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We investigate the existence and stability of long-range order in a simple model of a binary alloy. We
find that for electron concentrations in the vicinity of one per atom, in bipartite lattices, long-range
order of the atoms exists at low temperatures, and we find that the system undergoes a second-order
phase transition. We use a generalized form of the coherent-potential approximation (CPA) of Soven
and find that this CPA reproduces exactly at least eight moments of the density of states. We derive
an exact expression for the critical temperature when the alternating potential is much larger than the
bandwidth.

I. INTRODUCTION

The electronic theory of disordered binary alloys
has been widely studied in the last few years by
means of a simple model which assumes that the
two types of atoms differ only in their local pseudo-
potentials. For this model the coherent-potential
approximation (CPA)' has proved successful over
all ranges of concentration at least as far as the
single-particle properties, e.g. , density of states,
are concerned. In this paper we examine the pos-
sibility of electronically induced long-range order
(LRO) of the atoms within this model. This is a
problem which has been previously broached, in
one dimension, by Foo and Amar, ~ who used the
CPA and has been subsequently studied by us. 3 Using
a transfer-matrix formulation, we showed that, in
one dimension, LRO is always unstable and that
the short-range-order parameter is a smooth func-

tion of temperature. In the present work we em-
ploy a modification of the CPA to find the electron-
ic density of states in three dimensions. %'e com-
pare the moments of the CPA density of states with
the moments of the exact density of states and find
that for any value of the potential and LRO parame-
ter, CPA reproduces at l.east the first eight mo-
ments of the density of states. This indicates that
CPA is a useful calculational tool even if the alloy
is not totally disordered. Moreover, at large val-
ues of the on-site potential the thermodynamics is
governed, for one electron per atom, entirely by
the first moment of the lower subband of the den-
sity of states, as will. be shown in Sec. IV. CPA
yields this moment exactly to O(l/Vs) and thus the
exact asymptotic form of the critical temperature.
CPA is known to be exact at small values of the
on-site potential. We may, therefore, expect our
results to be reliable over the whole range of pa-
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rameters.
To find the temperature dependence of the LBO

parameter we compute the free energy of the sys-
tem, composed of electronic free energy and lattice
entropy and minimize it with respect to the LRO pa-
rameter. We find a second-order phase transition
from the ordered to the disordered state.

P,(j) = (1+Vs ~)

P(j) =i( 1n" e'-), '

where q(0 &q & 1) is the long-range-order param-
eter. For g = 0 the model reduces to the disordered
binary alloy already treated by Soven et al. ' and by
Velicky, Kirkpatrick, and Ehrenreich in the CPA.
Our theory reduces to this at and above the critical
temperature T„as q-0.

To motivate our method of using the CPA, con-
sider an effective Hamiltonian + where

+=pe(0) C«C«+ U&((())gC„C„+Uz((())

&&Re'~'"» c'„c„. (3)

The same K is used for both spin species as there
are no electron-electron interactions. Henceforth,
we drop the spin label. U, (&u) are complex func-
tions of (d with the property Uz z (&o*)= Uz, z(co).
Real ~ will always be taken to mean ~+io. %e
diagonalize 3CO by the transformation

C« = A«((u) b«+ B«((d) b)"„ti,

,C)(=&«((()) f)»+ ff«((())f) f+4 ~ (4)

II. MODEL AND GENERALIZED CPA

We consider the Hamiltonian

z=Qe(f ) c,'. c„.+Q v„c„'.c,
n, fy

where C«t, , C~ are the creation and annihilation op-
erators for an electron of spin 0 in a Bloch state
lb); Ct„C„,are the creation and annihilation oper-
ators for an electron of spin o in a Wannier state
[n) with energy V„. We assume a bipartite lattice
structure, one which can be divided into A and B
sublattices such that there exists a vector Q:
exp(fQ 8„)=+1,—1 if n&A, B, respectively, and

where q(K+/) = —q(K). These assumptions hold
for the simple cubic and body-centered-cubic lat-
tices with tightly bound electrons.

Long-range order is introduced in the following
way: at every site j, P& is a random variable which
takes the values + V, —V with probabilities P, (j),
P (j ), respectively. We assume an equal number
of A, and B atoms.

«o =Z((
'

(
[a,'+ (),"((o)]'~'+ (( ((o)) 5'(, .,

The potentials U, ((d), U~((d) are determined by the
condition" that the average scattering vanish at
each site:

(T„((d))=0, n~g, B,

where

F = ((() - U, + Uae' '"«)(1/N)

&Z t(& —U&) —U'&- &«&1 ~ (S)

Averaging over configurations for nEA. , 8 by Eq.
(2), we obtain the two compl. ex equations

Ul 2(v U2) (FA + FB)+ U1U2(FA FB) 0 )

U, —.)7V- -,'(V'- U', —U', ) (F„-F,)

+ U) Ug(F„+Fs) =0 .
The configuration averaged density of electronic
states is related to the functions E„, E~ by

p.(~) = p .((d) = (1-/v) 2 (F—A+ Fs)

p(~)=p ((d)+ p ((d)

(10)

III. MOMENTS OF DENSITY OF STATES

The CPA developed in Sec. II differs in several
important respects from conventional. CPA. '4 To
obtain the diagonal. form of the effective Hamilto-
nian we had to make a complex transformation (4).
This is in the spirit of CPA, but one might ask wheth-
er the results are as dependable in the ordered
alloy as in the disordered alloy. A test of the the-
ory are the moments of the density of states which
one can calculate both exactly and in CPA. One
defines the jth moment of p(&) as

d(u (o' p(~) (12)

It can be shown4 that 34& may be written

M~ = (1/N) Tr(X~) .
In CPA these moments may be obtained from the
high-frequency behavior of the function —(1/w)
&&-,'(F~+ Fs). Outside the band, where both Uz(&o) and

Uz(&o) are real we may expand them in the following
series:

where T„ is the T matrix at site n and the angular
brackets indicate averaging over lattice configura-
tions. T„may be written

T„=(V„—U, —U~
e'u '

«)

&&[1 —(V„—U, —U, e' ' «)F„], (7)

Ap, g =kg, Bp,g = —Bq, Ug((d) = n)g/(() + o(p/(() + o)g/(() + ' ' '
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V (0)) = P, + P)/(02+ P2/&d'+ ~ ~ ~ (14) M' =-[M2 (1—)) )]+O(1/V )

+ f" d(0 (&d- V+ V)' p„((0) (is)

Pt
i

V" [M) „+( —)"M~.„j,
where

M»' = f d(0(0)+ V) p„, ) (&d) ~ (is)

The symmetry of the density of states is for any
value of

M) = (-1)&M),

so that

M, = 5 ~ -)"V"[i+ (-)']M,' „. (20)
n~o

All the subband moments are O(W) so that one can
use Eqs, (15) and (20) to obtain M)) to a given order
ia 1/V. One finds

Using these in Eqs. (8) and (9), one obtains the mo-
ments of p(&o). In the symmetric case considered
here g»e(k) = 0 and + V are present in equal concen-
trations, This implies that p(&0) = p(- &0) and that all
odd moments of the density of states are zero. The
first few nonvanishing exact moments of the density
of states are given by

M, = V'+M,'",
V4+4VaM(o) 2 g~V3M(o)

M =V+QVM ' —6))VM

+ 2V2M(0)2(1 ))2) ~ SV»M&0) (1 ) n2) +M(0)

where

M,"'= (I/N) Z e', .
CPA reproduces at least these moments exactly.
Since M, = 0, both exactly and in CPA we have the
first eight moments of the density of states given
correctly by CPA.

When V» W, where W= max»(k) —min»(k) =-2, the
band is split into an upper and lower subband for
all values of g. In this limit it is sensible to
divide the density of states into two parts: p)(&0),
a function which is nonzero only over an interval g1

centered about —V, and p„(0)) which is centered
about + V. We can calculate the first few moments
of these subbands about their respective centers
at least to leading order in V ' following a proce-
dure of Velicki), Kirkpatrick, and Ehrenreich. »

We write p(&d) = p, ((0)+p„((d),

M, = f d(d (0' p((d) = f d(0((o+ V- V)' p, (0))

The moment M& will be used to find the large- V be-
havior of the critical temperature.

IV. THERMODYNAMICS OF THE ORDER-DiSORDER
TRANSITION

Once the density of states as function of g is
known, the temperature dependence of the order
paramter q(T) is obtained by minimizing the total
free energy

F=F„()),T)- TS„,()), T), (22)

with respect to q. Here we use our formula' for
the electronic free energy

EI)(')l, T) = —Nf „(f&df((0) g„d(0 p((0, ))), (23)

where f(&d) is the Fermi function. For one electron
per atom the chemical potential p. = 0. The lat-
tice entropy is given by

8)«= —kN[-,'(1+))) ln -', (1+)))+—,'(1 —))) ln —,'(1- )))].
(24)

A phase transition is made possible by the fact that
the electronic free energy F„()), T) is a decreasing
function of g, whereas the lattice entropy prefers
g= 0.

Before discussing the numerical calculations we
consider the limiting case V» S" in which exact
results can be obtained. In this limit the band is
split into subbands separated by a gap of O(2V) in
both the ordered and disordered case. At tempera-
ture kT «V the lower subband is full and the upper
Subband empty. The electronic free energy then
reduces to

E„=2Nf d&0&0p, ((d)+O(e 2"~'
) (2s)

M' '(1+)) ) 1= —2VEMo+ 2M) = —VN —N
4V V

+O ~
(2s)

where we have used (21) for the subband moments.
Expanding the lattice entropy in powers of g, we
obtain

ur q'—=- V- —kTln2 —'g
I

——+ —kT.
4V ~4V 2 12

For kT &M&2 '/2V the disordered state ())=0) has a
lower free energy than the ordered state. At
kT, —M2 '/2V the material undergoes a second-
order phase transition to the ordered state. Cor-
rections to this result are of O(1/V') due to higher-
order terms in the moment M', and of 0[exp(- 4V /
M2 ')] due to occupancy of the upper subband.

V. NUMERICAL CALCULATIONS

M,'"(1+ ))')

8V

To facilitate the numerical calculations, we have
used two distinct approximations to the unperturbed
density of states of the simple cubic lattice, either
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FIG. 1. Plot of the density of states p(co) as function
of v for several values of q at V=0.25. Since p(co) is
symmetric about co =0 we show only the upper-half of the

An "i urity band" appears near each interva l
m erfectband edge when there is a slight deviation from pe ec

LRO.

po(~) = —.
' wNl —1&fg & 1 (29)
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PIG. 2. Order parameter is plotted as function of
temperature for (a) V=0.15, (b) V=0.25. In both cases
p(T) vanishes continuously as function of T.

or

p (~) = (2/v) (1 —(u )' with —1~ (o 1. (29)Po (d

The results, using either, came out essentially the
same and in Figs. 1-4 we quote results obtained
with the semicircular density of states (29). We
have solved Eqs. (9) for V=O. 15 and V=0. 25 as a
function of ~ over the whole range 0~g . e& 1. The
density of states p(&o) of the alloy is plotted as afunc-
tion of (d for several values of g for V= . in=0 25 in
Fig. 1. We note that the density of states split
first into three subbands at g= 0. 6. The middle
subband itself splits into two subbands a g=0. 85.

These central bands become weaker and disappear
at g=1, the perfectly ordered case.

The temperature dependence of the LEO param-
eter q(T) is shown in Fig. 2 for V= 0. 15 and
V=0. 25. In both cases q(T) vanishes continuously
as T approaches a critical temperature T,. Since
for every value of g the whole spectrum must be
computed it is clear that g could not be varied con-
tinuously up from zero. However, we can rule out
a first-order phase transition to the extent that
any jump in q(T) at T, is less than 0. 03 for both
V= 0. 25 and V= 0. 15. Moreover, a second-order
hase transition is most plausible, by analogy with

the Bragg-Williams-Ising lattice-gas mode,
which has a second-order phase transition in two
and three dimensions but none in one dimension.
The analogy requires, however, temperature-de-

endent coupling constants as we have noted.
%'e have roughly calculated the critical tempera-

ture of the alloy for V up to 4 by comparing the
free energy of the system for g=0. 1 to that of
q=0. Since q(T) drops quite steeply near T, the
temperature at which F(0. 1, T) = F(0, T) should be
a good approximation to T,. The results are
shown in Fig. 3. kT (V) -—' V for small V and then
reverses itself near V=0. 5. (The band sphts at
q=0 for V&0. 5. ) At V=2 the asymptotic 1/V
dependence can already be seen.

Vfe also investigated the dependence of these re-
sults on electron concentration. At V-=0.25 the

8&n-'or ererdered ground state g= 1 is stable for 0. 8-n- ].2
Atwhere n is the number of electrons per atom. A

V=1 the ordered state is stable for 0. 9 n 1.1.
Clearly, as V- ~, the region of stability will
shrink to n —= 1, probably with an asymptotic 1/V
dependence. Similarly, one can investigate the

feffect of changing the relative concentration o
A and B atoms keeping n = 1 fixed. If an A atom
is replaced by a B atom, at g = 1, two impurity
states appear bebveen the main subbands. In the
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r '(e) is a symmetric function of e and we plot it
in Fig. 4 for c&0 for V=0. 25 for rt=0. 4. It will
be seen that it is very similar to the density of
states with a peak in the region of "localized" states.

VI. CONCLUSIONS

I

1.2

FIG. 4. Plot of the inverse lifetime &v (e) as function
of e for g = 0.4 and V= 0.25. For all g the &" (&) function
is similar to the function p(~) except for the resonance
peak near the inner band edge.

most disadvantageous case these two states could
appear at ~= 0, raising the energy of the electronic
system by V for every impurity. At small V the
ordered state lies an amount roughly N kT,- 4 VN

below the disordered state so that a change in
A Bconce-ntration of O(25/~) is conceivable without
in principle destroying the ordered state. Clearly,
the effect is more subtle than this but it is clear
that the ordered state is stable in a finite concen-
tration range centered around the 50-50 alloy.
Again one expects this range to decrease with in-
creasing potential and to asymptotically approach
zero as i/V.

Finally, we calculate the lifetime of the quasi-
particles in the framework of our modified single-
particle CPA. ~ We define (nonrigorously) a
transport lif ctime:

We have shown that in an alloy long-range order
can be stabilized by the associated lowering of
the electronic free energy. In this article we have
investigated the type of lattice (e. g. , simple cubic,
body-centered cubic), which naturally divides into
sublattices. Moreover, we have required that
e(K+Q) = —&(K), where Q isthevectorspecifying
the pitch of the long-range order. Again this re-
quirement is fulfilled in the case of tightly bound
electrons in the above-mentioned lattices. These
two assumptions make our LRO stable for arbi-
trarily small V. A second-order phase transition
from the ordered to the disordered state takes
place. In a future paper, we expect to discuss
the stability of LRO in face-centered-cubic lat-
tices in which one might expect the A and B atoms
to order in alternating planes. In this case one
would expect a critical V before ordering could
stabilize and there is some hope for a first-order
phase transition.

We note again, as in Ref. 3, the remarkable
fact that the gaps in the density of states seem to
have nothing to do with the order-disorder transi-
tion. By comparing Figs. 1 and 2 we see that the
gap in p(&u) disappears at Vi =0. 85 at a, temperature
much below T,. An insulator- metal transition,
which can occur in this model for small enough
V—we ignore the thorny question of localization of
electronic states —would thus be independent of the
structural transition.
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