although experiment
has been interpreted '6' to indicate that they are
not important. Our calculated wave functions
could be used as a starting point for a configura-
tional interaction treatment to estimate the impor-
tance of electronic correlation.
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