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The total energy of simple metals is calculated formally to all orders in the pseudopotential.
The leading term (in the pseudopotential expansion) of the n-ion interaction is obtained from
the nth-order terms and the asymptotic form for large separations is evaluated explicitly.
The resulting n-ion interaction is proportional to (E~/k~) (X/k~)" Icoskg(l f +l2+ + lg) j/
l fl2 lq(l f + l2 + ' ' +l„},where the Z; are consecutive segments of a straight-line path connect-
ing the n ions and A, is of the order of a pseudopotential form factor divided by the Fermi
energy. This is to be summed over all continuous paths connecting the n ions. The familiar
two-body interaction proportional to (cos2kzr)/r is a special case. The three-body interac-
tion is found to be strongest when the three ions form a straight line and are separated by
nearest-neighbor distances. The assumption that the influence of d-state hybridization upon
this interaction dominates the determination of structures leads to the correct distribution of
cubic and hexagonal structures among the monovalent and divalent metals and to appropriate
high and low axial ratios among the hexagonal structures.

I. INTRODUCTION

The essence of pseudopotential theow@,
' as ap-

plied to simple metals, is a treatment of the inter-
action between electrons and ions as a perturba-
tion. It is assumed at the outset that the complete
solution of the electron-ion problem, within a self-
consistent-field approximation, would yield a good
description of the metal. The only important ap-
proximation made in the solution of that one-elec-
tron problem is the perturbation expansion, ordi-
narily carried to second order. This approach
gives us not only a mathematical basis for treat-
ing the entire range of metallic properties, but
also a conceptual basis for thinking about these
systems.

An important conceptual feature of the theory is
that the second-order energy can be written as a
two-body central-force interaction between atoms.
This is plausible physically since the terms in sec-
ond-order perturbation theory may be thought of as
two consecutive scattering events by a single elec-
tron; they can therefore involve only two atoms.
The inclusion of third-order perturbation theory
will introduce explicit three-body interactions,
etc. A second important feature of the second-
order theory is the form of the two-body interac-
tion. The asymptotic form for large distances is

readily calculated and is proportional to (cos2k~~)/
y, exhibiting the familiar Friedel oscillations.
Furthermore, this asymptotic form remains quali-
tatively correct even to distances as small as the
interatomic distance in the metal, as seen in Fig.
1.

In the present study we will carry these calcula-
tions to higher order in the pseudopotential and ob-
tain the asymptotic form of the leading term in the
multi-ion interactions. It is important to be clear
about what is being included and what is not being
included in this analysis. We are not systemat-
ically including all higher-order terms in the cal-
culation of the total energy. In particular, such
a complete calculation would require the self-con-
sistent recalculation of the pseudopotential itself
in each order; the configuration of an ion's neigh-
bors would affect the pseudopotential on that ion.
We will neglect this effect and in all orders write
the pseudopotential as the superposition of identical
ionic pseudopotentials centered on the ion nuclei,
and in any applications will use the individual
pseudopotential calculated self -consistently to first
order. Secondly, in each order we will focus upon
the multi-ion interaction which first occurs in that
order. Thus in third order we will obtain the
three-ion interaction but will not compute the ad-
ditional two-body interaction which arises in third
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order. Such neglected terms may be thought of as
arising from, for example, the scattering of an
electron by one atom, then by second, and again
by the first. Such contributions will, like the sec-
ond-order terms, give a two-body central force
but will be smaller than the second-order interac-
tion. For reasons to be discussed in Sec. III these
contributions may not, however, be negligible.

In some sense the terms which we do include
are the most interesting. In seeking, for example,
the features which determine the crystal structure
it is noted that the zero-order and first-order
terms in the pseudopotential are independent of the
configuration of the ions (although they do depend
upon the total volume). Thus the two-body inter-
action which arises in second order is the leading
term which influences the crystal structure. The
second-order terms which are independent of con-
figuration are of very much less interest. When
we compare the energies of structures using this
two-body interaction we find in fact that these con-
tributions are quite insensitive to structure, be-
cause of their two-body central-force nature. In
going to third order we obtain three-body forces
which depend explicitly upon the angles between
interionic separations, and we hope there to find
an understanding of crystal structures. It would
not be so interesting to examine the modification
of the theo-body interaction which arises in third
order. It also seems likely that the explicit multi-
ion interactions which wouM arise in a higher-or-
der self-consistent recalculation of the pseudopo-
tential would be less important than the direct
terms we calculate. This speculation is based
partly on the fact that in the second order the

FIG. 1. Two-body interaction between ions for alumi-
num. The dashed line is the asymptotic form. Also
shown is the distribution of neighbors as a function of dis-
tance for the fcc structure.

screening of the pseudopotential plays only a minor
role.

The calculation of the total energy to third order
is a very intricate task. It appears to have first
been accomplished by Lloyd and Sholl and inde-
pendently by Brovman, Eagan, and Holas, both
making a local approximation to the pseudopoten-
tial. The result is given as a function of two wave-
numbers which may be written in closed form.
The third-order energy is to be obtained by a dou-
ble sum of this function over the wave-number lat-
tice. The function is the third-order counterpart
of the second-order energy-wave-number charac-
teristic. Brovman et a/. have included these
terms in a calculation of the vibration spectrum of
magnesium and have found their effects to be ap-
preciable. In the author's unpublished calcula-
tions, the third-order contribution to the energy
was found to be typically one-quarter as large as
the second-order contribution. In comparing the
energies of crystal structures we have found the
third-order terms to vary from structure to struc-
ture by an amount comparable to the second-order
terms, but we did not find their inclusion improved
the prediction of structures. In addition, we found
that after performing the first sum over the wave-
number lattice, the remaining function to be sum-
med over the wave-number lattice was quite in-
sensitive to structure and therefore a large por-
tion of the third-order energy was in fact describ-
able in terms of a two-body interaction. By iso-
lating a three-body interaction in the present anal-
ysis we hope to focus more sharply on the novel
aspects of the third-order and higher-order terms.

The obtaining of the asymptotic form of the mul-
ti-ion interactions is a very much simpler problem
than the calculation of the full interaction, and in
fact we will be able to obtain these forms analyti-
cally. In addition, we find that the asymptotic
forms are very simple and intuitively understand-
able. Thus conceptually they are of much more
value than complete interactions which would nec-
essarily need to be tabulated or plotted over a
multidimensional array. In fact, we obtain uni-
versal forms which may be applied to any metal
by substitution of the appropriate pseudopotential
form factors for that metal. Another feature of
the asymptotic calculation is that it becomes un-
necessary to make a local approximation to the
pseudopotential. Finally„we may hope that these
asymptotic forms, which we believe are rigox'ous
at large interionic distances, may remain qualita-
tively valid even at short distances, as was the
case of the iwo-body interaction.

The procedure for obtaining asymptotic forms
is analogous to that used in the second-order
term. The matrix elements in the perturbation
theory are factored into structure factors and form
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factors, and terms involving a specific set of ions
are isolated. The sums over wave number are
converted to integrals, and the singularities, which
ultimately arise from the energy denominators,
dominate the behavior at large distances. It is
possible to take the third-order results" and pro-
ceed much as in the second-order case to obtain
the asymptotic form. It is, however, much sim-
pler and much more general to return to the per-
turbation expression itself. Because the analytic
behavior at the singularities is essential and be-
cause we wish to proceed to high order, this is
most conveniently done in the context of the one-
electron Green's function. We proceed to that cal-
culation.

II. CALCULATION OF ASYMPTOTIC FORM

Within the one-electron approximation the sys-
tem is completely describable by a one-electxon
Green's function C,(r, r'; t, f'). In the context of
the pseudopoteniial formulation, this should be
regarded as a pseudo-Green's-function, but the
distinction is inessential in the calculation of the

total energy. After Fouriex' transforming in time
and space we may sum the diagonal terms to ob-
tain the number of states per unit energy:

x(z)= . Z [c,(k, z)-c (k, z)].
lN

The factor of 2 is for spin degeneracy. The
Green's function itself is expanded in a perturba-
tion series in the pseudopotential,

c,(k, z)=Z c,"(k, z) .

In zero order we have the free-electron Green's
function,

c,'(k, z) = —Cg+ Z&

where zg is a free-electron energy and z is a real
positive small number. The I th-order term may
also be written down and summed over wave num-
ber since it is that sum which enters the density of
states in E&I. (I).

Then we have

(kg I Wlk„)(k„lWlk„.s) ~ ~ (ksl Wlkg)

i&&i& ~ ~ i& (z ss +s&) (z ss+se) ' ' '(z —4+ss) (z —&s+ss)k1ka ' 'k~

Note that the energy denominator with the energy
ss of the state i k~) appears twice, but since all
wave numbers are summed a rotation of indices
does not affect the results. Then, noting that the
energy Z appears only in the denominators (the
pseudopotential opex'ator need not explicitly de-
pend on energy), we see that Eq. (4) may be re-
written

—.— Z c,"(k„z)= -—g",(z)
1

I g II (kg. g l Wl kg)
tlSS R R ~ ~ ~ R )-1 n E &y+g

We take cyclic indices such that the state j= n+ 1
is the state j= 1.

At this point we may factor each matrix element
into a form factor (the matrix element of an indi-
vidual ionic pseudopotential) and a structure factor,

&s
~

w~s )=&k ~w~s &(
—)z e't'~ ~ ~"

where the sum is ovex' the positions r, of all N
ions. This form may be substituted in E&I. (6) and
the sum over atomic positions taken outside. g"
then becomes an n-fold sum over all ion positions.
In each term we write the r, which appears in the

t

k&,1 -k& structure factor as x'z. In the product of
structure factox's each kz appears twice and the
product over structure factors in thai term be-
eoxnes

For a particular collection of n, atoms we define
a path lz = rz —r& 1 among those atoms. Then each
term in Eq. (6) may be rewritten

„() I g ~ (kg,slsolk~) e'"&' &

g 87BN I", g„.g y 8 —&g +2&
(8)

and this is ultimately to be summed over every path
connecting + ioQS, We will in fact include only
paths in which all g ions are different, since only
these give m-ion interactions.

We now have a series of identical summations
over the wave numbers k~. These are replaced by
integrations, taking spherical coordinates with axis
along 1&.

.

)s, l dk~ k~ d8 sin8, I dy .

As we vary the angle of a particular k& there are
two form factors which vary,

a».~-=(k&~ m~k, ,),
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as mell as the exponential e'"~'~. However, when

l& is very large the exponential oscillates rapidly
and the only appreciable contributions arise at the
points of stationary phase, when 8 = 0 and 8 = w.

Thus the summation becomes

Q- wpwp qe'"& &,2,3 dk~kp [wp(+) wp q(+)e' &'&
~0

—u, (-)u, ,(-)e '"&'&]/ik, l, . (9)

Here wp(+) is the form factor evaluated with kp par-
allel to l~ and wp(-) is evaluated with k& antiparallel
to 1&. In the first term we change variables to
k= k& and in the second to k = - k». They may be
combined to give

~ wpwq ge' &'& 0
I

dkk wow& qe'"'&.
E —e)+i& (2v) lip .„E—k +it

(10)
We have reinserted the energy denominator, which
mas constant in the angular integrations, and we
evaluate form factors in accordance with the sign
of k. We have also replaced the free-electron en-
ergy e, by the kinetic energy kps (in rydbergs if k~

is in atomic units). The remaining integral may
be evaluated by closing a contour in the upper half-
plane. The interesting region is with E positive.
We write g = KE. In the integrand with —ie in the
denominator there is a pole above the real axis near
k= —g. In the integrand mith +i& in the denominator
the pole above the real axis occurs near k= g. The
form factors (which are screened) have no poles on
the real axis, and any pole away from the axis
would contribute only exponential terms to the ion-
ion interaction. Thus for obtaining the asymptotic
form of the interaction each integral of the form
appearing in Eq. (10) is equal to the contribution
of a single pole, The result, mhen substituted in
Eq. (8), is

„(p)
1 —0 ~ wy(+)8i' 4w N g l)

It is convenient to define the distance around the
path s = pip and to note that the same pseudopoten-
tial form factors enter when all wave numbers are
reversed. We can then combine the plus and the
minus terms:

5g"=5@",—5g".= sinzs Q —. (12)
—2 -0 $0y

nw 4' i

This is to be summed over all paths connecting n
ions and then summed over all orders to give a
total g. The density of states, according to Eqs.
(1), (2), (5), and (12), is given by

N(E)=- —g(E) .d
dE

The total energy is obtained by integrating EN(E)

from zero to the Fermi energy p, :

gE E 0+ g+

We wish to obtain the change in this total energy as
the positions of the atoms are changed.

I.et us now imagine an infinitesimal change in
ion positions giving an infinitesimal change in g.
There must then be a change in the Fermi energy
du, such that the total number of electrons [seen
from Eq. (13) to be -g(u, )] is not changed. Thus,
the change in the surface term in Eq. (14) is
-g(p. )dp, , just cancelling the effect of changing
the upper limit in the integrals. We conclude that
forces on the ions, and therefore the interionic
potentials, are computed at fixed Fermi energy.
As is familiar in the two-ion case, the potentials
are volume dependent, but this causes no difficulty
if properties are computed at constant volume.

The remaining integral of Eq. (14) contains con-
tributions from each order. In each order we
must add the contributions from each path among
the appropriate number of ions, using Eq. (12).
Thus the interaction between a given set of n ions
is simply the integral over Eq. (12),

(15)
summed over all continuous paths among those
ions. k is the Fermi wave number. [Note that a
term dropping more rapidly with s was discarded
in obtaining Eq. (15); that is, only the first term
of cosks —(sinks/ks) was kept. ]

There are nl such paths, but for a given con-
tinuous path shape the result is independent of
which ion is numbered one, and is independent of
the direction in which the path is traversed. Thus
we may multiply Eq. (15) by n and sum 'over path
shapes and path directions, the latter giving a fac-
tor of 2 in all cases but n= 2. (For n= 2 it gives
a factor of 1.) Thus we may write the asymptotic
form of the n-body interaction

4E~ —3nZ';Ek
X w, u, ~ w cosk (l&+ ~ ~ l„)n 16)

lglp ~ ~ ~ l„k(is+~ ~ ~ l„)
direckiom

We have eliminated the volume of the system by
mriting

(~ p(~) Irk =NZ,

mhere Z is the number of electrons per ion, the
valence. This is our principal result. Note that
in this notation the contribution of the n-body
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FIG. 2. Three pat s w lch~ h'. h must be summed to obtain the
four-ion interaction.

forces to the total energy is given by

&"0 =— ~ 'U(&i~ ~ ~ ~ &n) ~tot
y ],,t ~ ~ 1 yfi

where the n t compensates for the samarne collection
t ermutations.f '

ppearing in nt differen per
Physically we may think ofof 6Rch term Ra Rl'lslng

f.rom an electroi& wi e'th the Fermi energy scattering
successive yely fx'GDl 8Rch of the iona' DlRklng

i ht-line trajectories between aca eringStX'Rlg - ln
t The resulting interaction de creases witheven s.

ath len th andeac pR enh th length Rnd with the total pa g
he ath.Gsclllatea w1 8 p'th th hase integral around the p

~ ~

h form factor is determinedCorrespondingly, eac . or
in each ofby compu lngt' tI e wave-number transfer in eac o

these scattering events.
t -body interaction is obtained by setting

pg = 2. There is one direction and one pa
equals l3. T us eTh the two-body interaction is given
by

arable to second-order terms when small-COIQpR1 R 6 0 s
angle scattering is involved has be pen em hasized
particularly by Brovman.

since the%6 will focus upon this effect and, since e
th -'on interaction drops very p yra idl with dis-ree-io

1 RtODliC'th the fourth power of the intera otRQc6 wi 6
inearseparation, we wi ll focus particularly upon li

arrangemen s o rt f th ee iona in which two of the
separations are e - ' . ' Ce.the nearest-neighbor distance.
The three-ion interaction (and in particular, e

r can tend toRsyDlp 0 1Ct t' form) can tend to favor, o
din u onnt the linear arrangement, depending up

the ratio of the separation to the Fermi gi wavelength.
f E . 16) with n=3consider the interaction o q.

d An elec-d 'th the three iona nearly aligned.
t following a path among these rese three will makeX'OD 0

rd scattering.two back scatteringa and one forward sc
Thus one paeudopotential form factor is —-S-E& an
two are backscattering form factora the same as

h enter the second-order interaction;those which en er
lect their vari. -w6 wx'1 6't these simply as zg and neglec eir
e write theation wiith deflection of the iona. %6 wri e

lar deviation from a straight bne asangu ar
Fig. 3) and evaluate Eg. (16) for smal l 8. The re-
sult la

cos4kdZ, (4ad)' . ud

g8
+ —(3cos4kd +4kd sin4kd)—

M

in agreement with earlier results.
'n the three-body interaction the aum

Over 6th direction gives a factor o, an
8 Rth the tx'1RQgle conDectiQg the ththree1s a single pat, 8 th

In the four-body interaction there1GQS. 6 — ' x'6

two directions and three path shape,
Fi . 2. In the five-bodyand two bowties shown in Fig.

fi,ve birds, five fish, a pentagon, and a star.

III. INFLUENCE ON STRUCTURES

We wil. l discuss the role of the many-ion inter-
Rctiona 1Q the coQ extext of the determination of crys-
tal structures. The tendencies caused by the
three-ion interaction in pa, rticu' ular are most aug-

6ative,
~I ~ ~%6 note first tha e

to be weR ex' RQk than the two-ion interactiona by a
he seudopotential form factor divided ybfactor of the pseu opo

the Fermi energy, typically one- en
we mRy Dote R aol- that when the three iona in

line one oft l very nearly on a straight line, one oques 10Q 16 v
th seudopotential form fRctox's w c 8Q6 ps

t -'E in thisthat for forwardacattering equal o ——,

ot be consid-case the three-body interaction canno
0 -bod inte I'Rc-ered as small in comparison to two- .y

tions, The fact that third-order terms become

Note a yw
'

th t b riting the forward scattering form
factor explici y wetl e have obtained this third-or
term 1D R form very similar to a second-order
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FIG. 3. Curves for the asymptotic form of the three-
action between ions, with the configuration

shown below, as a function of A, d, wx e
ual to the nearest-neighbor distance in,number and d equa . e

. ked structures. The dashed curve zs prop
tional to the interaction energy wi

is ro ortional to the second derivative of t is
=-0. The values of Ad cor-energy with respect to 6 at 8=-0. e v

responding to valence Z are shown.
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term. In fact, the second-order coupling between
the end atoms is of almost identical form. It may
be evaluated from Eq. (1V). Inthe result the 8-in-
dependent term is the same as the first term in
Eq. (18), but without the factor 2vZ/kd. The more
interesting 8-dependent term is the same as the
final term in Eq. (18), without the factor wZ/kd.
We may think of the coefficient of the 8~ term as
a spring constant favoring (or opposing when nega-
tive) alignment of the three ions. The third-order
contribution to the spring constant is wZ/kd times
as large as the second-order term. This is a fac-
tor of 0. 90, 1.44, and 1.88 for valence one, tmo,
and three, respectively, and for d equal to the
nearest-neighbor distance in close-packed struc-
tures. With respect to the tendency to align these
ions the third-order term is of approximately the
same importance as the second-order term.

These particular interactions are also very rele-
vant to the determination of structures. It is well
known that both face-centered-cubic (fcc) and hexa-
gonal-close-packed (hcp) structures can be ob-
tained by the stacking of close-packed planes. The
nearest-neighbor distance and the number of near-
est neighbors are identical in the two structures.
The difference comes, as we stack each plane, in
whether we do it such that each ion mill form a
straight line with ions in the prior two planes (face
centered cubic) or such that it does not (hexagonal
close packed). Thus if the energy is minimum
when the three ions are aligned, the correspond-
ing contributions to the energy may be thought of as
favoring the cubic structure; if it is a maximum,
we may think of it as favoring a hexagonal, or
other noncubic, structure. It is important that
we consider the angle-dependent term rather than
the constant term of Eq. (18), as it is the compar-
ison of the energies in different structures which
is relevant. The second qualitative feature mhich
is of some interest is whether the third-order en-
ergy for three aligned ions increases or decreases
mith an increase in the spacing. This can be of
interest in the hexagonal structure, where the
aligned ions lie only in the basal plane and the de-
pendence upon spacing can cause a change in axial
ratio. It will not be of interest in the cubic struc-
tures, where it only contributes another volume
dependence.

We note that the interactions represented by
Eq. (18) depend (except for a positive scale factor)
only upon kd, mhich in turn depends only upon the
valence. In addition, the ratio of these interac-
tions to their second-order counterparts depends
only upon valence. We may see what the effects
of the interactions are by plotting the first and
second terms of Eq. (18) as a function of kd, again
with d equal to the nearest-neighbor distance in
close-packed structures. The result is shown in

Fig. 3. A positive value for the solid line implies
an energy minimum with linear alignment. Thus
we see that cubic structures are favored for va-
lence one and three, hexagonal structures for va-
lence two. We have noted that the tendency tomard
linear alignment (for Z= 1 or 2) is the same if
body-centered-cubic (bcc) nearest-neighbor dis-
tances are used with Fig. 3 rather than close-
packed distances, and therefore me do not distin-
guish the tmo cubic structures. A negative slope
of the dashed line would suggest the tendency for
close-packed lines to lengthen; a positive slope,
the tendency for them to shorten. Figure 3 sug-
gests a tendency for any hexagonal monovalent or
trivalent metals to have low axial ratios and any
divalent metals to have high axial ratios. These
tendencies correlate with experiment about as well
as could any tendencies which depended upon va, -
lence alone. However, to be convincing any cor-
relation must include the trends with rom as well
as mith column in the Periodic Table, particularly
with the monovalent and divalent metals mhere
clear trends are evident.

We begin with sodium, magnesium, and alumi-
num, for which the ea,rliest second-order calcula-
tions (as well as most subsequent calculations)
correctly gave hcp, hcp, and fcc, respectively.
For sodium the third-order terms mould suggest
a tendency toward cubic and, in fact, the second-
order calculation overestimated the bcc-hcp en-
ergy difference by a factor of 30. The third-order
terms have contributed in the right direction with-
out changing the stable structure. In magnesium
and aluminum the third-order terms favor the same
structures as did the second-order terms. If the
third-order terms have increased the axial ratio in
magnesium, it is by avery small amount. We mill
not concern ourselves with the lighter lithium and
beryllium, for which the pseudopotential expansion
has ordinarily proved unreliable, but for mhich the
structures are in fact the same as sodium and
magnesium.

What differences might we expect for the heavi-
er monovalent and divalent metals '? The feature
which distinguishes each of these metals from so-
dium and magnesium i;s that each lies either at the
end or the beginning of a transition-metal series.
In termS of electronic structure this means that in
the alkalis and the alkaline earths there is a d res-
onance just above the Fermi energy; in the noble
metals and in zinc and cadmium there is a d reso-
nance below. The effect of these resonances may
be included within the framework of pseudopoten-
tial theory as hybridization contributions to the
transition-metal pseudopotential. When the reso-
nance lies below the Fermi energy this hybridiza-
tion will always have the effect of adding a positive
term to the backscattering form factor without
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changing the forward scattering form factor. In a
similar way Moriarty has found that a resonance
above will always add a negative term to the back-
scattering form factor without affecting the for-
ward scattering one. To see what effect this would

have on structure determination would require ex-
tensive calculation of both second-order and third-
order terms. In particular, though we argued that
we have isolated the dominant contributions of the
third-order term, the second-order term involving
second neighbors that we have isolated is most
certainly not dominant among the second-order
terms. The best we can do is to look just at the
effe t these hybridization contributions have on the
third-order interaction and not guess their effect
on the total second-order energy.

In the heavy alkali metals the backscattering
form factor is negative (it is near zero in potas-
sium) and the hybridization makes them even more
negative, increasing the trend to cubic structures.
Though without hybridization the third-order effect
was almost strong enough to make sodium cubic,
with hybridization it wins out in all of the heavy
alkalis, which are found to be bcc. In the noble
metals the pseudopoteniial form factor for back-
scattering is positive and is increased further by
hybridization enhancing the tendency to be cubic;
in this case they are found to be fcc. The differ-
ences in energy between these two cubic struc-
tures depend very much on nearest-neighbor in-
teractions and in particular upon the second-order
terms which are out of the context of our discus-
sion.

In the alkaline earths the pseudopotential form
factor for backscattering is positive and is re-
duced by hybridization with the d resonance above
(Moriarty in fact finds that it reverses the sign
of the total form factor). Thus the tendency to-
ward hexagonal structures is reduced by hybrid-
ization; cubic structures are favored. Calcium and
strontium are, in fact, fcc and barium is bcc. In
zinc and cadmium, in contrast, hybridization with
the d bands below enhances the form factor, there-
by enhancing the tendency to hexagonal structures.
Furthermore, it enhances the tendency to high ax-
ial ratios; both zinc and cadmium are, in fact,
found to have high axial ratios, in contrast to mag-
nesium, beryllium, and the light alkalis. We have
omitted from consideration mercury, which has a
complex structure, and ihe trivalent metals, which
show no systematic trends experimentally nor for
which are hybridization effects expected to be ap-
preciable.

IV. DISCUSSION

It is indeed dangerous to isolate a single term
in the total energy and correlate structures with
it unless there have been objective calculations

which demonstrate that the complete theory does
in fact correctly predict structures and that the
isolated term is dominant. Thus, in spite of the
remarkable correlation of the above tendencies
with experiment, they should be regarded as ten-
tative. These considerations would strongly sug-
gest in any case that an understanding of struc-
tures will require a careful explicit inclusion of
hybridization, a conclusion already reached by
Moriarty in his study of the alkaline earths. This
would explain the lack of success of our early
studies when they went below sodium, magnesi-
um, and aluminum in the Periodic Table and also
would explain what we believe to be lack of con-
vincing correlation in more recent studies. It
would also explain the lack of, success we obtained
in adding third-order contributions in the model
calculation mentioned earlier; the pseudopotential
used was based upon that of Animalu and Heine,
which contains no explicit treatment of hybridiza-
tion. The fact that the principal influence of the
third order is restricted to the linear arrays of
three ions, as well as the quantitative comparison
with second order, would suggest that these three-
ion interactions are essential.

Our studies also focus attention on backscatter-
ing form factors, a very different aspect of the
pseudopotential from the form factors evaluated
at the lattice wave numbers which entered the
earlier studies of structure. ' ' Jn principle it is
correct that only the form factors at the lattice
wave numbers affect the energy of a perfect crys-
tal. However, the corresponding second-order en-
ergy turns out to vary only by 1/z or So from struc-
ture to structure.

This does not mean that there is no hope for a
second-order or low-order theory, since the high-
er orders are also quite insensitive to structure;
it does mean that if we are to understand struc-
tures we must extract a subtle feature of the ener-
gy. The transformation to real space interactions
does extract such a subtle feature. By separating
off a different volume-dependent term, the result-
ing total interaction energy becomes comparable
to the variation from structure to structure. This
interaction, as we have seen, is dominated by the
principal singularity, which in turn is associated
with backscattering„ It is not, for example, as-
sociated with the wave number where the form fac-
tor happens to go through zero. This feature is
very much lost in the Fourier transform.

The influence of this same backscattering singu-
larity on structure was explored earlier in the con-
text of second-order theory by Shaw and by the
present author. ' Shaw calculated the total energy
using the two-body asymptotic form of Eq. (17), an
appreciable task. The resulting stability of hcp
for Z = 1, hcp (with bcc of essentially equal stabil-
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ity) for Z = 2, and fcc for Z = 3 was not so informa-
tive, The differences scale with the square of the
backscattering form factor. We did not anticipate
that the strongest contribution of the third-order
terms would scale vrith the same factor. Indeed,
the complete asymptotic form of the three-body in-
teraction of Eq. (16) depends upon the sign and
magnitude of the form factor at all angles. Be-
cause of this difference and because of the differ-
ence in the accuracy of the asymptotic forms in the
two orders, it is not unreasonable to look at the
influence of hybridization upon one order and not
the other.

A careful test of this mechanism for structure
determination is essential, but it is not easy. We
have noted that in both second and third order the
structure-dependent part of the energy is very
small compared to the total. Further, that struc-
ture-dependent part is dominated by rather weak
singularities. Thus any artificial singularities,
such as the use of form factors with Ik+q I

= 0 for
q& 2k and It+ q I = k+ q for q & 2k or the use of arti-
ficial damping at large q, may completely invali-
date the results. These may be avoided by making
a full nonlocal calculation or by using an analytic
local form for the unscreened form factor. How-
ever, it is not clear how this latter approach is
best extended to hybridization. In addition, we

must be certain that we have not utilized the in-
herent arbitrariness of all pseudopotential methods
to obtain a desired result based upon an incorrect
mechanism.

Note added in Proof. We have recently found that
selected terms in the n-ion interaction, which are
of higher order than g in the pseudopotential, give
rise to a phase shift in the interaction of Eg. (16).
This adds a phase shift 6 to the k(l, +lz+ ~ ~ ~ l„)
which is the argument of the cosine. This phase
shift for each path is the sum of phase shifts at
each of the ions along the path. At each ion the
shift is

Z, (21+1)6,P, (cos8)
Z, (2l+1) 6, .P, (cos8) '

where the 5, are scattering phase shifts for elec-
trons with the Fermi energy and 8 is the angle made
by the path at that ion. The special case for the
two-body interaction has been given already by
Heine and Weaire [V. Heine and D. Weaire, Solid
State Phys. 24, 361 (19VO)].
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