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Phonon frequencies of copper have been measured at 80 K with a neution crystal spectrometer at a large

number of points —mainly in off-symmetry directions. The frequency distribution is calculated, and also

the Debye temperature in the interval 0-300 K, The agreement with calonmetric measurements is very

satisfactory. Several Born-von Karman models were fitted to the experimental frequencies. The best fit

was obtained using a model with general forces extending to eighth nearest neighbors. The conditions

for axial symmetry of the interatomic forces are much better fulfilled in copper than, for instance, in

aluminum. However, a general force model is preferable also for copper when a good fit in the whole

zone is wanted.

I. INTRODUCTION

It is a common routine in studies of latticedynam-
ics of metals to measure the phonon-dispersion
curves in the symmetry directions, and then fit
force-constant models to the measured frequencies.
The force constants are sometimes assumed to
have a real physical meaning; sometimes they are
used only as a means of obtaining interpolation for-
mulas for the calculation of phonon frequencies,
frequency distribution, 'and polarization vectors.
By assuming certain conditions for the relations
between some of the constants, one may include
forces from remote neighbors and derive curves
which give a very good fit in the measured direc-
tions.

For copper this method has been utilized by
Svensson et al. ' at room temperature and by ¹ick-
lowet al. 3t493nd 298 K. Their dispersion curves,
which are in close agreement with each other,
were analyzed in terms of!Born-von ~rmfn models
under the assumption of, in part, axially symme-
tries (AS} forces. The AS model for metals was
originally proposed by I ehman et al. and applied
to Al and Cu. They compared their theory with
thermal diffuse x-ray scattering experiments by
Walker for Al and by Jacobsen for Cu, and found
for both metals that forces of this type could satis-
factorily describe the experimental data. When

more reliable experimental results were avai1.able
for Al (by Yarnell et al. and by Stedman and
Nilsson7), these were analyzed for the symmetry
directions by Gilat and Nicklow and good agreement
was obtained with an axially symmetric eighth-
nearest-neighbor model. It turned out, however,
that this parameter set did not satisfactorily pro-
duce frequencies in off-symmetry directions and
a much better agreement over the whole Brillouin
zone for aluminum is obtained when general forces
are used and when the complete set of phonons by
Stedman and Nilsson is used in the fitting procedure.
This shows that a short-range ASmodel can give a

good fit for metals in the main symmetry directions
while there are considerable discrepancies be-
tween model and experiment for phonons in off-sym-
metry directions. To check the validity of spe-
cific force-constant model, it is therefore necessary
to compare the predictions of the model with mea-
sured phonon frequencies in the whole Brillouin
zone.

Sinha" used the time-of-flight technique to ob-
tain the dispersion relations in copper. Most of
the measured phonons have wave vectors outside
the symmetry directions. They are limited to, and
unevenly distributed in, the (100) and (110) planes.
The force-constant model derived from these mea-
surements on the assumption of general forces was
in close agreement with models by Svensson et al.
obtained from more accurate measurements in sym-
metry directions and on the assumption of, in part,
axially symmetric forces. It was found, however,
in a comparison of different models, that the AS
condition was not exactly fulfilled. '

II. EXPERIMENTAL

Phonon frequencies have been obtained for all
wave vectors (2m/a) (n&, nz, n3), where n; =0.0,
0. 1, 0. 2. . . , 1.0, andaisthe lattice constant,
On account of the symmetry conditions these are
reduced to 146 nonequivalent wave vectors. About
one-third of these phonons were measured; the
others were interpolated graphically. Such a mesh
of points contains sufficient information for deter-
mination of general forces in an eighth-nearest-
neighbor model, and it also provides a means of
checking this model in the whole reciprocal space.

The measurements were performed on a three-
axis crystal spectrometer at the R2 reactor at
Studsvik. The instrument has been described else-
where, ' and we shall only mention some character-
istic properties. The sample was situated in a
cryostat and cooled with liquid nitrogen to 80 K. In
order to make it easy to measure phonons not con-
fined to a single plane, the sample could be turned
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around a horizontal as well as a vertical axis.
These and all other movements of the instrument
were automated and controlled by a punched tape.
A computer calculated the settings of the spectrom-
eter together with momentum and energy reso-
lution. ' The constant-v method' was consistently
used. As monochromator we utilized Cu (220) [in
a few cases Cu (420)] and as analyzers Cu (220) and
Cu(ill). The horizontal collimation before the
sample was 0.007 rad and 0.019 or 0.013 rad after.

The coherent scattering cross section for ther-
mal neutrons (7.3b) is favorable in copper, but
the absorption (3.8b) is somewhat disturbing. The
sample was a slab 0.9&&5.5&12 cm cut from a cy-
linder and with a mosaic spread of 0. 1'. All
phonon resonances were obtained by observing pho-
non creation.

00

III. RESULTS

In Table I the phonon frequencies are given for
a set of wave vectors in the irreducible part of
the Brillouin zone. The average error is estimated
to be 0.04 THz, but individual errors may be about
twice this value. From geometrical interpolation
curves we have constructed the equienergy sur-
faces on the boundary of an elementary tetrahedron
in the reciprocal space. These are shown in Figs.
l(a), 1(b), and 1(c) for the branches T&, Tz, and I,
respectively, where Tj represents the lowest, T2
the intermediate, and I the highest energy.

The phonon-dispersion curves are shown in Fig.
2 for the symmetry directions and for some lines
on the boundary of the Brillouin zone. The slopes
of the branches at I" are in close agreement with
values calculated from elastic constants.

A. Force Constants

00

5.5

Born-von Karman models are often fitted to mea-
sured dispersion curves in metals, although it is
well known that these models are not physically
satisfactory, because they do not take the full inter-
actions of the conduction electrons into account.
Despite their defects these models offer a valuable
method for fitting curves to experimental data. As
a rule only results for the symmetry directions are
used. In these directions the phonon-frequencies-
squared depend linearly on the force constants,
which is not the case for a general point in the Bril-
louin zone. Having a force-constant model for the
fcc structure extending to the fourth nearest neigh-
bor, it is possible to calculate allparameters from
measurements in the symmetry directions only.
When the AS condition is added, one can include
more remote neighbors and a better fit for the sym-
metry directions may be obtained. But how well
all these models work at points off the symmetry
directions may not, of course, beknownuntil these
frequencies are measured.

6,5

00

FIG. 1. Equienergy surfaces on the boundary of an
elementary tetrahedron. The indicated polarization
directions are calculated from the eighth-nearest-neigh-
bor Born-von Kirmb'n model. The low-energy branch
T~, the intermediate-energy branch T2, and the high-
energy branch L are shown in (a), (b), and (c), respec-
tively. Dashed lines indicate accidental degeneracies.
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TABLE I. Phonon frequencies in copper at 80 K for a
complete set of wave vectors. Underlined frequencies
are measured. 10q

TABLE I. (ConNnued)

10q

0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3

5
5

5
5

6
6
6
6
7
7
7
8
8
9

1
2
3

5
6
7
8
9

10
1
2
3

5
6
7
8
9

10
2
3

5
6
7
8
9

10
3

6
7
8
9

10

5
6
7
8
9

10
5
6
7
8
9

10
6
7
8
9
7
8
9
8
9
9

0.83
1.68
2.41
3.12
3.71
4.23
4.64
4.96
5.10
5.16
0.71
1.35
2.15
2.95
3.60
4.12
4.54
4.85
5.06
5.14
1 37
1.92
2.62
3.38
4.00
4.42
4.77
5.00
5.07
2.06
2.56
3 17
3.85
4.32
4.70
4.91
5.00
2.75
3 17
3.75
4.23
4.62
4.86
4.93
3.39
3.80
4.24
4.58
4.84
4.88
3.93
4.23
4.60
4.84
4.40
4.66
4.90
4.80
5, 02
5.11

Vp

0.83
1.68
2.41
3.12
3.71
4.23
4.64
4.96
5.10
5.16
1.20
1.89
2.60.
3.25
3.84
4.33

5.03
5.17
5.25
2.36
2.93
3.54
4.14
4.53
4.90
5.19
5.33
5.36
3.43
3.95
4.44
4.81
5.13
5.40
5.55
5.61
4.39
4.77
5.15
5.47
5.67
5.81
5.90
5.16
5.50
5.80
6.01
6.15
6.18
5.85
6.14
6.16
5.97
6.13
5.88
5.70
5.66
5.47
5.33

V3

1.25
2.46
3.55
4.52
5.42
6.16
6.66
7.08
7.28
7.38
1.98
2.80
3.85
4, 75
5.50
6.20
6.70
7.05
7.20
7.30
3.68
4 48
5.15
5.80
6.32
6.72
6.97
7.08
7.10
5.06
5.60
6.04
6.37
6.69
6.81
6.80
6.81
5.99
6.27
6.48
6.62
6.64
6.55
6.50
6.50
6.59
6.57
6.45
6.Q6

6.18
6.51
6.37
6.35
6.46
6.45
6.68
6.76
6.94
7.06
7.29

2
2

2 5
2 5

1.02
1.45
2.18
2.94
3.65
4, 15
4.59
4.87
5.03
1.52
2.06
2.65
3.43
4.03
4.41
4.75

94
2.15
2.58
3.24
3.86
4.29
4.62
4.81
2.79
3.20
3.74
4.23
4.56
4.75
3.37
3.80
4.21
4.55
4.75
3.87
4.23
4.55
4.38
4.61
4.77
1.91
2.27
2.84
3.52
4.04
4.38
4.66
2.38
2.80
3.35
3.80
4.21

2.89
3.27
3e72
4.17
4.41
3.41
3e73
4.10

1.02
1.68
2.40
3.05
3.69
4.29
4.73
5.07
5.25
2.15
2.74
3.30
3.91
4.43
4.86
5.19
5.43
3.23
3.78
4.26
4.68
5.11
5.39
5.63
4.12
4.53
4.97
5.34
5.62
5.83
4.90
5.28
5.63
5.87
6.05
5.57
5.84
5.91
5.86
5.72
5.55
1.91
2.42
3.00
3.54
4.24
4.88
5.32
2.86
3.31
3.80
4.36
4.94
5.40
3.73
4.11
4.55
5.04
5.51
4.43
4.78
5.16

2.46
3.28
4.13
4.92
5.68
6.30
6.75
7.02
7.22
4.05
4.69
5.39
5.92
6.42
6.77
6.98
7.07
5.27
5.76
6.18
6.59
6.84
6.95
6.90
6.20
6.48
6.69
6.80
6.75
6.5S
6.68
6.73
6.71
6.63
6.40
6.70
6.67
6.62
6.66
6.78
6.99
4.60
5.20
5.80
6.25
6.60
6.81
6.96
5.V2

6.18
6.50
6.78
6.89
6.93
6.55
6.V7

6.92
7.02
6.91
6.96
7.03
7.01
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TABLE I. (Coritinued)

10q

2 5
2 6
2 6
2 7
3 3
3 3
3 3
3 3
3 3

3 4
3 4
3 5
3 5
3 5
3 6
4 4

4 4
4 5
4 5
5 5

P)

4.38
3.90
4.18
4.29
2 72
2.98
8.44
8.81
4.09
3.05
8.84
8.69
3.95
3.46
3.68
3.99
3.78
3.23
3.40
3.62
3.43
3.55
3.41

5.52
4.99
5.24
5.36
2 72
3.03
3.46
4.08
4.76
3.32
3.70
4.15
4.70
3.96
4.20
4.60

3.23
3.43
3.86
3.54
3.80
3.41

6.85
7.06
7.01
6.94
6.24
6.63
6.88
7.08
7.08
6.94
7.07
7.13
7.12
7.20
7.18
V. 15
7.22
7.16
7.26
7.31
7.34
7.30
7.44

Squires' pointed out that if the forces are effec-
tively zero beyond a certain limited distance, it is
in principle possible to obtain all force constants
from a fit to the frequencies in the whole Brillouin
zone. Otherwise it is necessary to know also the
polarization of the phonons. j6

Born —von Karman models for general forces ex-
tending up to the eighth nearest neighbors were fit-
ted to the frequencies in Table I by a procedure of

successive approximations. Ne started with a
nearest-neighbor model and made a least-squares
fit to the experimental frequencies. Starting values
for the parameters were obtained from the elastic
constants. One neighbor in turn was added to the

model and a new fit was made in each case. From
the third-nearest-neighbor model the agreement
with experiment improved only slowly. Table II
gives values of the force constants for the best fit.
In Fig. 2 the first-neighbor model is represented
by the dashed curve. The average deviation from
the energies in Table I is l. 5%%uo. The full line is for
the eighth-nearest-neighbor model for which the
deviation is 0.6%.

The eighth-nearest-neighbor model was also fit-
ted to measured phonons only, and from the result-
ing force constants new values for the geometrical-
ly interpolated frequencies were calculated. The
agreement between the interpolated phonon frequen-
cies obtained from these two methods was quite

satisfactory.
One of our purposes in constructing the force-

constant model was to use its inability to give a
good fit at the Kohn anomalies for an investigation
of these. The Kohn effect in copper is very weak
but possible to observe. ' The exact position and

size of these small kinks may, however, be rather
difficult to point out, as one does not know exactly
how the dispersion curves and their gradients would

vary with the anomaly absent. %e hope that the
19

model derived may be of use in this respect.
For comparison, an AS model was derived

where the fitting was restricted to frequencies in
the symmetry directions [100], [110], [ill], and

[0, 1, (]. The force constants obtained are pre-

FIG. 2. Dispersion curves
for Cu at 80 K. The dashed
curves represent the first-
nearest-neighbor model and

the solid lines the eighth-
nearest-neighbor model.
(The fit is made to all points
in Table I.)

Cu80 K

W X K
Z Z S
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sented in Table II. The mean deviation for all
frequencies in Table I was for this model 0.8/g,

and the deviation remained the same when all the
frequencies of Table I were included in the fit.
The same agreement was obtained with four nearest
neighbors in the general model.

The limits of errors for the parameters presented
are somewhat questionable, because a good fit may
also be obtained with other parameter sets, but we
estimate the errors to be of the order of 100 dyn/
cm,

B. Phonon Frequency Distribution and Heat Capacity

The phonon frequency distribution in copper has
been calculated from our experimental data by two

TABLE II. Best-fit eighth-neighbor model with general
forces-.

,nII
tI
I I

I I

I I

I

I
&

I

I

I

I

I I

I

l

I

I

I(
I

l

l

l

Neighbor Location AS model

Force constant (dyn/cm)
T=80 K

General forces

(1,1, 0)

i
a3

b3

(2, 0, 0)

a 2

(2, 1,1) a~

a2

b3

b

(2, 2, 0) a4,

a4
3

b4

(3, 1,0) a5(

a52

5
a3

b3

(2, 2, 2) a6&

b6

(3,2, 1) ag

a2

a3

b

b

b3

(4, 0, 0) as&

a

13570

—1 078

15 542

199

113

217

112

—100

226

—20

—141

—126

100

—31

—40

123

13751

—1615

15 366

—82

224

325

—175

217

—276

—$19

-185

32

10

22

14

—58

V (THz)

FIG. 3. Phonon frequency distribution from this ex-
periment (solid line) compared with that recalculated
from the AS force-constant model at 49 K by Nicklow
et al. (Ref. 2) (dashed line). The contributions from
low-, intermediate-, and high-energy phonon branches
T~, T2, and L are also indicated.

different methods. In the method due to Stedman
et al. , the phonon frequencies at 10 different q
values in a quarter of the Brillouin zone were cal-
culated by a second-order Taylor expansion. The
coefficients needed to perform the expansion were
calculated from the phonon frequencies in Table I.
A total of 3&&10 phonon frequencies were obtained
and these were sorted according to energy in a
histogram with channel width 0.05 THz. This par-
ticular value was chosen to obtain small statistical
fluctuations and still retain good resolution. The
result is shown in Fig. 3, where the spectrum is
somewhat smoothed. The individual contributions
from the low- intermediate-, and high-energy
branches are also shown.

Figure 4 shows two frequency distributions cal-
culated due to a method of Gilat and Raubenheimer.
In this case the two Born-von Karman models pre-
sented in Table II were used for the calculation of
the frequency spectra.

From the two-phonon frequency distributions in
Fig. 4 the heat capacity and the Debye temperature
e~ were calculated in the harmonic approximation,
in the temperature interval 0-300K. The tempera-
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lE

IX

4

2-

I

I

1

range 100-300K. The agreement between neu-
tron and calorimetric results is very satisfactory
but the general force model gives small but signif-
icant improvements over the AS model, as far as
the temperature variation of the Debye temperature
is concerned. The frequency distribution in Fig. 3
contains a systematic error for small frequencies,
which causes an error in OD at low temperatures.
When this deficiency is corrected, the Debye tem-
peratures obtained from this spectrum are also in
good agreement with the calorimetric experiments.

IV. COMMENTS

00
v [THz]

FIG. 4. Phonon frequency distributions calculated
from the Born —von K6rm6n models. Full line is for
general force model; AS model is dashed.

ture variation of OD is shown in Fig. 5 together
with results obtained from calorimetric measure-
ments by Martin and Cetas et al. The anharmon-
ic contribution to the heat capacity at constant vol-
ume is assumed to be small, and this is supported
by the behavior of OD derived from calorimetric
measurements, which shows that the Debye tem-
perature is almost constant in the temperature

Our results are mainly for nonsymmetry direc-
tions, as the other frequencies are well known
from other measurements, but several phonons in
symmetry directions have also been measured for
comparison. The agreement between our frequen-
cies and those measured by Nicklow et al. at 49
K is generally very good, although we got some-
what higher values for the most energetic longitudi-
nal phonons. ¹icklow et al. studied the widths of
some phonons at 49 and 298 K. For q =0.9 in the
100 L branch they found phonons with a width of
18% at both temperatures Wit.h a Cu (420) mono-
chromator and Cu (220) analyzer we obtained an
estimated energy resolution of 3.0% for that pho-
non, and the observed width was 3.4/o, whichmeans
that the intrinsic width is probably less than 2% at
80 K. For the corresponding transverse phonon
our resolution was 2. 4%, the width of the observed
peak 3.0%, and the real phonon width about 1/o. At
both 49 and 298 K the widths for this transverse

340- MARTIN

& CETAS et al.

hC0
o

320-

FIG. 5. Debye temperature as
calculated from the two frequency
distributions in Fig. 4 according to
the harmonic theory. Comparison
is made with calorimetric experi-
ments.

300,
0 50

l I I

100 150 200
TEMPERATURE ( K)

250 300



LATTICE DYNAMICS OF COPPER AT 80 K 2399

phonon shown in Ref. 3 were 10/0, which, there-
fore, was probably the instrumental resolution in
that case.

In the frequency distribution derived from these
measurements the Van Hove singularity ~ at v = 3.5
THz observed by Sinha, "Svensson et a). ,

' and

Nicklow et a/. has become more obtuse. This
originates from the behavior of the low-energy
branch Ti. Kith the method used to obtain the spec-
tra in Fig. 3, we have recalculated the frequency
distribution from Nicklow's force constants at 49 K
as well as the separate contributions from the three
branches. These are indicated by dashed lines on
Fig. 3.

The height of the low-frequencypart is depressed
at 3.7 THz and increased at 4.7 THz in our fre-
quency distribution, compared with the one by
Nicklow et al. The same effect is observed in Fig.
4, where the general force model and the AS model
are compared. The shape of the spectrum derived
from the model by Sinha has in this respect a closer
similarity with our frequency distribution than the
others. This may reflect the fact that nonsymmetry
phonons from the (100) and (110)planes were used
in his model. Buhrer has recently measured dis-
persion curves for some lines within the Brillouin
zone at room temperature and also obtained a sim-
ilar frequency distribution from his model. 3

Nicklow et al. measured the temperature depen-
dence of the phonon frequencies between 49 and 298
K, and Miiller and Brockhouse measured the fre-
quency shifts as a function of temperature above
room temperature, and extrapolated to the range
below room temperature for the mean phonon fre-
quency shift, obtaining a somewhat larger value
than Nicklow et al. From Eq. (8) in Ref. 35, we
calculated the mean frequency shift with tempera-
ture at constant volume and constant pressure, re-
spectively, using the heat-capacity data of Martin i

and the harmonic heat capacity calculated from our

spectra. The average phonon frequency shift be-
tween 80 and 300 K was calculated to 1.9% for con-
stant pressure, which is in good agreement with the
data of Miller and Brockhouse. The shift at constant
volume was, however, found to be no more than

0. 1/o. This indicates that copper is a metal
where the quasiharmonic approximation is quite
suitable, i. e. , where the frequencies depend only
on volume.

Our high-energy peak is shifted towards higher
frequencies relative to thatof Nicklow et al. at 49 K,
since our longitudinal dispersion curves rise to
higher energies. The over-all agreement between
our frequency distribution and that of Nicklow et al.
for Cu is, however, much better than the agree-
ment between the corresponding distributions ob-
tained for Al by Stedman et cl. and by Gilat and
Nicklow. The latter derived their frequency dis-
tribution for Al by using an AS model based on ex-
perimental results in the symmetry direction re-
ported by Stedman and Nilsson. In this fit the
[1, $, 0] direction was not included. The Al re-
sults have, however, recently been treated in the
same way as the copper results' in a comparison
where all figures are comparable. The root-mean-
square deviation for all frequencies in copper (alu-
minum) was for the AS model 0.045THz (0. 13 THz}.
Vfhen all frequencies were included in the fit this
deviation was reduced to 0.040 THz (0. 10 THz).
For the general force model the corresponding fig-
ure is 0.031THz (0. 04'7 THz). From an analysis
of force constants derived for the two metals and
from a comparison of how well different models
work in the Brillouin zone, we conclude that the
AS model is definitely more suitable for Cu than
for Al, although for copper the general force model
is also preferable.
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Measurements of the magnetoacoustic attenuation have been performed in mercury single crystals at
temperatures down to 0.45 K and fields up to 70 kOe. For longitudinal waves in the frequency range 20-70
MHz, the attenuation coefficient exhibits giant quantum oscillations with spikelike character. The
attenuation peaks are induced by the P arms of the first-zone hole surface. Their period in inverse magnetic

field is measured as a function of the magnetic field orientation. The particular shape of the attenuation

peaks is explained by taking into account the negative value of the effective mass in the magnetic field

direction (saddle point), Measurements of the linewidth and height are presented. It is shown that the line

suffers an inhomogeneous broadening. The latter is connected with the effect of dislocations on the Landau
levels and a line-shape calculation is presented, Unusual line-height properties are reported. The line height

depends on the ultrasonic-wave amplitude and in some cases there are attenuation dips instead of
attenuation peaks at the same magnetic field values. The peak-height behavior is explained by a magnetic
field effect on the electron-dislocation interaction.

I. INTRODUCTION II. THEORY

The giant quantum oscillations (GQO) in the mag-
netoacoustic attenuation in metals have. been pre-
dicted by Gurevitch et a/. ' According to the theory,
the GQO are peaks in the acoustic attenuation ver-
sus magnetic field. The latter arise from the res-
onant absorption of the sound wave by the electrons
which move along the magnetic field with the sound
velocity (in the simplest case where the wave vec-
tor is parallel to the magnetic field). The GQO
have been observed in zinc, ~'3 rhenium, bis-
muth, ' gallium, arsenic, and mercury, ' but
it is only in the four last materials that the GQO
exhibit a spikelike character. By studying the
shape of the attenuation peaks, one can obtain in-
formation about the cyclotron mass, the g factor,
and the relaxation time. It is the purpose of this
paper to report the results of such a study in mer-
cury»

The main parts of the paper are Sec. II, a brief
description of the GQO theory and new theoretical
calculations about the line shape; Sec. ID, a de-
scription of the experimental procedure; Sec. IV,
the presentation of the experimental results; and
Sec. V, the interpretation of some GQO-peak prop-
erties with a magnetic field effect on the elec-
tron-dislocation interaction.

The GQO theory has been established by Gure-
mitch et al. ' for the free-electron case. In the case
of mercury, we shall. deal with quasicylindrical
Fermi surfaces. Therefore, we refer in this part
to the theory of Kaner and Skobov, "who have taken
a nonisotropic energy-momentum law for the elec-
trons. One can write for the electron energy in the
presence of an uniform magnetic field H along the
g axis

E„(kg) = l1@A + s k, /2Bl ~ y

where ~z is the Landau-level number, 0 is the cy- .

clotron frequency eH/m, c, and k, is the z component
of the electron wave vector. The effective mass
I„in the magnetic field direction is defined by the
relation

m„S Bk,
' 'p 2gnz; Bk, p

'

where A(k, ) is the area of the intersection of the
Fermi surface with a plane perpendicular to H.
We omit index k, in Eq. (1) because the energy does
not depend on this quantum number. Nevertheless,
we take it into account when we replace the sum
over states by an integral. For simplicity, we have
written neither the spin term nor the phase term


