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Here we have made use of the expansion

zz —yz+1 = (sinh8) ' g sinhl8z' ' .
l-"1

The second boundary condition is that, since for a

surfaceless periodic lattice the Green's functions
have the property limG, ~(A) = 0 as I l —I j -~, then
we shall require that limX~ (o.', P) = 0 as I l —m I

The solutions in (17) follow.

*Work supported in part by the Nationa. l Research
Council of Canada and by the Council for Research, St.
Francis Xavier University.

R. F. Wallis, A. A. Maraduddin, I. P. Ipatova, and
A. A. Klochikhin, Solid State Commun. 5, 89 (1967).

2D. L. Mills and A. A. Maraduddin, J. Phys. Chem.
Solids 28, 1855 (1967).

3B. N. Fillipov, Fiz. Tverd, Tela 9, 1339 (1967) [Sov.
Phys. Solid State 9, 1048 (1967)J.

R. E. deWames and T. Wolfram, Phys. Letters 29A,
71 (1969).

D. L. Mills, in Localized Excitations in Solids, edited
by R. F. Wallis (Plenum, New York, 1968), p. 426.

R. E. deWames and T. Wolfram, Phys. Rev. 185,
720 (1969).

~E. Ilisca, and J. L. Motchane, Phys. Letters 32A,
524 {1970).

"C. F. Osborne, Phys. Letters 28A, 364 (1968); J.
Phys. C 3, 1949 (1970).

J. C. Levy, E. Ilisca, and J. L. Motchane, Phys.
Rev. B 5, 187 (1972).

OJ. C. Levy, E. Ilisca, and J. L. Motchane, Phys.
Rev. B 5, 1099 (1972).

D. L. Mills, Phys. Rev. Letters 20, 18 (1968).
D. L. Mills and W. M. Saslow, Phys. Rev. 171, 488

(1968).
SM. Sparks, Phys. Rev. B 1, 4439 (1970).

~4B. D. Rainford and J. GyMen Houmann, Phys. Rev.
Letters 26, 1254 (1971).

5R. Blinc, J. Phys. Chem. Solids 13, 204 (1960); P.
G. de Gennes, Solid State Commun. 1, 132 (1963); R.
Brout, K. A. Muller, and H. Thomas, ibid. 4, 507
(1966).

l J. Skalyo, Jr. , B. C. Frazer, and G. Shirane, Phys.
Rev. B 1, 278 (1970).

~'M. Tokunaga and T. Matsubara, Progr. Theoret.
Phys. (Kyoto) 35, 581 (1966); M. Tokunaga, ibid. 36,
857 (1.966).

8K. Kobayashi, J. Phys. Soc, Japan 24, 497 (1968).
~M. Sparks, Phys. Rev. B 1, 3831 (1970).
D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) fSov.

Phys. Usp. 3, 320 {1961)J.
D. A. Pink, J. Phys. C 1, 1246 (1968); Y.-L. Wang

and B. R. Cooper, Phys. Rev. 185, 696 (1969).
2 Y.-L. Wang and B. R. Cooper, Phys. Rev. 172, 539

(1968}.

PHYSICAL REVIEW B VOLUME 7, NUMBER 1 1 JA NUARY 1973

Logarithmic Corrections to the Molecular-Field Behavior of Critical and Tricritical Systems
Franz J. Wegner

Institut fiir Eestkorperforschung, &E& Julich, 517 JN'lich, &erma, zy

and

Eberhard K, Riedel
Department of Physics, Arke &niversity, DNrham, North Carolina 27706

(Received 18 May 1972)

The asymptotic critical form of thermodynamic functions is analyzed by means of renormal-
ization-group techniques. If certain exponent relations are satisfied, then the critical be-
havior is not described by a simple power law, but a. power law multiplied by a fractional power
of a logarithm. The approach is applied to two special systems whose critical exponents are
molecular-field-like. (i) For ordinary critical transitions in four dimensions we find the
same logarithmic factors previously computed by Larkin and Khmel'nitskii. (ii) For tricrit-
ical transitions in three dimensions we compute the logarithmic corrections to the molecular-
field tricritical behavior discussed in an earlier publication.

I. INTRODUCTION

Renormalization-group techniques yield power
laws for the expectation values of different opera-
tors and susceptibilities near criticality, ' which
can be characterized by sets of critical exponents.
If these exponents satisfy certain relations, then
the power laws are modified by logarithmic fac-
tors. If in particular an operator has a vanishing
scaling index y (for a definition of y see Sec. II of
the present paper and Ref. 3), then this gives rise

to factors of fractional powers of logarithms. In
terms of the renormalization-group procedure this is
due to the very slow decay of the field of this operator.
Examples where this situation occurs are (i) the
critical behavior of four-dimensional systems and
(ii) the tricritical behavior of three-dimensional
systems. ' For both cases the Gaussian fixed
point of the renormalization-group equations leads
to respective sets of molecular-field values for
the critical exponents. ' ' In this paper we show
that the molecular-field results for the two sys-
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tems are modified by logarithmic factors: The
asymptotic critical forms of thermodynamic func-
tions have the form of a power law times a frac-
tional power of a logarithm.

We calculate these logarithmic corrections and
determine the powers of the logarithms from the
Wilson recursion relations. In Sec. II we review
those features of the renormalization-group proce-

'

duree

we need for our calculations. In Sec. III the gen-
eral scheme for determining logarithmic correc-
tions is derived. The second-order critical be-
havior in four dimensions is discussed in Sec. IV,
and the tricritical behavior in three dimensions is
investigated in Sec. V. Our results for the loga-
rithmic corrections to the molecular-field behavior
in four dimensions agree with previous results by
Larkin and Khmel'nitskii. ~ The predictions for
the tricritical behavior in three dimensions can be
tested experimentally, for example at the He'-He
tricritical point.

We note that besides the critical and the tri-
critical behavior described here, other critical
and tricritical fixed points might exist which yield
different sets of critical exponents. That question
will not be investigated further in this paper.

II. RENORMALIZATION-GROUP PROCEDURE

c,' = Z a,', (p, —lI, +) + 0(j P+—)' .

By taking appropriate linear combinations of the
deviating fields (P —P*), we can define a new set
of fields p, in terms of which an expansion (2. 2)
leads to a diagonal matrix a,'&. We denote the
diagonal elements (eigenvalues) of this matrix by
y&. In terms of the new fields p&, one obtains

(2. 2)

F=d 'Q c' (2. 3)

and in linear approximation

c) =$) lpga+ 0(/ ) . (2. 4)

Retaining only this linear term in Eq. (2. 3), we
obtain the homogeneous differential equation

tiplied by P. The relation (2. 1) can be easily de-
rived from Eqs. (2. 8) and (2. 12) of Ref. 3; a sim-
plified version of it can be obtained from Eqs.
(9)-(11)of Ref. 1. A point (P&*) at which c& = 0
for all i is called a fixed Point of the renormaliza-
tion-group equation (2. 1). Note that the free en-
ergy E has been normalized such that E(P,*j=0.

We discuss the relation (2. 1) first in a linearized
form. We may expand the coefficients c& to linear
order about the fixed point:

In this section we review the renormalization-
group procedure that has been outlined by Wilson'
and one of the authors. ' We derive the homoge-
neity relation for the free energy and show that
near critical points it is sufficient (in most cases)
to consider only the relevant scaling fields.

The state of a thermodynamic system can be
changed by varying certain experimental fields
which we denote by p &

". The subscript i num-

bers the fields, whereas the superscript expt in-
dicates that the particular field is experimentally
available. Examples of such fields are the in-
verse temperature P, a magnetic field multiplied
by P, a chemical potential multiplied by P, etc.
We introduce the fields such that they enter linear-
ly into H= PK, where K is the Hamiltonian of the
system. For conceptual reasons one often intro-
duces additional "theoretical fields" which cannot
be experimentally realized. In the following we
denote the set of experimental and theoretical
fields by (p, , ).

The renormalization group connects the free en-
ergy of systems in different states. For states
infinitesimally close to each other this relation
can be written

Therefore, in this approximation E is a homo-
geneous function of the fields p „

(2. 6)

where e' is an arbitrary scale factor. This fac-
tor has the meaning of a momentum cutoff fac-
tor' in the renormalization-group equations.

Next we include the higher-order contributions
to c,' in Eq. (2. 4). In general, one obtains an ex-
pansion

(2. 'I)

Now Eq. (2. 6) no longer holds. But it has been
shown' that scaling fields g, can be introduced such
that an analogous homogeneity relation for E holds
exactly in these new variables:

(2. 8)

The Hamiltonian H of the system does not depend
'inearly on the scaling fields g&. Usually the
fields p, , can be expanded in terms of the scaling
fields g].'

(2. 9)
Z=d 'Qc,' (2. 1)

where d is the dimensionality of the system, and
where the coefficients c& are functions of the fields
p, , By E we denote always the free energy mul-

Based on the homogeneity assertion for the free
energy, which has been very successful for the
explanation of critical phenomena, one might ex-
pect that at critical points the scaling fields g,
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Microscopic calculations yield y, & 0.~' (Note that
the scaling index y, and the quantity A, used in Ref.
6 are related via A. = 2't. ) Therefore g» Ig, I

'» 't
vanishes for all g, with negative y, in the limit
g, -0. These terms can be neglected and give
only corrections of the relative order )g, )

'~ '~.
(A restriction is discussed in the next paragraph. )
Hence it is sufficient to consider only the scaling
fields g& with y, ~ Q. The other scaling fields are
irrelevant. Criticality is thus determined by the
condition that the scaling fields g, with y; &0
vanish. We call these fields relevant fields and
denote them by g,'". The third case, namely, the
contribution of marginal fields I, with y, = 0, will be
discussed in Sec. III. We mention that the operator 1
with the conjugate field pp has an exponent yp =d.
Nevertheless, the condition gp = 0 at criticality
need not be satisfied since an additive constant to
the Hamiltonian does not change its critical prop-
erties. Therefore gp is not considered to be a
relevant field.

The argument that the irrelevant fields. can be
neglected holds only if the free energy exists in
the limit of vanishing irrelevant fields. If, how-
ever, the fixed point Hamiltonian, which is de-
fined by p, = 0, plus the "relevant" contributions
lead to a Hamiltonian without a lower bound, then
the free energy does not exist in the limit of van-
ishing irrelevant fields. In this case at least one
irrelevant scaling field has to be taken into ac-
count. 8

Now let us consider the condition for criti. cality.
The theoretical fields for a given system are cer-
tain constants. Therefore, the fields p. &, which
are linear functions of the p.„derpend explicitly
only on the experimental fields p. ',"~',

u =v {u'*"} (2. 12)

We can express the scaling fields g, in terms of
the fields P, ; by inverting Eq. (2. 9) and substituting
Eq. (2. 12). As a result, we obtain the scaling

vanish. However, one can reach criticality by ad-
justing only a few experimental fields. Therefore
one has the suspicion that only a small number of
scaling fields g, must vanish at criticality. From
the theory this can be seen as follows: The scaling
laws describe the behavior of a system very close
to the critical point. Let us assume, for exam-
ple, that g, is approximately given by the relative
temperature difference (T- T,)jT„where T, is
the critical temperature. Then for the scaling
laws to be valid g, has to be very small. Let us
apply Eq. (2. 8) and choose l such that

(2. 10)

Then we obtain

+ret {pexrt} (2. 14)

This yields a finite set of equations for a finite
number of experimentally available parameters.
We assume that the fields g& are analytic functions
of the fields p'"".

III. LOGARITHMIC ANOMALIES

In this section we discuss how logarithmic
anomalies in the asymptotic critical behavior
arise. First, we describe how simple logarithms
are obtained within the renormalization scheme.
Second, we show that a field with a scaling index

y =0 may even lead to fractional powers of loga-
rithms.

We return to Eq. (2. 3) and consider the fields
p,

&
now as functions of the parameter /. With

sP»(l)
el

we obtain for the free energy E= E{p»(l)}a rela-
tion analogous to the result (2. 3),

(3. 1)

z=d-'Z ' *

Bl Bp)
(3. 2)

with the solution

(3.3)

[In the linearized approximation c, is given by
c» =y. p, , and Eq. (3. 1) yields p, »(l) = l»»(0) e'»' On.
substituting this result into Eq. (3.3), we obtain
again Eq. (2. 6). ] The exact homogeneity relation
(2. 8) suggests the definition

a»(i) =g»(0) e'»'

for the scaling fields g&, which leads to

(3. 4)

(3. 6)

In linear order, g; and p, , are identical as seen
from Eq. (2. 9).

Next we calculate the derivative Bl».
» /Bl to sec-

ond order in g». Using Eq. (3.6), we obtain from
Eq. (2.9)

$'g' +
2

Z ($»+$».) b»g»»g »+eO(g ) .
jk

(3. 6)
On the other hand, by substituting Eqs. (3. 1) and
(2. 9) into Eq. (2. 7), we find

=3' g +
2
~ (3'» l»»»»+»»»»e)Age+0(+) .

(3. '7)

fields as nonlinear functions of the experimental
f'elds p.;"":

(2. 13)

Criticality is now determined by the condition that
all relevant scaling fields vanish,
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Equating the coefficients of Z&g» in Eqs. (3. 6) and
(3. 7), we obtain an equation for the coefficients
b~g~'

ay. , -1
8$ =yf)"f+ «pI i =y$ i"3+s i l(f+io) p)

(3. 14)
and try the ansatz

I(yy+y„—y;) b&g» = ao» (3. 8)
v&(f) =gg(f)(f+ fo)" . (3. 15)

Provided that y& oy&+y&, this equation yields the
coefficients b;;, in terms of the expansion coeffi-
cients a&». However, if y; =yj+y, holds and if
a,'» is nonzero, then no constant b&z~ satisfies
Eq. (3.8). One can repair this' by letting b, ,»

depend on l. Then Eq. (3.6) reads

ep, g
=y&&&+ ~ (yj y+)»b&g»+ ' &yABl

+ o(r')
For y, =y~+y~ this equation yields

eb~~n 1

el u»i o»= &J»( + 0) . (3. 10)

Therefore p, , (l) contains in that case a contribution
proportional to e'~" (I+ lo). Together with Eq.
(2. 10), this leads to a logarithmic correction term
proportional to )g, i

'~ 'i ln jgy f.
A similar situation occurs for higher-order

terms b, &,...&
if the condition

(3.11)

2

BL
= ~auuu &u (3. 12)

From this equation one obtains the solution ' '
p, = s (l + lo) ', s = —2/a„'„„. (3. 13)

According to our definition (3. 4), g„would be a
constant. Therefore we do not use g„ to define the
state of the system for l = 0, but the parameter lp.
Then the state of the system is completely de-
termined by the scaling fields g, (without g„) and

lp, Again we assume that the fields g, and lp are
analytic functions of the fields p.

'""within a cer-
tain region of lp.

Now we consider the effect of the coupling of p,„
to p, We use the approximation

+ ~ o ~ +y~1

is satisfied. As long as we are interested only in
the contributions from relevant operators and if
no marginal field with y = 0 has to be taken into ac-
count, then there are only a finite number of sets
(y&,y&„.. . , y& ) which satisfy the condition (3.11).
These sets determine the logarithmic corrections.

If, however, a field p„with y„= 0 has to be con-
sidered, » then Eq. (3. 11) is satisfied for an infi-
nite number of sets. This might lead to an anoma-
lous behavior. Here we discuss only how the most
singular contributions arise. A more complete
discussion is given in the Appendix A. Let us
consider the following approximation for the dif-
ferential equation for p„:

P;=@a,„, . (3. 16)

Therefore, p, contains, in general, factors of
fractional powers of ln)g, l as corrections to the
fields g, (l). The discussion in Appendix A shows
that the fields p, , can be expressed as a polynomial
of g;(l)(l+ lo)»& in leading order (that is, for large
l) provided that Eq. (3. 11) is not satisfied for the
exponents y (except y, ). If Eq. (3. 11) is satisfied
for a set of exponents y which does not include y„,
then we obtain additional powers of (I+ lo) as de-
scribed in the first part of this section.

In Secs. IV and V we will apply these ideas to
discuss the critical behavior of four-dimensional
systems and the tricritical behavior of three-di-
mensional systems.

IV. CRITICAL, SEHAVIOR IN FOUR DIMENSIONS

We consider now the critical behavior of the
isotropic n-vector model" (compare Refs. 6, 12,
and 13). A fixed point of this model is the Gauss-
ian fixed point ' ' which is described by the
Hamiltonian

a»'=-,' Z q'z,'z, ,

where z,' is the Fourier transform with wave vec-
tor q of the n component of the vector z(x). As
shown in Aypendix B, the local and rotationally in-
variant operators 6Q (which were denoted by
6Q„, in Refs. 4 and 13) have the exponents

(4. 1)

y =d —m(d —2) . (4. 2)

Since m = 0 cor responds to the operator 1, only
those operators with m &0 and y ~ 0 are relevant.
We note that the rotationally invariant operators
which correspond to short-range interactions have
exponents y (0. The only such operator with

y = 0 arises from the scale transformation
z- cz applied to H*, which reproduces H* since
it is homogeneous in z. For that reason, we can
restrict ourselves to the local operators 6Q .

For d= 4 we find from Eq. (4. 2) the exponents

y, =2 and y~=0. Thus, only one rotationally in-
variant operator 6Q, , given by Eq. (Bll), is rele-
vant. The corresponding scaling field g, has to
vanish at criticality and determines the critical
temperature tcompare Eq. (2. 14)]. For small
g, we may assume that g, is proportional to
(T—T,)/T, :

g, o-(T- T,)/T, =7 . (4. 3)

On substituting Eq. (3.15) into Eq. (3.14) and using
Eq. (3. 5), we obtain
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The coefficients a which determine the loga-
rithmic singularities are calculated in Appendix B.
Wilson's recursion relation is used for this cal-
culation, It yields

a8»= —(n+8)(1 —b ) /lnb,

a,'„=—(n+2)(1 —b ) /(2lnb),

ao»= —n(l —b ) /(2lnb),

(4. 4)

(4. 5)

where b is the momentum cutoff factor. Using Eq.
(3. 16), we obtain the exponent

P, = —(n+2)/(n+8) . (4. V)

~9j)= ~8+~(~8=0, (~j«))
to obtain

(4. 9)

z(p, (0)) =e "u,o(l)+e "E(go=0, (g;«(f))) .
(4. 10)

We discuss both terms of Eq. (4. 10) as a, func-
tion of v and an external magnetic field h. The
magnetic field h enters E via

gh Pbs 38 (4. 11)

The exponent y„ follows from Eq. (B9) with m =0,
k = 1. Since the magnetic field couples to the
q=0 component of z, it is not eliminated by the re-
normalization procedure. Therefore, only IU, h de-
pends on g„ and

I'

ah2h -—0, ph=0 . (4. 12)

Similarly the field go is never eliminated and cou-
ples only to p,o. Therefore, the additional factor
(1+ lo) multiplying g, appears only in po.

Defining l by

I gjl eoj(f+fo)" =1, (4. 13)

we obtain the free energy

~=go+ 8apjj 8 j (f+ f8)' j'/(20j+1)+ 8 "f, (g» 8"),
(4. 14)

with

f (g„(l))= Ciao(sgng, )+F(go=0, pjlsgngj, g„(l)) .
(4. 15)

Since g, is proportional to 7, one finds from Eq.
(4. 13) in the limit f»fp, i. e. , ~7'~ «1,

f+Ep l»1~i I (4. 16)

It is independent of the cutoff parameter b. Al-
though it is encouraging that P, is independent of
b, it is not known whether Wilson's recursion re-
lation gives the exact result for this case. Since
2y, =yo and aoyy 40, we find that there is an addi-
tional factor (l+lo) associated with the g,3 term in
P,o

po(l)=goe +paojjgj e (f+4) ' /( Pj+1)
+by, o(gje"(f+fo) j). (4. 8)

We now use Eq. (3.3) and

The most singular contribution to the specific heat c
at constant g„=0 for l7) «1 follows from the sec-
ond term of Eq. (4. 14),

(4. 17)

We obtain the singular behavior of the susceptibility
y from the last term in Eq. (4. 14), '

x"e""lrl 'l»l~l
I
"= l~l 'l»1~i I'""'"""

(4. 18)
The Hamiltonian has no lower bound for vanish-

ing irrelevant fields below the critical tempera-
ture. Therefore we cannot deduce the spontaneous
magnetization m from Eq. (4. 14). However, we

may use

»(uj(0)), -4j s~(u;(f))
egh gh

e~(&j(f)) -j
(f)

sg„ l)
where m(l) denotes the magnetization for the fields
p, j(l). Within Wilson's approximation, the Hamil-
tonian reads

(4. '.9)

e=e*+ d'. Z v„z'"(~).

Defining E by Eq. (4. 13), it turns out that the lead-
ing terms for v8 are proportional to (f+ lo)

8 for
k&2, whereas 0&vj-(l+lo) and 0&v3-(l+lo) '.
Since for this value of / the system in the state
(p, , (l)) is far away from criticality, one obtains
m(l) by determining the value of z that minimizes
the Hamiltonian (4. 20). This yields

(4. 2o)

m(l) ~ (l+ lo)'/3 (4. 21)

For n &1 this is an estimation only, since the
persistence of an infinite correlation length as-
sociated with breaking a continuous symmetry
might result in some violations of Landau's mean-
field theory even for jg, ) e ' &1 below T,. From
Eqs. (4. 19) and (4. 21) we obtain

~ "e '«+fo)"' I~I "31»lrl I"""'
lrlj/8 I]nlrl I3/(n+8& (4. 22)

Similarly one finds, for T= T, in an external mag-
netic field with / defined by Ig„I ' = 1, the mag-
netization

I"e '(f+fo)"'- Ibl"'I»I&I I"'. (4. 23)

The results in Eqs. (4. 17), (4. 18), and (4. 22)
agree with the results obtained by Larkin and
Khmel 'nitskii' from diagram techniques. In the
limit n- ~ one obtains the same results as for the
spherical model" as expected from Stanley's
proof. '6

V. TRICRITICAL BEHAVIOR IN THREE DIMENSIONS

In this section we discuss the behavior of an n-
vector model near the Gaussian fixed point Q*, = O
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in three dimensions. We have shown that such a
system exhibits a tricritical behavior with molec-
ular-field-type tricritical exponents. 4

From Eq. (4. 2) we find the exponents

Since a,'» vanishes, we do not obtain an extra
logarithmic factor to po. Therefore, we obtain
for the free energy I' as a function of the scaling
fields g; in leading order

y0=3, y1=2, y2=1, y3=0. (5. 1) &(Zo~&~Z2lo 2
~

S'2)

Hence, there are two relevant operators 6Q, and

6@2 given by Eqs. (811) and (812) with d= 3. Ac-
cording to Eq. (2. 14) two scaling fields, g, and

g2, have to vanish at criticality. Since both op-
erators are rotationally invariant this situation
does not correspond to a normal critical point but
to a tricritical point. ' In a tricritical system
t2vo fields (in addition to the ordering field) have
to be adjusted to approach the tricritical point.
For example, in a He'-He mixture one has to ad-
just both the temperature and the difference be-
tween the chemical potentials of the He and He
components to reach the superfluid-phase-separa-
tion tricritical point. The scaling fields g, and

g2 are, in general, functions of these two experi-
mental fields. For He - He mixtures the ordering
field h is the field conjugate to the superfluid or-
der parameter. This field is experimentally not
accessible, and the physical field space is defined
by 8=0.

The exponents y, = 2, y2 = 1, and the exponent
y„=-', for the ordering field lead to molecular-
field-like tricritical exponents'8'9 as shown pre-
viously. ~ [The exponent y„can be obtained from
Eq. (89) with m=0, k= 1.] Since there is also a
marginaloperator 5@2, givenby Eq. (813), witha
vanishing exponent y3, we expect logarithmic cor-
rections to the molecular-field behavior.

Again we calculate the coefficients a using
Wilson's recursion relation in Appendix B. We
obtain

a222= 6(3n+22)(1 —b ') /(b lnb),

a,',2= 6(n+4)(1 —b ') /(b lnb),
I
131=o

a,',2
= 3 (n + 2 )(1 —b ')' /(b 1nb ),

Cl012 = 0

This yields the exponents

P, = 0, P2 = —2(n+ 4)/(3n+ 22),

(5. 2)

(5. 3)

(5. 4)

(5. 5)

(5. 6)

2 a122 A2 e ' (I + lo) 2' /(2p2+ 1) (5. 6)

to p, . Since p, , couples back to the other fields
p,„ the leading contribution from g2 is proportional
to

which are again independent of the cutoff param-
eter b.

Since 2y2 y1 and &12240 we obtain a contribution

(5. 10)
With the choice jg, j

e2' = 1, this leads to

&=~o+ 1~ii'"

«.«.I~il "' l»l~ I
I"'",~.l~il "'), (5. »)

where f, is E(g, = +1)—go and go is the regular
part of the free energy. The result (5. 11) differs
from the prediction

&""=1~ii" '"f,(~2l~il '~, ~2I~~I '~)

of the phenomenological tricritical scaling ap-
proach [compare Eq. (6) of Ref. 17] by the loga-
rithmic correction factor in the first argument.
The tricritical exponents can be identified with

First we discuss the consequences of Eq. (5. 11)
if we approach the tricritical point from the dis-
ordered phase along a line g, /g2 = const' 0, that
is, a, path not parallel to the second-order critical
line [compare Eq. (5. 15)] or the first-order tran-
sition line. '7 Then we obtain for the singular con-
tribution of the entropy S"", specific heat e (for
constant g„=0), and susceptibility X„with respect
to the ordering field,

S &2 lgl /2

c lg I-'/2

x.- I~ I

'.

(5. 12)

(5. 13)

(5. 14)

m=e "'m(l) .
Moreover, with jg, je"=1 and g2 jlnjg2j j

& jg, j, we obtain for the leading terms of the coef-
ficients v, in the Hamiltonian (4. 20) now v2
o- (l+ lo)'& with I22=~22, ———k for integer k except
&1=0 and &3= —1. This yields the estimation

m(l) ~ (l+ lo)'/',
and hence for the "ordering density"

(5. 15)

(5. 16)

These resu?ts are in agreement with the molecu-
lar-field theory. 4 Equations (5. 12) and (5. 13) de-
scribe also the trieritical behavior of the "nonor-
dering density" and its conjugate-field deriva-
tive. '" Throughout our tricritical calculations we
have neglected terms of the relative order
(l+lo) '/ . Therefore we expect additive correc-
tions to our results which are smaller by a fac-
tor jlnjg, j j

'

In the ordered z egime the Hamiltonian has no
lower bound. In analogy to Eq. (4. 19) we find

g2 e'(l+ l, ) 2"/' (5. 9) (5. 1'l)
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Again the exponent P, = —,
' agrees with the molecular-

field result, but the power law is modified by an
(here) n-independent fractional power of a loga-
rithm. The appearance of logarithmic correction
factors makes a determination of tricritical ex-
ponents by series expansion techniques difficult.

The critical line in the g„=0 plane is determined
by a nonanalyticity of the function f, (q2, qk = 0) in
Eq. (5. 11) in the variable q2. From this we de-
duce that the shape of the critical line is given by

APPENDIX A

Here we give a more complete discussion of the
calculation of p, , (l) and show that in Sec. III we
have obtained the leading terms for large l. We
expand the fields p. in powers of the scaling fields
(except g„)

t(g =tj(I)+ & t1((I)@(I)

+2+t1(( (I)g( (I)a( (I)+ ~ . (Al)

2
I] I I I

(6-n)/(atl+22) (5. 18)

(Throughout this appendix we use the convention
that the summation runs over all indices i. ) We
substitute Eq. (Al) into

= d1+ dP g1+ ds g2+ d4gP + ' ' ~
expt 2

- exyt 2
&S = e1+ ca&1+ e3 g2+ e«a + ' ' '

~

(5. 19)

(5. 2o)

In the expression (e, p, ;""—d2 p2 ") the term linear
in g2 is eliminated. Therefore, on using Eq.
(5. 18) and (2p2+ 1)&0 for n &6, we obtain

This result reproduces the tricritical crossover
exponent y, = —,', but exhibits an additional loga-
rithmic correction factor in the equation for the
critical line.

The tricritical sealing fields g, and g, are non-
linea, r functions of two experimental fields, the
temperature, and a nonordering field. '"' Con-
trary to a phenomenological approach, the re-
normalization theory defines uniquely the direc-
tions of the g axes (relative to Cartesian experi-
mental field axes, for example). To discuss the
critical line as a function of the experimental
fields p, ", we start from the assumption that
these fields can be expanded in terms of the scaling
fields g;,

8p~
=y& p&+ ~ —

~
m a&i pi,

1Z ~

(A2)

= —,'a„„„t„+O(l '), (A4)

which leads to

t„=s(l+ lp) '+ O(l ), s = —2/a„'„„

[compare Eq. (3. 1S)]. For j eu we obtain (we as-
sume yy 0 0)

in which I denotes the set i» i». . . , i„and p., stands
for p, i= p, , 1 p$ Equating equal powers of g;,
we obtain the Eqs. (AS), (A8), and (A1S) below for
the coefficients t.

The zeroth-order terms t& obey the equations

Bt, I r

el '1 a
=yjt~+ 2 aj; ] t] t] + ~ ~ ~

Suppose that t„col ' and all other coefficients
t,. c l '; then we obtain for j =u

e, (p, ',"", —d, ) —
d2 (p'2"', " —e, )

(6 2,!' el)' Il-nI &2", —e) I

I""'
y1 t1+ a2'„O+(l ) = 0,

from which it follows that

t, = —(ai„„/2y, )(f+ l, ) '+ O(l ') .

(A6)

This result for the critical line can be tested ex-

perimentallyy.

'
We mention that Migdal ' has considered the cor-

relation functions at a tricritical point by using
diagram techniques. Migdal interpreted his cal-
culations in terms of a. normal critical point since
he assumed implicitly g1 = 0 and hence was left
with only one parameter, g~, that corresponds to
his V,«. It is interesting to calculate the free en-
ergy near the tricritical point by diagram meth-
ods,

Next we consider the first-order terms t».
They obey

~thou

( )= (y —y~) t)~+ a~& &
t t& ~+12 ~1 2

(A8)

" = a,'„,t,„s(l + I,) '+ O(I ' ), (A9)

which yields

Suppose that t» ~ l & and t,.~ ~ l~& ' for j p k; then we
obtain from Eq. (A8)
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For j0 k provided that y& ey~, we obtain from Eq.
(A8)

(y, —yk) t»+ a&„k s(l+ lp) k '+ O(l k ) = 0, (A11)

which leads to



Z, OGARITHMIC CORRECTIONS TO THE MOLECUI AR- FIELD

t„= '"" s(l+l())» '+ O(l » ')
yy —yg

(A12)

We omit a discussion of the case y~ =y, .
At last we consider the terms t in general or-

der. From Eq. (Al) and (A2) we obtain

+ &y~-y~&t&&= r~ &&;, , ~;,E, ~;,E, + ~ ~ ~ .
(A13)

Here E stands for k„.. . , k„and y~ =y~ + ~ ~ ~ +y~ .
n

The summation runs also over all decompositions
of the set E into two sets E, and E2. If y~+y& then
the leading contribution to tj~ comes from the
leading term of the right-hand side of Eq. (A13).
If y/ =y» then we obtain one more power in (l+ lp)
for t&~. Therefore we obtain

t/»~(l+lp)» /» P» ——P» + ~ ~ ~ +P» (A14)

where ~&E gives the number of extra powers of
(l+ lp) which arise because of y/ =y, . It might be
that the leading power of t,.~ is less than that given
in Eq. (A14) because of vanishing coefficients a
or because of contributions canceling each other.
We note that we have neglected factors ln(l+ lp) in
this discussion.

APPENDIX B

We sketch the calculation of the coefficients a'
from Wilson's recursion relations [Eqs. (3.41)
and (3, 43) of Ref. 2]. With general momentum
cutoff b and without the constant term I, (0), these
relations are

5Q(z) =L'd/ +» "((1—b )z )II (z)
and

y = d —(2m + k) (-,' d —1) .

(B8)

(ao)

In particular, for the rotationally invariant solu-
tions (k =0) we obtain Eq. (4. 2) and

5Qp ——1,
I A2

5Q) = pn —z

5Q2 ——,'n (m+ —1)-2(2n+ 1)z +z

'5Q3 m (-,'n+ 1)(-,'n+ 2) —3(—,'n+ 1)(-,'n+2)z

(B10)

(B11)

(B12)

with

z =(1 —b ")z

+3(2n+2)z —z, (B13)

(B14)

sp, , (i+ l')
el

8 p, ((l+ l')
el' (ale)

To obtain the coefficients a' we calculate first
the contributions to 51ni(z) [Eq. (B4)] by using
Eq. (Cl), and expanding the polynomials

2[61~( )],,=&0, Q. &-&Q, &(Q, )

bd Q a I (n/2-1)((1 b2 d) zp )-

(B15)
The last step is the calculation of a,'» from

Q]gg. From

u((l+ l') = e'(' p, (l')+ —,
' Z a„,(l) p,,(l') p.»(l')+ ~

(B16)
and

I, (z)= fd"y exp[-y'- Q, (z, y)],
Q) (z, y ) = p Q) (z+ y )+ 2 Q) (z -y)

Q„,(z) = —b lnI, (b' d/Pz) .

(al)

(B2)

(»)

we obtain in the limit l = 0

ea(/»(l)
el

=a, ,„e'( +(y, +y, )a,„.,(l) . (B18)

The fixed point under consideration is given by
Q*=0. Then we obtain from Eq. (B1) for the
deviations from the fixed point

a(„;(l) = a,'„, le'(' = a,'„, b'( lnb . (B19)

In particular, for i =k and j =u Eq. (B13) yields

51ni(z) = —(Q)+ —,'((Q ) —(Q) )+ ~ ~ ~

with

(A) = fd"y A(z, y ) e ' /f d"y e "

(B4)

(B6)

Although Wilson's recursion relation gives b-de-
pendent coefficients a', it turns out that the ex-
ponents p do not depend on b.

APPENDIX C
To obtain the eigenfunctions 5Q and the eigenval-
ues X = b', we use the method of Ref. 13. Since
r*=u*=0, Eq. (12) of Ref. 13 yields

b" 6Q(b"'-'z) = b" e"'6Q(z) (a

The eigenfunctions 5Q are products of the iaguerre
polynomials I. with the harmonic polynomials III,.
Since

z2e))/4 I (n/P+»-1) II (z)m k z

a-1, zI ( /2+»-1) II (z) (ag)
a m a-1

we obtain the eigenfunctions

The expectation values (A) [Eq. (B5)] can be
calculated from

( „(- ),„) I'(v+-,') I"(2n+v+ p, )
I'(—,') I'(—,

' n+ v)

One obtains Eq. (Cl) from evaluating the gen-
erating function

fd"y exp[- (1 —p)y'+ Py z J

in two ways: (a) by first expanding in powers of
p and P and expressing the integrals by expectation
values and (b) by first evaluating the integral and
then expanding.
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