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ments of the energy level and lifetime of the elec-
tron in state 1.
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A new type of localized vibrational mode is shown to occur near donors and acceptors in polar

semiconductors. In general, the mode appears in a solid with infrared-active lattice vibrations when an

impurity center with appropriate electronic transition energies is introduced by doping. The

polarizability of the center perturbs the dielectric function locally, shifting the longitudinal-optic phonon.

Infrared-reflection data showing the new localized mode are presented for GaP and GaAs. A
macroscopic Clausius —Mosotti-type theory is developed for the effective dielectric function of the solid

including the spheres. This theory yields good fits to the Raman data of Dean et al. and to the

present infrared data,

I. INTRODUCTION

Though localized vibrational modes have been
studied experimentally for only ten years, a great
deal of information has been accumulated for
modes in almost every type of crystal system. '/he

most common situation which leads to a localized
mode occurs when one of the host atoms of a crys-
tal is replaced by an impurity atom of ligher
mass. '3 With this replacement there is usually a
new vibrational mode of the crystal with frequepcy
above that of all host-lattice modes, and whosg
eigenvector has most of its amplitude on the i~-
purity atom. The model for such a mode is rpl-
croscopic, involving the mass change at the im-
purity site and possibly force-constant changes for
the bonds linking the impurity to the neighboring
host atoms. In contrast to this microscopic type
of local mode, this payer presents a theoretical
and experimental study of a localized made involv-
ing a group of host atoms near an impurity. The
group of atoms is influenced by the presence of an
impurity because of its special electronic proper-
ties.

Dean et a/. were the first to observe this new type
of localized vibrational mode. They observed the
mode in the Raman spectrum of donor impurities
in gallium phosphide. The same modes have re-
cently been detected by infrared techniques. In the
present paper we study the absorption of these
modes by infrared ref lectivity and present a macro-
scopic dielectric theory for their frequency and line
shape. In addition, the Raman scattering strength
is derived from the theory and compared with the
Raman spectra. For either the infrared or Raman
activity of this type of localized mode we adopt a
point of view quite different from that of the micro-
scopic defect model. As an example consider the
donor sulfur (S) replacing a P ion in Gap. Such a
replacement might lead to a localized mode of the
microscopic type though it has not yet been observed.
Such a mode need not concern us further. If the
GaP crystal is cooled, the extra electron of the donor
is no longer thermally excited into the canduction
band. It resides in the 15level of the donor. This
bound electron is polarizable and thus changes the
dielectric function of the medium in its vicinity. It
is this extra polarizability, which we describe mac-
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rose oplc yq w 1
' all hich causes the new localized mode.

e recall that the bulk longitudinal-optic (LO) p o-
where the dielectricnon occurs at the frequency +LO w ere e i

j of GaP is zero. Near the bound electronfunction & g~ j o a is z

&() is oc1 Rll perturbed and has its zero at a new

ichfrequency. s s1Thi 'tuation leads to new modes whic
are loca 1ze o1 1' d or bound to the donor atom. ' or

loca izedall of the cases studied to date these loca ize
ss of the donormodes lie just below ~Lo regardless o

DlRSS. This behavior is in distinct contrast to
1 1 1-mode theories of the microscopic

type. Such theories would predict a strong epen-
dence on mass wi oth some of the modes occurring

e . In Sec. II the ma, croscopic theory ofLo'
the new localized modes is given in e
t' III gives the experimental detaitails. In Sec. P7
the results and comparisons with the macroscopic
theory are presented.

II. DIELECTRIC SPHERE MODEL

A. Effective Dielectric Function

i ure 1 shows the model to be considered. Aigure s ows
bul medium with dielectric function q,~, contains
spherical regions w ic1 s which have a different dielectric
function q, ~~j. n e c'j. I the case of donors in GaP we can
take &,jc~j to e e,( ) b ( ) plus a term due to the bound

n ( g. The derivatl. on below is pe1"fectlyelectron q, q~~j. e
rm ofgeneral and does not depend on the exact form o

In addition to q anand & we specify the radius
r, of the spheres and the volume density of spheres

The pro ucd t N 3 is assumed to be much less
than 1 so that the spheres do not touch or overlap.

The actual geometrical distribution of spheres
will be needed in evaluating the local iefield. %e
will use the Lorentz local field which is appropriate

for the random is r1d d tribution which should obtain in
most cRses 0 in el"f ' t rest Two other assumptions
are needed regarding z, and N, of the spheres.
Since we are using macroroscopic dielectric functions
each dielectric sphere should contain many ions.
Qn the other hand, we wish to describe the entire
so 1lid b an effective dielectric function which in-
cludes the effects of the spheres. This feature re-

th t ' the frequency region of interest
ur the(where resonances or bound modes occur), e

sphere radius an d the sphere separation must be
iation fieldmuch less than a wavelength A. of the radiation ie

in the dielectric. Ne may list a,ll the above in-
equalities as

~«r, «3(1/iV, )'"« l,
where ~ is the primitive cell length.

To construe e it th dielectric function of the solid
shown in Fig,, 1 we first note that only relative di-

in roblems of thiselectric functions are important in pro
t e.s Figure 1 then goes over to Fig. 2 wheretype. igu

reside in aheres of dielectric function q = q,
medium with dielectric function

as a as of po-T t' g the spheres in Fig. 2 as a g p-rea in
result forlarizable molecules we use the standard resu

the dielectric function of such R gas,

4m'N, (y
(3). =1+—

41-;~N,~

where we have made use of the I orentz field and
the olarizability of each sphere arising rom~ ls epo

its ipo e momo' 1. oment p induced by the loca ie.

(3)& =P/+ioc .
the s heres have dielectric function & we

can evaluate their polarization P and hence eir
dipole moment directly:

P =-- (Zi„—3m. P) .
4m

FIG. 1. Moe o ad l f a solid with dielectric constant &~
and embedded spheres with dielectric constant &~.

The second term in the parentheses is the depo-
larizing field in a sphere. Since

(5)P=Psmr',

we find from Eqs. (3)—(5) that

4m%, n =N, ( ,'mr', ) [3(~ —1—)/(~+2)) . (6

The first two factors on the right-hand side define
a dimensionless filling factor

(7)f=-N,&~~', .

Substitution of Eq. (6) in Eq. (2) gives the effective
dielectric function of the system as

3(~ -1)f
(8)&+2 —(& —1)f

For f-0 (no spheres), c,~ reverts to 1 as ex-
pected. For small but finite f the medium has a
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FIG. 2. Simplified model with spheres having the reduced
dielectric constant e in a vacuum.

transverse-optic (TO) mode at the pole of e, giv-
en by

described below, Eg. (13) has two solutions at two
distinct frequencies, both localized, one of which
is phononlike and one electronlike.

B. No/el Calculations

To illustrate the localized phonon resonance the
effective dielectric function g,«may be calculated
using assumed forms for e, and c„in Eq. (12)
above. Taking the case of donors in GaP we
choose E to be the dielectric function of insulating
(undoped) GaP. At low temperatures the donor
electrons will reside in their lowest energy level
which is localized on the donor impurity. It is
hnown that the radius of a donor is about 10 g.
%ithin a sphere of this radius there are 104 Qa-P
ion pairs and the first part of the inequality [Eq.
(1)] is fairly well satisfied. At low temperatures
the electrons can be described by a dielectric func-
tion within the spheres (c,) which is the sum of c„
(due to the Ga-P ions) plus a resonance corre-
sponding to the allowed donor transition 1$-2P.
For the present calculation we replace all higher-

and a LO mode at the zero given by

E = —2+6f . (10)

In Eqs. (9) and (10) we have dropped terms of or-
der f~. In the small f limit these two modes co-
alesce to the frequency where

This is the usual resonance condition for an iso-
lated sphere in a vacuum. The resonance in z,~
given by Eq. (11) is in fact a localized mode bound
to the sphere since at the frequency where Eq. (II)
obtains, a vanishingly small driving field causes a
polarization field which is a sum of classical di-
pole fields each localized on a sphere. Figure 3
shows this new mode for a region of the dielectric
much smaller than a wavelength.

To obtain the general result which applies to
Fig. 1, Eq. (8) is multiplied through by c„to re-
move the relative dielectric function g. The result
is the effective dielectric function for spheres em-
bedded in a solid' ~

(b)

R (c, -e )f
&8+ 2&m (& s &m)f

(12)

Examination of Eq. (12) shows that if the spheres
are absent (f= 0) the dielectric function reverts to

as expected. For finite but small f, c,«has
transverse modes at the poles of e (as it has for
f= 0)'and also near the frequencies where

&s= &m ~

Condition (13), which has replaced Eq. (11), again
defines localized resonances centered on the
spheres. For the simple model of donors in GaP

FIG. 3. Besonance in the vicinity of one of the dielec-
tric spheres. In (a) the electric field lines are shown
while in (b) the locus of points of constant electric field
are shown as solid curves.
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SpCOp
2

~m=& +
COp

—('d —k0 7 p
(14)

lying electronic transitions of the donor by a fre-
quency-independent polarizability which gives a
dielectric constant 6'„'. In summary, our assumed
forms are Frequency

(u; (cm ')
Strength Linewidth High-& limit

S,. p,. (cm-')

Case 1 (Figs. 5 and 6)

TABLE I. Dielectric parameters for model calculations.
f= 0.1 used in all calculations.

for the medium and ~m

6el

367
500

1.96
0.3

0.73
1.0

9.1
7.0

40

30

I I I I I I I

(o} Re(C~} BULK MEDIUM

20

10—

-10—
O

40—
C3

30
C3

KI-
O
UJ

bJ
CI

10—

LL
D 0

2
el ~l1~s=~el+~m=~~ + 2 2 +~m

1 ~&V1

for the spheres.
In Table I we list some values of the parameters

in Eqs. (14) and (15). For a we have chosen the
values typical of GaP, with the To mode at 36V
cm '. The second line in the table describes the
electronic resonance E„. For this term we have
put the resonance &u, (1S-2P transition) at 500 cm '

or 62 meV. Figure 4 shows the real parts of the

Case 2 (Figs. 7 and 8)

~m

~el

367
400

l.96
1.0

0.73
0.8

9.1
7.0

10'
,

& ~ r

TO

Im(E, ff}

O
10'

dielectric function. In Fig. 4(a) the Gap resonance
is seen with its strong resonant dispersion at 36V
cm '. Figure 4(b) shows the sphere dielectric
function E,. This function has the GaP resonance
plus the electron resonance at 500 cm ', Equation
(12) can now be calculated once we choose the con-
centration of spheres specified by the dimension-
less filling factor f. For f=0. 10, &„, shows the
two resonances near 36V and 500 cm plus a new
resonance near 398 cm ' [see Fig. 4(c)]. This
new resonance is the localized or bound I,O phonon.
It occurs just below &«at the frequency given by
Eq. (13). Because of the damping included in Eqs.
(14) and (15) the solutions of Eq. (13) are complex,
leading to a finite width for the resonance.

I—
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FUNCTION
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I
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j:m(-ItE,ff}

FIG. 4. Dielectric function for a model calculation of
donor spheres in GaP. In (a) the em for bulk GaP is
shown. In (b) ~s for the spheres which include em and a
resonance at 500 cm is plotted. The parameters are
given in Table I. (c) The real part of the effective dielec-
tric function for the system. Note the new resonance
near 398 cm and the electron resonance shifted slightly
above 500 cm

10
340 380 420 460 500

FREQUENCY (cm '}

FIG. 5. Imaginary part of the effective dielectric
function for the model shown in Fig. 4. There are TO
peaks near the poles of e&z shown in (a). The LO modes
correspond to the zeros in jeff and occur as peaks for the
plot shown in (b).
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constant which is —2 times the dielectric constant
of the medium. This condition results in self-sus-
tained oscillations in the following way. Polariza-
tion of a sphere creates dipole fields which cause
all nearby spheres to polarize. These spheres in
turn give dipole fieMs which have exactly the right
magnitude and direction [when Eq. (13) holdsj to
drive the polarization we postulated in the first
sphere. If the sphere contains some polarizable
entity (e.g. , a bound electron or hole) so that g,
is positive, then, since e passes through zero at
~Lp and is negative just below, this region below

+Lo is the place where we can expect Eq. (13) to
be satisfied. If e, is negative, then Eq. (13) may
be satisfied just above (d«where E is positive.

Figure 6 shows a case where c, is negative near

"fable I (lower part) gives the parameters
used. There are two bound resonances, one just
above w«and the second just below &Lp Both
have mixed electron and phonon character result-
ing from the near degeneracy of the uncoupled sys-
tems. Figure 7 shows the imaginary parts of the
effective dielectric function to illustrate the mode
shape. This example of nearly degenerate reso-
nances may be important in polar semiconductors
since the binding energies of some donors (or ac-
ceptors) in certain cases are very close to the po-
lar phonon frequency. For both cases discussed
above (Figs. 5 and I), the bound resonances have
amplitudes localized about the spheres and have
the characteristic dipole field pattern given in Fig.
3. Because the resonance condition arises from

1.0

00 0
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1.0 (

0
0 (b)
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E
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10-0 i
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I
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I

385 400 415

FREQUENCY (cm-~) FREQUENCY (cm ')

FIG. 8. (a) Infrared data at 300 K for GaP doped with tellurium. The top graph shows the ref lectivity spectrum and
the lower graphs the dielectric functions obtained by a Kramers-Kronig analysis of the ref lectivity. (b) Infrared data
at 20 K for the sample of (a). The new localized mode appears at 395 cm '. It reveals itself clearly in both the Im(e)
and Im(-1/e) spectra.



INFRARED ABSORPTION QF LOCALIZED LQNGITUDINAL-. ~ ~

matching solutions to Maxwell's equations it may
be seen that this new type of local mode is not con-,
nected with the mass-defect model~ and may occur
above or within the yhonon continuum. The line-
width of the mode is described by Eg. (12). In
these model calculations the damping is controlled
entirely by yo and y&. For the case shown in Figs.
4 and 5 where the electron resonance is well re-
moved to higher frequencies, yo dominates in Eq.
(12). In this case the localized mode has the same
width as the LO phonon. .

III. EXPERIMENTAL WORK AND ANALYSIS

1.0—

0
0

0 0 0
I-~ 0.5—
IJJ

LLI

K

102

0 0

0
O~

0
GaP: Se

(p. gx ~0~7/cc~

T=20 K

Crystals of GaP doped with either a donor or ac-
ceptor species were cut and poli. shed by standard
metallographic techniques to obtain a flat surface.
The orientation and shape of most samples yielded
a (111)plane with a surface area of at least 1&& 5

mm. Reflection spectra were measured at room
temperature and at liquid-hydrogen temperature
(20 K) in the infrared range 285-1000 cm ' (10-35-
p wavelength). The general method used and a
description of the spectrometer have been given
earlier. " Figure 8 shows the ref lectivity of GaP
doped with the donor tellurium. These data have

'

been analyzed by a Kramers-Kronig integral trans-
form to obtain the optical constants. ~ In the lower
part of Fig. 8(a) the imaginary parts of the dielec-
tric function Im(c) and of the reciprocal dielectric
function Im(- I/e) are plotted. Peaks in Im(&) cor-
respond to TO modes and peaks in Im(-1/c) to LO
modes. At room temperature Im(&) shows a strong
peak at 366 cm ' due to the infrared-active phonon.
This peak has been well documented in earlier in-
frared and Raman spectra. '3 Im(- I/c) shows an
LO mode at 40V cm ~. In insulating GaP this LO
peak is sharper and occurs at 403 cm . The
broadening and shift observed here are due to t'he
free electrons associated with the ionized Te do-
nors ~

Figure 8(b) shows the ref lectivity on cooling to
20 K. A new dip occurs near 395 cm '. The
Kramers-Kronig analysis of these data shows the
main TO and LO peaks as before plus a weaker
mode at 395 cm whose TO-LO separation cannot
be resolved. At the same time the broadening and
shift of the LO (seen at 300 K) have been reduced
since the free electrons are almost completely
"frozen out" at 20 K. The peak at 395 cm ~ is the
localized or bound LO phonon. Figure 9 shows the
low-temperature spectra for GaP doped with Se.
The localized LO phonon here occurs at 39V. 5
cm '. In the Im(- I/g) spectrum this peak is not
clearly resolvable unless the LO mode background
is removed by subtraction.

In Fig. 10 the spectrum of GaP doped with Sn is
shown. The spectrum at 300 K shows the plasmon
shifted LO due to the presence of 7&10 cm 3 free

i 00

E &oo—
H

l I

570 525 400

FREQUENCY (cm 'j

FIG. 9. Infrared data for GaP doped with selenium.
The localized mode appears at 397.5 cm ~.

electrons. At 20 K the localized phonon appears.
After these spectra had been recorded the crystal
was copper-diffused to compensate the crystal.
The lowest curve in Fig. 10 shows the resulting
low -temperature spectrum. The bound phonon
peak is no longer present even though the Sn im-
purities have not been removed. Figures 11 and
12 show results for S and Si donors in GaP. Many
other spectra for various dopants in GaP and GaAs
were recorded. Table H lists the crystals studied
and shows the binding energies together with some
pertinent comments.

IV. DISCUSSION

A. Model Fits to Infrared Spectra

Figures 8-12 show subsidiary peaks near the
bulk LO phonon mode in GaP. These peaks range
from 7 to 12 cm ~ below the LO phonon depending
on the donor impurities. These are the bound or
localized LO phonon modes. The peaks are quali-
tatively similar to the spectrum of Fig. 5 for the
localized LO mode using the macroscopic model.
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300 K show no such peaks. T 1s
with the lack of a peak th u-ak for the u-

'es in GaPnd acceptor binding energies 'TABLE II. Donor and cep r
and GaAs .

Element
(and site)

b

(meV)

Donors

Remarks

s (I)
se 9)
Te (P)
Si (Ga)
Sn (Ga)

104.1
102.0
89.8
82.1
65.5

in reflectivityBound LO mode seen in

Acceptors

) 64.0

no e — be damped

Zn (Ca
30

not detected —may be aCd (Ga) in GaAs
Mode no e

Be (Ga) 50
53.5Mq (Ca)
48.0 Weak mode cm "1

Ge (As) in GaAaAs 38

in GaP except for Cd an'All impuxltles are in a
GaAs.

m M. B,. Lorenz, G. D. Pettit,"Binding energies from
and S. E. Blum, So ll'd State Commun.

e ' mmunication).J. Bean (private corn
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i . 10, confirms that the peaks aresample in Fig. 10,
associated with the bound elec ro

in Figs. 8-12 havesite. All of the in ie donors shown in i
18 2I' transition e-nergy grea er

this transition causes z„
(13) has a solution(15)] to be positiv' e so that Eq.

in reement with
(12) ma„be e I-

'ust below ~« in agre
rved. Equationthe peaks observe .

Figure 13 showsious vRlues of &„.uRted fox" vRr1
f equencies [ i. e. ,d'cted locahzed I p0 honon r

—1 e f)] evaluated in this way. Thethe peak in Im(- I/e„f
l ed on the curve'

d have been p acef' donors studied h1ve
enotet ah t the dielectricat the corre ct ordinate.

e Rpp
t cons~mt in the rangedlelectx'1c con

donors.
model

o
T donox' 1s desc

ition cf. Eq. (15the 1S-2P trans1 io
are iven in the lgur .eters of the fit are

g ood cons 1dering the uncertain 1es
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mental data. The rather broad bulk LO and lo-
calized LO peaks require large damping factors in
the oscillator expressions. Some of the breadth
may be associated with surface strain or damage.
This is a problem intrinsic to all surface reflec-
tivity measurements. We will present Baman
spectra (taken deep within a Gap: Te sample) be-
low which show smaller linewidths. The linewidth
problem will not be discussed further since our
main interest is in the strength and frequency of
the localized modes. These latter quantities
should be quite insensitive to linewidth.

The localized modes associated with all of the
donors may be fit to the same or better precision
as has been done for the case of Te. The param-
eters required are similar except that the mode
strength (controlled by f) and the mode shift (con-
trolled by the value of c„near the localized mode)
must be choosen separately in each case. These
two aspects of the fitting are discussed below.
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8. Significance of Parameters

The fit of the dielectric sphere model for the
case of Te (Fig. 14) requires the value f= 0. 11.
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FIG. 13. Calculated shift of the localized mode from
the bulk LO phonon. The frequency of localized mode
peak in Im(~et') has been calculated for a range of values
or ~~1. The calculation is done with low damping and
small concentration /&0. 01). For f appreciably larger
than 0.1 the curve becomes more horizontal. The ob-
served modes have been placed on the curve at the cor-
rect ordinates.
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FIG. 12. Infrared spectrum of GaP doped with silicon.
The localized mode appears at 394.5 cm '.

From Eq. (7) and the concentration given in the
figure we derive a sphere radius of ~, =26 A. This
radius appears reasonable. The donor Bohr radius
is about a= 10 A; however, only 32% of the prob-
ability amplitude for a hydrogenic ground-state
wave function lies inside a sphere of this radius.
'?6% lies within a, sphere of radius 2a= 20 A, whi. ch is
in better agreement with the radius derived from
the model. In addition, we note that the model is
self-consistent in that the derived x, obeys all
three inequalities given in Eq. (1).

A second related measure of mode strength may
be defined without fitting the spectra. The inte-
grated strength under the curve Im(-1/c) may be
evaluated by interpolating and subtracting the back-
ground under the localized mode. This strength
may then be normalized by dividing by the area
under the bulk LO mode. We write

~ &oooi mode ™(/
)oou Lo mooo Im( I/&) d~

for the definition of the normalized strength. In
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comparison with the quRntum theory of the donor.
Within the dielectric sphere our model postulates
a uniform dielectric constant &„+& due to the
donor and the Ga-P ions. The electronic contribu-
tion may be converted to a, donor polarizability:

n = v(e„—I)/4m .
Taking the volume from the preceding strength
analysis' we f ind

I2 =- 4. 7 & 10 cm (Gap expel lment) (18)

4)

10O
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FIG. 14. Fit of the macroscopic sphere model to the
infrared data of GaP with Te. The pa.rameters for the
donor transition are given in the figure. The GaP phonon
mode {e~) is parametrized as in Table I except that yo
has been increased to 2.2 cm ~.

fol the electronic polarlzRbllity.
The isolated H atom in vacuum has polarizabil-

ity 6 o. =0. 6V&&10 ~ cm . This polarizability is
much too small; however, we must allow for the
effect of the GaP lattice when using the H-atom
treatment of the donor. Using the continuum
model~7 for the H atom immersed in a medium of
dielectric constant c (independent of freIIuency),
the pola. rizability is enhanced by the factor e4. The
principle donor transitions for Te in GaP lie in
the range 600-4000 cm ', where the dielectric
constant of GaP is approximately 9 with a small
amount of dispersion. (It is accidental that the
electronic part of e, is also 9 in the case of Te. )
Making the dielectric correction to the free-atom

practice the limits of integration are in the 385-
451-cm ' range and the procedure has an uncer-
tainty of + 40/II in A for the present infrared data.
Figure 15 shows this normalized absorption
strength plotted against concentration. Somewhat
surprisingly, the points all lie close to a single
straight line of unity slope. Manchon has measured
the local-mode strength in the case of Baman
scattering by the donors Te, 8, and Sn. ~4 Manchon
uses the peak height of the scattering spectrum and
normalizes by the height of the bulk I 0-mode peak.
The results are shown in Fig. 15. While the points
are consistently lower, there is again a good in-
dication that a single straight line can describe the
local-mode strengths for a variety of donors. A
detailed examination of several of the Baman spec-
tra shows that if an integrated Raman cross sec-
tion is used to define the mode strength, the @aryan
points are shifted up a factor of 2-3 giving excel-
lent agreement of the two methods. It is obvious
that once the calibration (Fig. 15) has been es-
tablished the local-mode strength can be used as
an optical probe of the donor concentration in a.

semiconductor. ~~

We now turn to the second parameter of impor-
tance; the frequency of the localized I 0 mode.
Treating the case of the Te donor, Fig. 13 showed
that the dielectric sphere must have a dielectric
constant of about 9.0 (near the Lo mode) to give
the frequency shift observed. Again we make

x
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FIG. 15. Strength of localized mode relative to LO
mode plotted against donor concentration (see text). The
five points labeled i are taken from preceding infrared
spectra. The remaining points are taken from H, aman
data of Manchon. Uncertainties are typically + 20% in
both the concentration and strength measurements except
that the infrared strengths have a ~ 40% uncertainty.
When the H, aman points are corrected to give integrated
strength then all points lie close to the straight line with
unity slope.
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result, we obtain

a=0. 44&&10 ~ cm~ (H atom in &=9) . (19)

Only order-of-magnitude agreement is obtained in
comparing the continuum model with the sphere
model. The agreement is much improved if a
smaller sphere radius r, is used in computing v in
Eq. (17). A closer comparison of the sphere
model must await a detailed quantum theory of the
donor states and transition probabilities in polar
semiconductors. ~7
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O D.D. MANCH0N- RAMAN T=PQK—FIT WITH f =0.018

COI-
z

lD
R

0
O
CO
V)
O
K
C3

C9z
UJ

~I-

CE
Co

K

102

10

S1=4.0
~,=640 cm-1

y1 =115crn 1

eeI = Z.o

-2
380 390 400

FREQUENCY (cm

4IO

FIG. 16. Fit of the dielectric sphere model to a 90
H, aman scattering spectrum of GaP doped with Te. Thf.
donor-transition parameters are given in the figure. The
GaP phonon-mode parameters are the same as in Table
I except that the linewidth has been increased slightly t.o
F0=0.96 cm

C. Raman Spectra

Figure 16 shows the Baman scattering spectrum
of a GaP: Te sample taken at low temperature. '4

The bulk LO and the localized LO modes appear
very similar to the infrared spectrum of Fig. 14.
The lines are somewhat narrower and there is a
shift of both lines to higher frequency by l. 5 cm ~.

The shift is not significant since it is within the
frequency calibration uncertainties of the Baman
and infrared spectra. The linewidth effect is prob-
ably real; the greater damping being observed in

the infrared spectrum taken at the crystal surface.
The solid line in Fig. 16 is a fit to the data using
the dielectric sphere model. To apply the model
to Raman scattering the macroscopic approach is
used. The effective dielectric function &„, (de-
rived in Sec. II) is inserted into the standard scat-
tering formulas for bulk GaP. For 90' Stokes
scattering the TO and LO scattering formulas are~

(20)= A[n(~)+ 1]Im(e„,),d~d8 trans

=A[n(a)+1](169)Im(- I/e, ~f) . (21)
dAd&, „ng

A is a frequency-independent factor for nonreso-
nant scattering, ~(~)+ 1 is the usual Stokes fac-
tor, and 169 is a numerical factor which arises
from the lattice dynamics of GaP. The numerical
factor 169 causes the LO-mode scattering to be
stronger than the TO-mode scattering near the lo-
calized LO mode. The solid curve in Fig. 16 is
a plot of the right-hand side of Eq. (21) with A ad-
justed for a best fit. At the temperature of the
Raman experiment (20 K), n(v) = 0 so that in the
390-410-cm ~ range the Baman experiment mea-
sures the same spectrum [Im(- 1/e,«)] as that
given by the Kramers-Kronig analysis of the in-
frared spectrum. It is evident from Fig. 16 that
once the narrower linewidths have been allowed
for, the macroscopic theory gives a good fit to the
important features of the Baman spectrum.

D. Localized LO Modes for Acceptors

The dielectric sphere theory allows the possibil-
ity of localized LO modes connected with acceptors
in a polar semiconductor. If the acceptor has an
optically active transition (e. g. , 1S-2P) with an
energy greater than h&«, then the model in Sec.
D applies exactly as for the donor and predicts a
localized mode below A~Lo. Figure 13 shows that
even if the acceptor (or donor) transition is just
below ~«a localized mode can still be observed;
but now it appears on the high-frequency side of
Srg„o. From Table II we note that the binding en-
ergies of Zn and Mg acceptors are just above ~Lo.
if the approximate relation Z(1S-2P) = —,

' Es is
used, then these acceptor transitions fall at 390
cm ' (Zn) and 320 cm ~ (Mg). Low-temperature
ref lectivity scans of Zn- and Mg-doped samples
show no localized-mode peaks either above or below
r~Lo (see Fig. 17). We believe that this negative
result is due to the large damping of these accep-
tor transitions and does not reflect any failure of
the theory. Figure 18 shows the results of Henry
et al. for the Baman scattering of a GaP: Zn sam-
ple. '9 The broad peak labeled C at 450 cm ' is
associated with the presence of zinc acceptors but
has not been given a definite assignment. It ap-



pears likely that this peak corresponds to the 15-2P
transition. There is an indication of this same
peak in the Im(&) spectrum of Fig. 17. The re-
flection method is quite insensitive to these rela-
tively low values, however, where lm(&) «Re(e).
A broad absorption peak very similar to C is seen
in the low-temperature infrared transmission
spectrum of zinc-doped Gap. ~ The peak C is the
transition which we wish to model by choosing a
suitable form for the term &„ in Eq, (15). As
shown in the lower part of Fig. 18, we choose $
as a. broad mode peaked at 390 cm ' and evaluate
the dielectric sphere model. The interactions in-
cluded in the equation for &,«cause a broad ab-
sorption band in Im(e, «) peaked near 450 cm '
rsee Fig. 18(c)]. This peak is in agreement with
the infrared absorption spectrum. The Im(- I/
e,«) spectrum shows an unresolved shoulder on the
low-frequency side of the I Q phonon. The unre-
solved shoulder and the broad peak near 450 cm '
are the localized I Q phonons. Because of the near
degeneracy of the electronic transition and the
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Th low-temperature Haman spectrum from the work of
Henry et g/. The graph is a densitometer trace of a
photographically recorded spectrum. Besides the TO and
LO peaks there is a broad mode labeled C near 460 cm
(b) and (c) are rough fits to (a) using the dielectric sphere
model. The zinc transition parameters are given in the
fig ~re. The GaP phonon-mode (e~) parameters are the
sara. e as Table I except that the linewidth F0=2.2 cm
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I'EG. 17. (a) Low-temperature ref lectivity spectrum
of GaP doped with zinc. There is a noticeable flattening
near 385 cm- due to the zinc. (b) Im(e) spectrum ob-
tained by Kramers-Kronig analysis of the data in (a).
Note the broad featureless absorption above 400 cm ~.

bulk phonon mode, the interacting system (e,«) is
heavily mixed, having phonon and electron ampli-
tude at both resonances. An interesting compari-
son. can be made between the donor Sn and the ac-
ceptor Zn. Boih have approximately the same
binding energy so that it would appea. r that since Sn
cau;ses a sharp localized mode, Zn should also.
In f,act, it is the damping of the tran iiion which
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must be considered as well as F~. For a fit to
the Sn mode (Fig. 14) we find that Im(e„) =2. 8 at
400 cm '. For the Zn Iits Im(e„) = 20. 0 at 400
cm x, which again emphasizes the highly damped
nature of the Zn transitions.

The Baman scattering cross section is directly
related to the calculated spectra &,«by Eqs. (20)
and (21). From Fig. 18(a) it is evident that the
crystal orientation was not optimized for LO scat-
tering. This fact prevents us from using Eqs.
(20) and (21) directly with the factor 189. Reduc-
ing this factor to about 100 we note that the addi-
tion of Im(e„,)+ 100&&Im(- I/e, «) does give an ap-
proximate reproduction of the Raman spectrum of
Henry eE cl. in the 325-625-cm ' region. In addi-
tion, we may calculate the infrared ref lectivity for
the sphere model used in Fig. 18. The calculated
ref lectivity spectrum shows no dip near ~~o, but
does show a flattened region near 385 cm ', in good
agreement with the experimental results of Fig. 1',f.

The Raman spectrum of GaP doped with Mg is
very similar to the ca.se of Zn' ' showing a broad.
peak similar to C in Fig. l8(a). No ref lectivity
dip was observed in the present infrared study.
Bough fits similar to those described above show
that the Raman spectrum can be reproduced and
the negative infrared result explained. Again it is
the broad damped nature of the Mg acceptor tran-
sitions which prevents the formation of a sharp lo-
calized LO resonance. It is interesting to note th'Lt
in both these cases where 0.75E~-6&~» not only
does the electronic transition perturb the phonons,
but the phonons perturb the electronic transition.
For the case of Zn, we identify the peak at 450
cm ' in the Baman spectrum as the electronic
transition. The "zero-order" transition required
by the model must be placed at 390 crn ', thus il-
lustrating the strong electron-phonon intex action.

The Cd acceptor in GaAs (Table Il) and the Be
acceptor in GaP also showed no ref lectivity dip,
probably for the same reasons outlined above. Th~.
Ge acceptor in GaAs is somewhat more favorable
than the Cd acceptor since it has a higher h~. For

the Ge acceptor the low-temperature ref lectivity
spectrum showed a slight dip 5 cm below ~«.
We believe this represents the localized mode.
The hole concentration at 300 K was 3 &&10' cm 3.
Because of the noise level involved in this run
better confirmation would require samples with
concentrations at least twice as large.

Finally, for C acceptors in GaP a sharp but
weak dip was found 6 cm ' below ~Lo. Since F~
is quite small (48 meV), this case appears unfav-
orable for the formation of a sharp local mode for
the same reasons as discussed above for GaP: Zn.
The explanation for the sharp mode observed may
be that the lowest acceptor transition is well below
(Q Lo Higher -lying trans itions could provide a
positive dielectric constant q„-7 near ~«which
causes a localized phonon in the usual manner.
The lowest transition in this case must be under
the ~Lo bulk phonon and would be hard to detect.
More Barnan and infrared transmission spectro-
scopy is needed to confirm this explanation.

In conclusion, a new type of localized mode has
been observed for the first time in infrared spec-
tra. The mode results from the interaction of the
polar optical lattice vibrations and a low-lying
electronic transition. The classical macroscopic
model developed above gives a, useful picture of
the mode. The model can be used to predict both
Raman and infrared strengths for the local mode
and forms a basis for making more detailed com-
parisons with a quantum theory of the electronic
transitions.
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Alfven-Wave Propagation and Damlnng in Pyrolytic and Single-Crystal Graphite
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A. systematic study of'Alfven-wave propagation was ca~(ried out at 35 GHz in pyrolytic and

single-crystal graphite by means of microwave transmis'. ~ion and reflection experiments at 4.2 and 77 K.
The amplitude and phase of the propagating wave wert;: measured independently, yielding values of the

collision frequency and the effective-carrier mass density at 4.2 K. These values were in reasonable

agreement with theoretical and previously reported ex')erimental values, although there was some

evidence that the collision time is magnetic field depeixdent. The measured mass densities for pyrolytic

and single-crystal samples were the same within experizsental error. Transmission measurements were

carried out as a function of angle between the applied magnetic field and the direction of propagation,

revealing a quasi-two-dimensional behavior of the mass density, characteiistic of graphite, On the other

hand, these measurements indicate little anisotropy in t.'he scattering rate. Experiments performed at 77

K yield a slightly higher value of the mass density, in agreement with the nonparabolic energy-band

structure predicted by the Slonczewski —Weiss model. Vr:ry pronounced oscillatory structure observed in

Alfven-wave damping at 4.2 K in the case of single-cr~~stal graphite is identified as Shubnikov-de Haas

oscillations associated with both majority and minority carriers. The single-crystal data also revealed a

small oscillation in the transmitted phase.

I. INTRODUCTION

Semimetals with equal electron and hole concen-
trations (such as bismuth, antimony, and graphite)
are capable of supporting wave propagation of a
type similar to that described by Alfven' for two-
component gaseous plasmas. The first direct ob-
servations of Alfven-wave transmission in solids
were made by Williams for bismuth and antimony

by detecting the interference between microwave
leakage around the sample and transmission
through the sample. Transmission-amplitude mea-
surements have been used to determine collision
frequencies in bismuth and the transmission en-
velope has exhibited Shubnikov —de Haas oscilla-
tions in damping. The transmitted phase has also
displayed Shubnikov —de Haas effects due to varia-
tion in carrier concentration.

In compa, rison with bismuth, graphite has re-
ceived relatively little attention. Because of its

greater carrier concentration and higher collision
frequency (both are an order of magnitude larger),
graphite is considerably less transparent, requir-
ing either very high fields, thin samples, or sen-
sitive apparatus to detect transmission. However,
the constant-energy surfaces of the carriers in
graphite are parallel to a common symmetry axis
and the effects associated with Fermi-surface
anisotropy are considerably simplif ied. Graphite
is therefore a material of interest in the study of
electromagnetic-wave propagation in compensated
solids.

Alfven waves were first observed in graphite by
Surma, Furdyna, and Praddaude by means of
geometric interference in a thin flake mounted in-
side a microwave reflection cavity. The experi-
mental geometry was that of the fast" Alfven

wave, i.e. , the plane of polarization (direction
of E„,) was perpendicular to both the dc magnetic
field and wave vector q, and the magnetic field


