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An expression for the contact density, or Fermi-surface electron probability density at the nucleus, is

developed to first order in the pseudopotential for a metal with a spherical Fermi surface, and applied
to solid alkali metals and liquid binary alkali alloys at all concentrations. The explicit orthogonalization
of the pseudo-wave-functions to the ionic core states permits the use of a local empirical pseudopotential.
The contact density samples the Fourier transform of the pseudopotential primarily in the region just
above 2kF; consequently the large changes in k~ which occur upon alloying in the alkali metals are
dominant over the details of the ionic environment in determining the behavior of the contact density.
The calculated contact densities, when combined with measured alloy Knight shifts, imply a unique and

roughly free-electron-like dependence of the Pauli electron-spin susceptibility upon the interelectron
spacing r, in the range 4.0 (r, (5.8. The polarizability of the ions may introduce an effective value of
r, in the range 3.8&r' ( 4.6. The deduced susceptibilities are consistent with a simple picture in

which the electron-ion effective masses of Na, K, Rb, and Cs are close to unity; the susceptibilities

agree in this picture with a recent analysis of the observed enhancement of the Korringa constant. The
calculation is in some important respects insensitive to the choice of pseudopotentials, structure factors,
and care-state wave functions. The temperature dependence and change upon melting of the Knight
shift are also estimated, and the extension of the calculation to other metals is briefly discussed.

I. INTRODUCTION

The Knight shift~ of the NMR frequency in a
metal depends upon the electron-spin susceptibility
and the eontaet density or probability density for
Fermi-surface electrons at the nucleus. While the
contact densities in perfect solid metals may be
calculated by the techniques of band theory, 3 the
contact densities in disordered systems such as
vibrating solids, liquids, and alloys are more
naturally treated by pseudopotential perturbation
theory. Faber~ has taken a yseudopotential ap-
proach to calculate the change in the contact den-
sity of an ion due to changes upon alloying in the
scattering from neighboring ions. His method is
similar in principle to the phase-shift method of
Blandin and Daniel. s

If the cha.nges in the environment of an ion due
to alloying, melting, etc. , are associated with

large changes in the Fermi wave vector 4~, then
changes in the contact density of an ion are not
adequately described by the scattering from neigh-
boring ions, and the full pseudopotential perturba-
tion theory must be employed. This approach ad-
ditionally provides an estimate of the magnitude of
the contact density in the pure metal and at all alloy
concentrations; it has been applied to cadmium by
Kasowski, to the alkali metals by Perdew and

Wilkins, to sodium by Ritter and Gardner, and to
magnesium by Jena and Halder. '0

The Knight shift is discussed in Sec. II. Ex-
pressions for the contact density in a binary alloy
with a spherical Fermi surface are derived in
Sec. III, and applied in See. IV to the liquid alkali
metals, which exhibit large changes in k~ upon al-
loying. It is shown. that the explicit orthogonaliza-
tion of the pseudo-wave-function to the ionic core
states suppresses the higher Fourier components
of the pseudopotential and thereby permits the use
of a local empirical pseudopotential in the calcula-
tion. The numerical results are combined with
measured Knight shifts to extract information about
the Pauli susceptibility. Then the sensitivity of
the calculation to various input parameters is ex-
plored. The temperature dependence of the Knight
shift is also discussed in Sec. IV. The change in
the Knight shift upon melting is considered in See.
V. Appendix C should be consulted for a discussion
of the effective y, values resulting from ion po-
larizability in the dielectric response.

II. KNIGHT SHIFT

The electron-spin magnetic-moment density

M, (|) = (Z y lf 8,5 (| —r, ))
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in paramagnetic cubic and liquid metals is propor-
tional to the applied magnetic field Ho:

The Knight shift of component A is

If„(c,) =, .x, (le„-N;, c.)l'&„~„. (3 1)
M.(r) = X(r)H (2. 2)

If y~ is the Pauli susceptibility, i.e. , the actual
electron-spin susceptibility of the system, one
may write

x(r) = x~f(r), (2. 3)

J d ~f(r)= V. (2. 4)

The Pauli susceptibility is enhanced over its free-
electron value by electron-ion and electron-elec-
tron interactions. If the Fermi surface is nearly
spherical and if the principal effect of the static
electron-ion interaction is to enhance the Fermi-
level density of states by a, fa.ctor (m~/m). . . then

(m*/m), ; [1+F,(~,)] 0
)1+ (m*/m) G (~ )

(2. 5)

where I"~ and Go are jellium Fermi-liquid param-
eters, "and

Xo~(r, ) = 2. 589 x10 6/r, (2. 6)

is the free-electron spin susceptibility. The inter-
electron spacing y, is related to the average volume

Qo of metal per ion, the average valence z, and the
Fermi wave vector kg:

(3.2)

and the true wave functions for the conduction
electrons would be orthogonalized plane waves:

l

@1-GPw) [~0(c )]-1/2(1 P)
l
k)

where N„-(Ca) is a normalization factor of order
unity and

(3.3)

I'=E lu,",&(H, l+ Z lu,', &(,', l
(3.4)

is the projection operator onto the ionic core
states [(r I u, , ) = u,"(r —R", )]. The contact density
is then

(3. 5)

If the core-state wave functions of neighboring ions
do not overlap, then the "orthogonalization factor"

y„(u) =1-Z u,"(0) (u,"lk)

=1-Z u„', (0) &u„",lk& (3. 6)

An expression for the contact density will now be
developed to first order in the electron-ion pseudo-
potential. If the pseudopotential were strictly
zero, then the pseudo-wave-functions would be
plane wa.ves Ik):

n, /z =- —', ~(~,uo)' = 37/'/g, (2. '7)

z =, ~x(0) =-', ~x, (l@„-(0)l')„A . (2.9)

The quantity (Iy„-(0) I'&» is called the contact den-
si

III. CONTACT DENSITY IN BINARY ALLOY

The system considered here is a macroscopic
unit volume of an a,lloy of metals A. and B with con-
centrations 1 —C~ and C~ respectively, in which
the average volume per ion is Qo. There are N~
= (1 —Ca)/00 lons of type A with coordinates R) .

where ao is the Bohr radius.
In the nonrelativistic one-electron approximation

with identical spatial wave functions for spin-up
and spin-down electrons, it is easily shown that

f( )=(l+.-( )l') (2. 3)

where g» is a one-electron wave function normal-
ized in unit volume, and the brackets indicate a
Fermi-surface average follomed by a configuration.
average. In simple metals, it is now knomn that
exchange polarization, relativity, and electron
correlation enhance f(r) by a. factor A(r) of order
unity.

The Knight shift due to hyperfine contact inter-
action between a nucleus at the origin and the elec-
trons which surround it is

involves only s-like core states on ion A, and the
OP% normalization factor becomes

x',(c,) = (k
l
(1 —f )'l k) = (k

l
(1 —P)

l
k)

In a solid, a single OP% may be the proper
zeroth-order approximation to the conduction-elec-
tron wave function, but in a disordered system the
Bloch wave vector k is no longer a good quantum
number, and the proper zeroth-order wave func-
tion is a linear combination of OP%'s having the
same I k f. However, it can be shown' that to
first order in the pseudopotential the expectation
value of any Hermitian operator averaged over a
spherical Fermi surface may be computed by
evaluating the principal part of the expression ob-
tained formally from nondegenerate plane-wave
perturbation theory. The operator (1 —P) I R,")
x (R,"1(1—P) which yields the contact density is
of course Hermitian.

First-order principal-part plane-wave perturba-
tion theory in the pseudopotential V„yields a
pseudo-wave-function
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q

where E(k) = k Ikl /sm and S' indicates the princi-
pal value of the sum. The true wave function is
obtained by orthogonalizing (S.8) to the core states
and normalizing the result:

&k+ql &,.Ik&= p";&k+ql v. lk&+ pf &k+qlvslk&
(s. 11)

&kIPlk+q&=p";&klf I&+q&+ p';&klf Ik+q&

where v~ and p„are, respectively, the pseudopo-
tential and projection operator of a screened ion
of type 2 at the origin, and

4„-(R"„C,) =[&,(C,)] "-'r,(k)e" Q e-i)i
q (S. 12)

~ y (k+q) ),-.yB (k+qi V Ik)
( )

y(k) E(k) —Z(k+ q)

[A factor y„(k) has been taken out in front of the
first-order correction for convenience. ] The
normalization factor is N, (CB) = N, (C )B+ 6N„(CB),
where

6x„(c,)= —SRe~ 2 (klsli+q)
q

(s. io)
Since V„and P are suyerpositions of individual
ionic operators, their matrix elements are

where

EA(kF)+ AB(kF) CB) (3 13)1+ QADI,„(CB)/N„(CB)

E (k ) 3 d.kF ~ g r~(kF+q) (kF+q(v„lk )
y„(k,) E(k, ) -Z(k, +q) '

(3. 14)

The expression (3.9) must now be squared, li.n-
earized, and averaged to yield the contact density:

(I4„-(R" c )I') —I@' "(R",c )I

A

n~(k„cB)=s 6 Z " ', [s»(q) -1](kF+qlv„lk„&4v; y„kFg
1/2

+ ] ~~~ q ~F+q. ~~ kp ~ ky —~ kg+ (s. is)

sr„(c,) = - 2, ","—„' e Z I(i - c,) (~, l) „l
~, + ~ )

0 q

1/2
& 3»(q) &kF+qlv&lkF&+ 1 c sg (q) &k +qlvBlkF&

B

1/2
+ CB (kFlpBlkF+q& SBB(q) (kF+ql vBIRF &+ -- SBB(q) (kF+ql vBIkF &. IE(kF)-«kF+q)]

(3. 16)

These expressions involve the partial structure
factors

sg~(q) = &~' ((p,".p";))

(q)=(» )
'" «O';P";»=3 (q)

(s. iv)

(S.18)

in which double brackets indicate a configuration
average.

For discussion purposes, the first-order cor-
rection to the contact density has been separated
into two pieces. The "self-term" Z„(kF) repre-
sents the influence of the yseudopotential of the
single ion at 5, on its own Knight shift. Phys-
ically, y~ (kF) [1+Z„(kF)]is the contact density for
a single screened ion A. immersed in an otherwise
uniform electron gas. The "distinct term" n, »(kF,
CB) is a fractional correction due to scattering

from the other ions in the metal. The Faber scat-
tering theory5 (as generalized by Halder'~) is ob-
tained in essence from (3. 15) upon the substitution
y„(kF+q)- y„(kF). Retention of r„(kF+q) in
(3.15) corresponds to a sort of "multiple scatter-
ing'". The scattered waves arriving from the other
ions are somewhat distorted by the single ion of
interest. [Faber actually employs a damped
Green's function which introduces a relaxation time
into the energy denominator of (3.15). Calculations
indicate that this relaxation time is too long to be
important in the alkali metals. ]

Expressions (3. 14)-(3.16) simplify under certain
approximations. In the remainder of this paper, the
small normalization correction is approximated by

6z,,(c,) = (1/n, ) [(1—c,)n", 6x"+ c,n,'6x ], B

(S.19)
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where QNA is the normalization correction calcu-
lated for pure metal A; more significantly, the
pseudopotential is assumed to be effectively local:

x - q — - . (3.22)z(q)
E(k~) —Z(k~+ q)

These integrals are evaluated analytically in Ap-
pendix A for Slater-like analytic core wave func-
tions. Finally, it is convenient for discussion pur-
poses to separate (3.21) into two factors:

(3.23)

The factor in large round parentheses is the value
that (3.21) would take under the substitution
y„(kz+q)- y„(kz); the departure of the factor
f„(k~, q) from unity thus measures the influence
of explicit orthogonalization on the first-order cor-
rections to the contact density.

Henceforth it wi1.1 be convenient to work with the
dimensionless "form factor"

z mk
vA(q) —

2 @(k' )g vg(q) =
5k s vA(q) p

0 r (3.24)

which for Lindhard-screened pseudopotential tends
to —z in the limit q-0.

IV. LIQUID ALKALI METALS

In liquid metals the sums in Sec. III may be con-
verted to integral form through the transformation

1
(2w)'

dQ'Q' '~ dg y

with the results
00

Z„(k~) = 25'
~

d q F„(k„,q)~)„(q),A E& A (4. 2)

(k ~)=2s ~ d2 F (2g A E&

1/2
x [S~(q) —1] v„(q)+ 1 C- &gg(q)&a(q) ~

(4. s)

&k~+ql~~l4)=~~(q) = jd'« "'~~(y) .
(s. 20)

The latter approximation leads to simple expres-
sions for (3. 14)-(3.16) in terms of the dimension-
less angular integrals

(k (p,
dq' 'y (k +q) &(q)
2n y„(k~) Z(k„) —Z(R~+ q)

'

(s. 21)
~P~ ~k~+q)

5N" = —2(P d~ „ fl„(k~, q)Sgg(q)F)g(q), (4. 4)2~2 A F & AA A

0

where (4.4) is evaluated only once for each pure
metal A.

The integrals (4.2)-(4. 4) have been evaluated
numerically for the liquid alkalis Na, K, Rb and
their binary alloys, and combined with Eqs. (3. 13)
and (3. 19) to yield the contact densities. Lithium
was excluded because of the strength and nonlocal-
ity of its pseudopotential, as well as the a.bsence
of measurements for the liquid lithium-alkali al-
loys. Cesium was excluded because of the lack of
suitable analytic core wave functions; however, it
was possible to ca.lculate the contact density at nu-
cleus A in A-Cs alloys by assuming that the Cs
contribution to the normalization factor is
—Cc,(130n30/Qo), in keeping with the trend in the
other alkalis. For Na' and K' the core wave func-
tions of Bagus'4 were used, and for Rb' those of
Watson and Freeman '~ (see Figs. 1 and 2).

The pseudopotentials employed here were those
of Ashcroft, ' in which the unscreened pseudopoten-
tial equals the Coulomb potential for ~& B, and

equals zero for y& B„ I indhard screening is as-
sumed (Fig. 3). The model radius R, is deter-
mined from the measured [110jband gape (occur-
ring at q/2k~=1. 14) in pure solid Na, K, and Rb,
and from the observed resistivity in Cs. These
potentials have a claimed reliability for q/2k~-2.

It is apparent from Figs 2 and 4 that the region
just above q/2k~= 1 is weighted very heavily in
(4. 2) and (4. 3); fortunately, this is just the region
in which the pseudopotential is known empirically
in the pure metals. In pra. ctice, one finds —by ex-
amining the partial sums of (4. 2) and (4. 3)—that
d „~attains a value within 5/g of its final value at
q/2k~ = l. 5 and has effectively converged at q/2k+
=2, while 1+Z„attains a. value within 5% of its
final value at q/2kr, =2 and then undergoes small
oscillations up to q/2k~ =8. These small oscilla-
tions result from the discontinuity in the pseudo-
potentia. l and are not physically meaningful; ac-
cordingly, the Ashcroft form factor has been set
equal to zero beyond its second node, which occurs
at q/2k+ =3 in the pure metals. The explicit ortho-
gonalization acts as an important convergence fac-
tor; indeed, if the full form factor is employed and

f„(kz, q) is replaced by unity, then 1+Z„converges
slowly to unrealistic values. The present approach
succeeds because of the strong orthogonality con-
straint on the wave function near the nucleus.

The largest individual contribution to the change
in the Knight shift upon alloying in the alkali metals
is found to be the change in the self-term Z„(k~)
(see Table I), although other contributions are
not negligible. The behavior of Z„(k~) can be un-
derstood from Fig. 3. Consider the alloy Na-Cs;
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A=Rb50~ .

20-

2 3+ 4

-IO— I

2O A=K &

FIG. 1. Orthogonalization functions y~(q) [Eq. (3.6)j,
where q is measured in units of k& appropriate to the pure
liquid metals.

as the Cs concentration increases and k~ de-
creases, the node of the Na pseudopotential is dis-
placed toward larger values of q/2k~, and the
pseudopotential in the important region just above
2k~ becomes more attractive-consequently the

(q) = l + (l —(: ) [8(&, q) —l],

S„,(q) = [C,(l —C,)]"'[S(o,q) —l],

(4. 5)

(4. 6)

and the hard-sphere diameter o varies with the
atomic volume Qo. A linear variation of Qo with
concentration has been assumed.

Some of the calculated contact densities are pre-
sented in Table I. Conventionally, results are ex-
pressed in terms of the quantity

N = (~ e„-(lt,)~')„g/fi, , (4. V)

contact density increases. At the same time, the
maximum of the repulsive part of the form factor,
Eg. (2.24), is reduced, and changes also occur in
the dependence of f„(k~ q) upon q/2k~ (Fig. 5).

The partial structure factors employed in the
calculation were those of Ashcroft and Langreth, '~

based on the solution of the Percus-Yevick equa-
tion for a binary fluid of hard spheres of two dif-
ferent diameters. The calculated contact densities
varied at most by about 3~/0 as the packing fraction
and the ratio of hard-sphere diameters were varied
over a permissible range; the results presented
here are for a packing fraction g = 0.45 and a hard-
sphere ratio of unity. The latter condition defines
the "modified substitutional model, " in which

Na Na 4.045
K K 5 018
Rb Rb 5.371

TABLE I. Intermediate quantities and results from the calculation of contact densities in liquid binary alkali alloys, with
Pauli-susceptibility enhancements inferred from alloy Knight shifts.

A 8 r CB Qo/po Vw(kz) Na (Ps) 0+6'/Na) '1+ZA bm Pg AA XPI XP

11.82 0.928 G. 544 0.965 0.989 —0.289 0.368 1.228 1.730
—19.35 0.864 0.820 0.934 0.932 —0.285 0.495 1.485 1.573

25.35 0.832 1.192 0.951 1.290 -0.239 1.190 1.340 1.582

Na. K 4.362 0.280 347.7
4.887 0.840 488.8

12.03
12.30

0.900
0.870

0.462
0.356

0.952
0.937

1.140
1.414

—0.318
—0.368

0.362
0.349

1.636
1.573

Na Rb 4.695 0.420 433.4
5.044 0.700 537.5
6.351 0.980 641.7

Na Cs 4.242 0.080 319.7
5.373 0.700 649.5

12.21
12.37
12.48

11.96
12.48

0.866
0.846
0.833

0.910
0.851

0.398
0.336
0.292

0.492
0.282

G. 947
0.953
0.951

0.971
0.995

1.311
1.500
1.673

l.081
l.685

—0.341
—0.368
—0.391

—0.305
—0.378

0.368
0.363
0.356

0.371
0.366

l.561
1.536
1.544

1.671
1.580

K Na 4.4S5 0.600 377.9 —18.58 0.891 1.026
4.937 0.100 503.9 —19.25 0.867 G. 848

K Rb 5.055 G. 100 641.1 —19.40 0.860 0, 808
5.291 0.760 620.3 -19.67 0.838 0.743

K Cs 5.122 0.120 562.7 —19.48 G. 860 0.784
5.644 0.800 753.1 -20.01 0.844 0.630

0.948
0.936

0.936
0.948

0.944
0.990

0.753
0.902

0.946
1.039

0.972
l.189

—0.215
—0.274

—0.288
—0.303

—0.293
—G. 322

0.523
0.498

G.498
0.518

0.502
0.533

1.565
1.575

1.574
1.569

1.573
1.603

Rb Na 4.721 0.560 440. 8
5.330 0.040 634.2

23.92
25.27

0.864
0.833

l.5G2

1.210
0.956
G. 951

1.065
1.274

—0.149
—0.233

1.316
1.196

1.573
l.583

Rb K 6.092 O. SOO 553.1
6.351 0.060 641.9

24. 80
25, 31

G. 856
0.833

l.300
l.19S

0.938
0.950

1.1S6
1.282

—0.214
—0.237

1.184
1.189

1.559
1.582

Rb Cs 5.406 G. GSO 661.9
5.750 0.920 796.3

25.41
25.99

0.833
0.839

1.171
1.011

0.966
0.997

1.303
1.443

—0.242
—0.267

1.188
l.186

l.592
1.690
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f4(&F,q)
l.O-

0.8-

0.6-

04 A

0,.2-

FIG. 2. Functions
f%~, q) [Eq. (3.23)] ap-
propriate to Na, K, and Hb.
There is a very %peak

singularity at q =2k+.

04 0.8 l.6g 2'.0 X.

Q

2kF
2.4 2.8 3,2 3,6 4,0

-0.2-
L

-0.4-

which corresponds to wave-function normalization
in the Wigner-Seitz cell. The values for P~ in
Table I are in excellent agreement with the recent
real-potential calculations by Moore and Vosko~
for solid Na (0. 364) and K (0.483), and by Mahanti,
Tterlikkis, and Dass for solid Rb (l. 13V); however,
this excellent agreement must be regarded as
fortuitous to some extent.

It should also be noted that P~ varies by 10%
or less upon alloying, although the average atomic
volume Aa varies strongly (by more than 100% in

Na-Cs). This is a rather surprising result, for the
constancy of P~ can be characterized as tight-
binding behavior. This behavior of the contact den-
sity appears to be a mere numerical consequence
of the pseudopotential calculation, without a simple
interpretation.

The Knight-shift measurements in binary alkali
alloys, including the empirical relation~s

1 dK~ 1 dna, (4. 8)
Kw(Ca) dCa ca i Za(Ca) dCa ca=&

v (q)
0.4-

l.6

s

Cs

2.0 2.4 2.8 3.2

~ . . q' ""-
~ -.

2kF
5.6 4.0

-0.2 FIG. 3. Ashcroft form
factor [Eq. (3.24)] for Na
at electron densities cor-
responding to Na, K, and
Cs.

-0.6

-0.8

"l.O
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fA(kF, q)
I.O t-

0.6

0.4

0.2

FIG. 5. Orthogonaliza-
tion function f (A&, q) for Na
at electron densities ap-
propriate to Na and K.

0, 0.4 I.2 l.6 2.4 ' ~2.8

q

F
4.0

-0.2-

ever, the values of A~ calculated here must surely
contain some of the errors in the calculated con-
tact densities. (A value A„=-1.53 for Cs may be
determined from the susceptibility of Cs deduced
here, the observed Knight shift, and the theoreti-
cal value of P„' from Bef. 3. This result compares
well with the value A„= 1.54 expecteds from core
polarimatlon and relativity. )

The deduced enhancement of the Pauli suscep-
tibility is presented as a function of y, in Fig. 6.

The calculation implies (to within a few percent)
the same Pauli susceptibility for a particular alloy
as deduced separately from the Knight shifts of
the two alloy components, as it must if the calcu-
lation is to be believed, Moreover, the deduced
susceptibilities are found to define a nearly unique
function of y, . This is just what wouM be expected
from Eq. (2. 5) if (m*/m), , is close to unity in all
the alkali metals from Na to Cs, as suggested by
the pseudopotential density-of -states calculations

l.7—
XP
Xp

ONE'NT: N=No, K=K, R=Rb, C=

ED ON KNIGHT SHIFT OF Na.

4 ~

I.7—

N KNIGHT SHIFT OF K.
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R R R

FIG. 6. Deduced enhancement of
the Pauli susceptibility over its
free-electron value as a function of
interelectron spacing y, .

0 ON KNIGHT SHIFT OF Rb.

N NK

K
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I
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I
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of Tj.mbie and White ~ and Weajre. 3 The deduced
susceptibility enha. ncements it /yp in Fig. 5 are in
rough agreement with the spin-wave rneasure-
ments of Schultz and Dunifer 4; Na, 1.57+ 0.08;
K, 1.68+0. 10; Bb, 1.71+0.16; Cs, 2. 05+0.2.
However, the 10'%%uo decrease in the deduced enhance-
ments from Na to K is puzzling in view of the slight
increase in the measured enhancements and in the
theoretical enhancements for an interacting elec-
tron gas."

It is revealing to explore the sensitivity of the
calculation to the various input parameters. The
insensitivity to liquid structure has already been
discussed. The calculation is similarly insensitive
to the dielectric function which screens the pseudo-
potential: The inclusion of the Sham-Hubbard ex-
change'~ in the Lindhard dielectric function in-
creases the magnitude of the pseudopotential by a
q-dependent factor of the order of 1.10 to 1.05 in
the range l. 0& q/2j'p~ & 1.25, but changes the ca,l-
culated contact densities only about 3/o.

Often it is found that the magnitude of the cal-
culated contact density is sensitive to the input
parameters while its fractional variation upon al-
loying is not. For example, the simple Slater-
rule core wave functions yield values of y„'(kz) dif-
fering by as much as 20% from those calculated
from the more sophisticated Bagus functions, but
do not significantly affect the fractional variation
in contact density. Similarly, a 5%%up reduction in
the Asheroft core radius R, was found to increase
Pz by about 20% in a.ll the a,lkalis (mainly through
the self-term Z~), but the ratios P~(C~)/P~(0)
were unaffected to within about 2'%%uo. The calcula-
tions were repeated using the two-pa, rameter locaj.
Cohen pseudopotential'~ derived from spectroscopic
data; again, the magnitudes I'~ differed by as much
as 20/0 from the values in Table I, while the ratios
P~(Cs)/P„'(0) were unaffected

A possibly serious source of error is the neg&eet
of any energy dependence in the pseudopotential.
Evidence from the thermopower~s indicates that
this dependence is probably small, at least in Na
and K. However, it should be evident from the
preceding paragraph that a variation of even 5%%up

in R, upon alloying could seriously affect the de-
duced Pauli susceptibilities.

Finally, calculations have been attempted for
the temperature dependence of the Knight shift in
pure liquid alkali metals near the melting point.
This temperature dependence has been assumed to
arise through the temperature dependence of the
interelectron spacing x, (which is known from the
observed thermal expansion)~8 and of the hard-
spheres packing fraction (which is found from
compressibility data for Na and K, and from neu-
tron-diffraction data for Bb)." The values of
(d InK/d T) && 10 calculated in this way are as fol-

lows: Na, , 2. 6; K, 3.8; Bb, 2.7. The corre-
sponding values calculated neglecting the temper-
ature dependence of the packing fra, ction are as
follows: Na, , 1.4; K, 0.9; Rb, 1.2. These values
bracket the experimental values, which have been
estimated from the data of Ref. 30: Na, 1.9; Bb,
1.5. Unlike the change upon alloying of the Knight
shift, the temperature dependence is small but
highly sensitive to the details of liquid structure,
as Bitter and Gardner9 have observed.

V. SOLID ALKALI METALS

The structure factor for a perfect Bravais lat-
tice is

S(q)=XZ5;q, (5. 1)

where u is the displacement of an ion from its
equilibrium position. The configuration average
((e"' ")) can be expressed in terms of the Einstein

TABLE II. Convergence of the partial sum of 1+Zz
+h~ as a function of the largest included reciprocal-
lattice vector G/2k+ in perfect bcc solid alkalis rsee Eq.
(5.2)).

1.1398
1.6120
1.9743
2.2797
2.5488
2.7921
3.0158

m(G)

12
6

24
12
24

8

Na
(I'p --- 0.331)

0.659
0.607
0.587
0.596
0.612
0.614
0.614

1+~~+ &~
K

(0.432)

0.540
.0.497
0.516
0.532
0.549
0.550
0.550

ab
(1.099)

0.751
0.746
0.854
0.897
0.945
0.952
0.957

where the sum is over all reciprocal-lattice vec-
tors G. Consequently, Eqs. (3. 14) and (3.15) be-
come

Z„+~„„=—Z M(G)
i

" r„(a„G)v„(G),1 (2u„'
6z a~o

(5.2)
where the sum is over shells of reciprocal-lattice
vectors and M(G) is the number of reciprocal-lat-
tice vectors of length G. The function I"„[Eq.
(3.21)] appears again as in Sec. IV, this time be-
cause of the average over the assumed spherical
Fermi surface. Table II exhibits the convergence
of the partial sum of 1+Z„+L» as a function of
the largest included reciprocal-lattice vector; the
dominance of the first few shells is evident.

A more realistic model for a solid near the
melting point is the Einstein model3~ of indepen-
dent atomic oscillators. It is easy to show that
the structure factor for this model is
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temperature, but this temperature is not known

empirically. It is necessary to appeal to the Debye
approximation, in which at high temperatures"

(5. 4)

Equations (5.3) and (5.4) have been used along with

Debye temperatures O~ determined from the spe-
cific heats to calculate contact densities for the
solid a,lkali metals at the melting point. The val-
ues of P~ calculated in this way are comparable to
those found in the liquid state, and hence about 10/p

larger than those calculated for the "perfect sol-
ids"; the explanation for this difference is that vi-
brations tend to wash out part of the distinct term
~», which is negative.

[An expression for S(q) may be derived for a
harmonic solid. 33 The exact expression, which is
rather difficult to evaluate, tends to unity at large

q, as do the Einstein solid and liquid structure fac-
tors. This harmonic expression is often estimated
by neglecting "multiple phonon effects, "'33 but the
resulting approximation tends to zero at large q-
this erroneous limiting behavior may destroy some
of the large-q contribution to the self-term in the
contact density, and lead to spurious contributions
to the calculated change in contact density upon

melting. This may be the reason why Bitter and

Qardner overestimate the change in the Knight
shift of Na upon melting by a factor of 3; however,
we have not investigatedthis question numerically. ]

Finally, the melting change of the Knight shift
has been calculated under the assumption

(ms )l« ~ (l, llo) (+g )l«
ffsol (mS )sol ( sol) (pS fl )sol

where the superscripts refer to the liquid and solid
metals at the melting point, Xl, (r,) is the function
presented in Fig. 5, and the electron-ion effective
masses I*, , are those calculated by Timbie and

White. ' The calculated values of K'"/K"' are as
follows: Na, 1.021; K, 1.023; Bb, 1.025, which

may be compared with experimental values read
from the data of Bef. 29: Na, 1.022; K, 1.02;
Bb, 1.015. The calculated value for Bb can be
fitted to experiment by a V/o decrease in O~. The
largest part of the change in the Knight shift upon
melting comes from the change in the volume 00,34

although changes in m,*, and P~ a.re individually of
the order of 0. 5k.

VI. CONCLUSION AND EXTENSION TO OTHER METALS

An expression for the contact density in a, metal
with a spherical Fermi surface has been developed
to first order in the pseudopotential. (The exten-
sion to a solid metal with a nonspherical Fermi
surface is trivial. ) This expression may be ap-
plied to solid and liquid metals, and to alloys at

all concentrations, even when k~ varies strongly
upon alloying.

Calculations for the alkali metals have been
carried out using simple analytic expressions for
the core wave functions, pseudopotentials, and

structure factors. Under the assumption of a
local pseudopotential, it is found that the contact
density samples the Fourier transform of ihe
pseudopotential primarily just above 2k~ where
it is known empirically in the pure metals; as P~
varies upon alloying, different regions of the
pseudopotential are sampled and important changes
occur in the contact density, especially through
the self-term and the one-OPW prefactor. It is to
be expected that core orthogonalization will hasten
convergence in momentum space, and that large
changes in k~ will control changes in the contact
density, even in metals which cannot be described
by local pseudopotentials. If necessary, the angu-
lar integrations in Eqs. (3. 14) and (3. 15) can be
performed numerically for such metals in the
liquid state.

Beasonable values are produced for the contact
density in each pure alkali metal and in the binary
liquid alloys. The Pauli susceptibilities are de-
duced from the observed alloy Knight shifts; the
enhancement of the Pauli susceptibility over its
free-electron value appears to be a weak but al-
most unique function of the interelectron spacing
g, in the range 4. 0& x, & 5.8. Confidence in the
deduced Pauli susceptibilities is strengthened by
the insensitivity of the fractional variation in con-
tact density upon alloying to the choice of pseudo-
potentials, structure factors, and core-state wave
functions. The calculation is able to account in

part for the observed temperature dependence and

change upon melting of the Knight shift.
Recently, Host and Styles ~ have applied our for-

mulation to their measurements of the Knight shifts
in liquid alloys of the noble metals with In and Sn.
Their calculations employ a local energy-indepen-
dent pseudopotential, and thereby fail for the noble
metals, as expected. Gn the other hand, they cal-
culate reasonable values for the contact densities
of pure In and Sn, Their calculated fractional
changes in the contact densities of In and Sn as a
function of noble-metal concentration are qualita-
tively similar to, but somewhat larger than, the
measured (and highly nonlinear) changes in the
Knight shifts of these metals.
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APPENDIX A: ORTHOGONALIZATION AND

NORMALIZATION INTEGRALS

The Slater-like analytic core wave functions
take the form

4~ ~.3pf

The identity (d/dx) jo(x) = —jq(x) implies that
(A12)

u„, (r) =(4w)'t'y„, (»)F, (r),
it„,(») =Z a„,(N„4) (g,»)"» e '»",

(Al)

(A2)

8 (N, k, k) = ( f/k) [(N+ 2)B (N- 1, L, k)

-B,(N, t:, k)] . (A13)

b„,(k) =Z a„,(N», L»)B, (N», L», k), (A4)

B,(N, I:, k)= f dr4ww (5»)"e t"j,(kr)

is evaluated at the end of this appendix.
O~tkogonalization functions. From the defini-

tion (3.6), the orthogonalization factor is

(A6)

y(k) = 1 -& i(„,(0)b„,(k) .
n

Next consider the angular integral (3.21). By
the change of variable y = —5 ~ q, one finds

(A6)

1 (L 1 —q/2k
1+q/2k

—& q.q(o) q.q(q, q)) (Aq)
n

where

c„,(k, q) =Z a„,(N», r»)C, (N», ~», k, q), (A8)

C, (N, f, k, q) = (P
k-qy

' (qq+ '-qq )"')

B)(N, (t, (k +q —2kqy) ) (AQ)
(2k/q)y —1

is evaluated at the end of this appendix.
Normalization functions. The one-OPW nor-

malization factor (3.7) involves only

r/
l (u„, lk)l =—Z (2l+1) b„,(k) . (A10)

n, „, Qo „g

The first-order correction to the normalization
(4. 4) involves angular integrals of the type (3.22):

&(k, q) =
&

Z (2l+1)b„,(k)c„,(k, q) . (All)1

0 nr

Evaluation of B,(N, f, k), Eq. (A5). First con-
sider /=0:

p oo

B,(N g, k)= ', ts sl
w 0

where the N~'s are integers, N~&L

Overlap anzplitudes. It is easy to show that

(u„,.lk) = i'(4~)'" F*,.(k)b„,(k), (A3)

where

Finally, the identity j...(x) =[(2l+1)/x] j,(x)-j, &(x)

implies the recursion relation

B„)(N, g, k) = (2l+ 1) (l/k)B. , , (N lq -f, k)

—
B, ,( N, L, k), . (A14)

Equations (A12)-(A14) quickly generate the B, 's,
which are simple algebraic functions.

Evaluation of C, (N, t;, k, q), Eq. (AQ). By the
method of partial fractions, one may write C, (N,

f, k, q) as a sum of integrals of the type

k + -2k
A„(K, k, q) = (P dy 1+ z

i

2kx —
y -1 . (A16)

Q'

These functions A are generated by a simple re-
cursion relation:

( ka 1

x =ll+-
ttl

I f2

(q-qq)') "' '
g2

(A16)

k' '~, (1-q/2k)[1+(k+q)'/C']
2k (1+q/2k) [1+(k —q) / K ]

(A17)

APPENDIX 8: EFFECTIVE MASSES OF ALKALI METALS;
KORRINGA RELATION

The results of this paper indicate that the Pauli
susceptibility depends primarily upon z, in the bi-
nary alkali alloys, and not upon the identity of the
two alloy components. This kind of behavior is
predicted by Eq. (2. 6) provided that (m~/m), , is
close to unity in all the alkali metals (except pos-
sibly Li).

The effective mass (m*/m), , depends upon the
gradient of the single-electron energy at the Fermi
surface with respect to k; this energy may be
evaluated to second order in the pseudopotential.
Weaire 3 has evaluated the contribution from the
first-order term using the nonlocal Heine-Abaren-
kov potential. Timbie and White have evaluated
the contribution from the second-order term using
an effectively localized Heine-Abarenkov potential.
Both kinds of contributions are found to be small
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except in Li; we have combined them in the proper
way to yield the following values of (m*/m), , : Li,
1.46; Na, 1.025; K, 1.00„Bb, 0.98; Cs, 0.99.

Recently Shaw and Warrenas have calculated the
enhancement factor for the Korringa relation due to
electron-electron interactions of finite range.
Their result depends upon (m*/I), , and upon the
exchange parameter n'= (m*/m), , Go(r, ) T. hey used
Ham's values of (m*/m), , and found values of c.',
and hence of Xp, which are not in agreement with
our results. However, with the values of (m*/m), ,
given in the last paragraph, their analysis (slight-
ly extended to include the small effect due to ex-
change core polarizations) yields the following val-
ues of ~/y~o: Na, l. VV; K, 1.66; Hb, 1.64; Cs,
1.V6, in striking agreement with the values obtain-
ed here from the alloy Knight shifts.

APPENDIX C: SCREENING BY DIELECTRIC CORE
POLARIZATION

Hedin and Brinkmansv have suggested that the
proper electron-gas parameter in the alkali metals
is not r,. but r,* = ~, /(1+4~o), where o is the po-
lariza. bility of the ionic lattice. Thus .F,(r,) and
i"„(y,) in Eq. (2. 6) should be replaced by F,(zf) and

G,(~;.).
A brief plausibility argument will now be given:

Consider a cubic solid metal in which the lattice is
composed of neutral polarizable ions (embedded in

a uniform positive background to ensure charge
neutrality). The Hartree-Fock wave functions of
the conduction electrons are simply plane waves.
Defining v,~, (x&, x~) as the mean potential produced
at xz when an electron is held fixed at xj, one may
easily show that

v„,(j)= Jd'x, d', e"' '"&-"2' .„(x„,)
=4ve'/q't 2 (q)+4nnj,

where e (q) is the familiar Lindhard dielectric
function. Since the Fermi liquid parameters are,
roughly speaking, moments of N(E~)v,«(j), where
N(Zr) is the Fermi-level density of states, one
finds that they depend upon ~,*= ~, /(1+4' o)

The values of y,* for the liquid alkali metals
from semiempirical ionic polarizabilities are as
follows: Li, 3.28; Na, 3.85; K, 4. 44; Bb, 4. 49;
Cs, 4. 63. The range of y,* is narrower than that
of z, because the heavier ions are more polariz-
able, When the susceptibility enhancements given
in Table 1 are plotted versus r,* (assuming a, linear
dependence of o upon alloy concentration), one ob-
tains again a weak and nearly unique dependence
upon the electron-gas parameter. However, under
the y~ analysis the present calculation becomes
less useful for discrminating between various elec-
tron-gas theories, since the range of the electron-
gas parameter over the alkali alloys is reduced.
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The photoluminescence of copper-doped high-purity epitaxial GaAs in the near-gap region is investigated

as a function of excitation intensity, temperature, and an external magnetic field up to 5.7 T. Sharp emission

lines are identified as originating from the recombination of excitons bound to neutral-copper-complex

centers of C,„and C,„symmetry with ionization energies of 156 and about 450 meV, respectively. The

spectrum exhibits replicas of these lines, which are due to the simultaneous excitation of resonant modes of
3.6- and 6.1-meV energy. The relative intensities obey a Poisson distribution law, The dissociation of the

bound excitons takes place in a two-step process: First a free single particle is liberated, whereas at higher

temperatures free-electron-hole pairs are created. The linear dependence of the luminescence on the

excitation intensity leads to the conclusion that photocreated coupled electron-hole pairs are trapped directly

by the binding center. A group-theoretical analysis of the Zeeman pattern attributes the different lines to the

appropriate electronic transitions between states of the double groups C,„and C,„.The crystal field is

sufficiently strong to completely decouple the ~mi~= l/2 and 3/2 levels of the acceptor ground state. The

~m) =3/2 state is degenerate with the valence-band continuum.

I. INTRODUCTION

Photoluminescence, absorption, and ref 1.ection
measurements of copper-doped GaAs crystals have
first been performed in the near-gap energy range
by Gross et al. The luminescence of this rela-
tively impure bulk material was dominated by an un-
resolved recombination band labeled I3. In high-
purity epitaxial GaAs this band was later identified
as arising from conduction-band-acceptor (e, A o)

and donor-acceptor (Do, gs) recombination. s The
luminescence spectra of Gross showed two addi-
tional lines at the high-energy tail (Cs and C, ) and
two lines at the low-energy tail (Fs and E,) of the
8 band with a half-width of about 1 meV at 4. 2 K.
These lines Co and Eo were interpreted to be caused
by the recombination of excitons bound to copper
centers. Piezospectroscopic and reaction-kinetic
studies led to the assumption that the copper cen-
ters are anisotropic and have trigonal (Cn line) and
orthorhombic symmetry (Eo line). A comparison
of the luminescence and absorption spectra showed
that the C, and E, l.ines are electronic transitions
accompanied by the simultaneous excitation of a
vibrational. quantum.

In this paper, we present the results of a syste-
matic study of the luminescence of the copper-in-
duced bound-exciton lines and of the multivibration-
al- mode emission processes. The investigations
were performed with an epitaxial material of much
lower impurity content than that used in the earlier
mentioned work. The improved technique leads es-

pecially to a reduction in the half-widths of the l.ines
by an order of magnitude. The luminescence was
measured as a function of (a) the excitation inten-
sity, (b) the sample temperature, and (c) an exter-
nal, magnetic field. The variation of these differ-
ent parameters leads to an identification of the
binding complex centers and to new results on the
spectral positions of the lines, the binding energies
of the excitons to the compl. ex copper centers, the
dissociation processes of the bound excitons arising
by an increase of the temperature, and to the elec-
tronic structure of the binding center and the bound
exclton.

II. EXPERIMENTAL

The samples were mounted in an immersion De-
war for most of the photoluminescence measure-
ments and excited by an Ar' laser (514 nm) at nor-
mal incidence. Variation of the excitation intensity
was achieved by a. set of calibrated neutral density
filters. The detecting system consisted of a +4-m

Spex grating monochromator and a photomultiplier
(RCA C31000E)cooled by dry nitrogen gas. We used
a photon-counting technique, with a storage of spec-
tra which is simil. ar to the multiscaling setup, pub-
lished recently by Bachrach. ~ A multichannel ana-
lyzer system (Nuclear Data 4410) for data acrluisi-
tion was used. It easily pl'ovldes data manipu1. ation
such as background subtraction and integration op-
erations in a given spectral range. Typical dark-
count rates were less than 25 pulses/sec.

The temperature-dependent data were measured


