
CAI CUI. ATION OF THE LATTICE SPECIFIC HEA T OF. . .
G. W. Lehman, J. A. Cape, R. E. De Wames, and D. H.

Leslie, Bull. Am. Phys. Soc. 2, 251 (1964); J. A. Cape, G. W.
Lehman, W. V. Johnston, and R. E. De Wames, Phys. Rev. Lett.
16, 892 (1962).

' G. Kh. Panova and B. N. Samoilov, Zh. Eksp, Teor, Fix.
49, 456 (1965) [Sov. Phys. -JETP 22, 327 (1966)].

"H. V. Culbert and R. O. Huebener, Phys. Lett. 24, 530 {1967).
"W. M. Hartmann, H. V. Culbert, and R. P. Huebener, Phys.

Rev. B j., 1486 (1970).
"Bal Krishna Agrawal, Phys. Rev. 186, 712 (1969).

"Bal K. Agrawal and P. N. Ram, Phys. Rev. B 4, 2774 (1971).
' G. Gilat and R. M. Nicklow, Phys. Rev. 143, 487 {1966).
' R. Stedman and G. Nilsson, Inelastic Scattering of neutrons in

S'olids and Liquids (International Atomic Energy Agency, Vienna,

1965},Vol. I, p. 211.
' K. Krebs, Phys. Rev. 138, A143 (1965).
"M. M. Shukla and B. Dayal, Phys. Status Solidi 16, 513

(1966).
' Bal K, Agrawal, J. Phys. C 2, 252 (1969).

PHYSICAL HEVIEW 8 VOLUME 7, NUMBER 6 15 MARCH 1973

Pseudoyotential Calculation of the Third-Order Elastic Constants of Coyyer and Silver

J. F. Thomas, Jr. "

Physics Department, University of Virginia, Charlottesville, Virginia 22901
{Received 28 August 1972}

The third-order elastic constants of copper and silver have been calculated by the method of
homogeneous deformation from a total energy expression consisting of four terms: a free-electron

energy, an electrostatic energy, a band-structure energy, and an ion-core overlap energy. The
band-structure energy has been expressed in terms of a local pseudopotential. The overlap energy has

been approximated by a Born-Mayer potential. The total-energy expression includes five adjustable

parameters which have been chosen to fit the binding energy, lattice spacing, and three second-order

elastic constants to experiment. The ion-core repulsive energy makes the dominant contribution to the

third-order elastic constants. The other contributions are not negligible but tend to cancel. The

calculated third-order elastic constants of copper and silver are in good agreement with low-temperature

experimental values. An attempt to apply the five-parameter fitting procedure to gold was unsuccessful.

I. INTRODUCTION

Pseudopotential theory has been remarkably
successful in the calculation of structural proper-
ties, such as elastic constants and phonon spectra
of simple (sp-bonded) metals. Unfortunately, the
situation is quite the opposite for the transition
metals. There is now no distinct approach of com-
parable power applicable to this important class of
materials. This is true, also, for the noble met-
als copper, silver, and gold which, in many re-
spects, form a link between the simple metals and

the transition series.
Several yea, rs ago, Harrison proposed a scheme

by which the pseudopotential formalism could be ap-
plied. to transition metals. The key result was
that hybridization between the d bands and conduc-
tion band could be included in a weak pseudopoten-
tial. Perturbation theory could then be used in
the usual way to obtain an analytical expression
for the lattice energy as a function of the ion posi-
tions. Harrison's approach has been developed
by Moriarty. ' He recently completed numerical
calculations of the total energy of the noble metals
and applied the results to predict crystal structure
and calculate phonon spectra with moderate, yet
encouraging, success. 5

The purpose of this work is to calculate the
third-order elastic (TOE) constants of the noble

metals. Interest in TOE constants, which mea-
sure the anharmonic part of the interatomic poten-
tials, has centered on informatio~ which can be
obtained regarding the lattice energy or inter-
atomic potential. For example, by symmetry,
there are six TOE constants for a cubic crystal. Ex-
perimental values of these parameters for the
noble metals, 8 «0 including some measurements
at low temperature, ' ' are available to fit or
verify a theoretical interatomic potential.

We have calculated the TOE constants by the
method of homogeneous deformation. The total-
energy expression used in the calculation is based
upon the work of Harrison and Moriarty. How-

ever, we have made several simplifying assump;
tions, including the use of a local-empirical
pseudopotential, to keep the calculation of the re-
quired energy derivatives tractable. To partially
compensate, we have included five adjustable pa-
rameters in the total-energy expression. These
have been chosen to fit the binding energy, lattice
spacing, and three second-order elastic (SOE)
constants to their experimental values. The total-
energy expression consists of four terms: the
free-electron energy U„, the electrostatic energy

U„, the band-structure energy U~, and the over-
lap energy U„. The energy term U, &, which mea-
sures the exchange interaction between neighboring
ion cores, has been approximated in terms of the
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well-known Born-Mayer potential. We find that
U„makes the dominant contribution to the TOE
constants of the noble metals. The calculated TOE
constants of copper and silver are in good agree-
ment with low-temperature experimental values.
It was not possible to perform the required five-
parameter fit for gold, and no results for the elas-
tic constants are included here.

In addition to Moriarty's work on the noble
metals, ' there have been other calculations of the
phonon spectrum and elastic constants of copper
based on a pseudopotential approach. However,
none have included TOE constants or even pressure
derivatives of the SOE constants. Most recently,
Prakash and Joshi calculated the phonon spectrum
of copper. They included the effects of hybridiza-
tion in a parametrized-dielectric screening func-
tion, but neglected ion-core overlap. They ob-
tained fair agreement with experiment for longi-
tudinal modes, but the calculated frequencies for
the transverse modes were Low. Sinha also cal-
culated the phonon spectrum of copper using a
pseudopotential formalism with three parameters
fit to the SOE constants. He included an explicit
ion-core overlap term. Sinha's calculated phonon
spectrum is in good agreement with experiment.
Using a different approach, Collins fit the SOE
constants of copper and silver in a rigid-band cal-
culation. Collins also included an explicit ion-
core overlap energy term.

In Sec. II of this paper, we present a short dis-
cussion of the method of homogeneous deformation.
In Sec. DI we describe the total-energy expres-
sion. In Sec. IV the results of the calculation are
presented, and these are discussed in Sec. V.

II. METHOD OF HOMOGENEOUS DEFORMATION

The relation between the elastic constants and the
strain-dependent lattice energy can be written

U = Uo+ a Ct yy)'0()Ryr + 6 C&)attttn~&PIfr~tttn+
' ' '

~

(1)
Here the elastic constants of any order are defined

8 ttU
~fgklttttlo ~ ~

Q Qq eq g ~ ~
tttn q=D

This definition was first proposed by Brugger and
has been widely accepted. In these expressions,
U is the total energy of the crystal per unit mass,
and the g&& are components of the Lagrangian
strain tensor

n~y= '(~~&~&. & g) .--.
The deformation tensor

Bgg
Q)p = (4)

Sap

relates the initial and final coordinate vectors a

and r of an infinitesimal element in the deformed
solid. Any deformation for which det(n, „)= 1 will
define a, strictly volume-conserving (shear) defor-
mation.

The method of homogeneous deformation dates
to the work of Fuchs. " He defined two shear de-
formations which isolated the cubic elastic con-
stants C'= —,'(C„—C,~) and C = C44. Elastic-shear
constants were emphasized because they do not
depend upon terms in the total energy which depend
solely on crystal volume. The method of homo-
geneous deformation was extended to the third or-
der by Cousins and by Suzuki, Granato, and
Thomas. ' The procedure used here closely paral-
lels that of Suzuki et al. except for the use of
slightly different deformation parameters. Hence,
the four deformation parameters used here will
be defined.

The first deformation ()f) contracts the lattice
along the [001]direction and expands it uniformly
in the plane perpendicular to this direction so as
to maintain constant volume. The deformation
tensor is

The second deformation (X) contracts the lattice
along the [111]direction and expands it in the plane
perpendicular to this direction to maintain con-
stant volume. The deformation tensor is

+2
(X) =-'X"'~ X '-1 x '-1

A,
" +2

~'+2 )

where v is the reduced volume, v = (VjVO).
The three shear deformations defined above

have been chosen to distort the lattice along direc-
tions of high symmetry. Each can be obtained
from the others by means of a similarily transfor-
mation referred to the cubic crystallographic axes.
In addition, we note that the deformations have
been defined in terms of parameters which approach
unity at the equilibrium configuration. This is
allowable as there is no need to construct a series
expansion in terms of the deformation parameters,

The third deformation (x) contracts the lattice
along the [110]direction and expands it in the plane
perpendicular to this direction to maintain constant

-'"me. The deformation tensor is

(-,' (x '+1) —,
'

(x '-1) 0)
n(, (~) =x'~'~(-,' (x ' —1) -', (x '+1) 0 . (q)

0 0 1)
In addition, we require a deformation defining a
simple volume change. This is taken to be
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C'=a(C»- C&2)

C= C44

3 82U

4

3 8U
4 8X

TABLE I. Relation between ruche and Brugger cubic
second- and third-order elastic constants and energy de-
rivatives with respect to the deformation parameters de-
fined in the text.

For conversion purposes one would use I= 2m,
= —,'e =1. In addition, we have used valence Z=1
throughout.

The free-electron energy U„depends only on
the volume of the crystal and is unchanged during
a shear deformation. We write it as follows:

v,.= a al. /r', 0—91.6/r,

B= p(C»+ 2C(2)
8'U
8v

—(0. 115 —0. 031 Inr, ) + 3a/4v. r, . (10)

CXXX- 8 (C»( 3C»2+2C123)

Cm = C4se

C„„„=$(C)ee C(44)

C~=»+k(C»1- i23)

C)t)t =3B+C&44+ 2C&ee

C =
9 (C»g+6C»2+2C123)

1
16

1
16

1
16

8U 8U9~+45—
2

(
8U 8U 8U 8U

8 3 +—3+15—2+30 —28' 8X 8X 8X

8U 8U
3 2

—4 —28x 8v 8x

8U 8U
8$ 8v 8$

8U 8U
8v '~8v

and this choice results in the calculations becoming
somewhat less tedious.

The elastic constants which me calculate from
the derivatives of the total energy with respect to
the above deformation parameters are summarized
in Table I. This table defines the notation to be
used in this paper for relating Fuchs elastic con-
stants (C', Cxz„, etc. ) to Brugger elastic constants
(C», C,», etc. ) and the energy derivatives. Three
of the Fuchs TOE constants, C«„, C»&, and C„„„,
have previously been identified by Cousins as
third-order shear constants. The other three
Fuchs TOE constants, C&x„, C&), and C„„„,measure
the volume derivatives of the SOE constants. Fi-
nally, we note that seven of the nine Fuchs elastic
constants for a cubic crystal, all except B and
C„„„,will be independent of lattice energy terms
which depend solely on crystal volume.

III. TOTAL ENERGY EXPRESSION

The work of Harrison and Moriartye 5 has shown
that the total energy of a noble metal can be mritten
in a pseudopotential approach as the sum of four
terms,

U= Ure+ Ues+ Ubg+ Uo), ~ (9)

The reader is referred to the references cited for
basic accounts of these energy terms. The treat-
ment here is approximate. In addition, we intro-
duce five adjustable parameters. The energy ex-
pressions given below are written in atomic units
with lengths measured in Bohr radii (a0=0. 5a9 A)
and energies measured in rydbergs (1 Ry = 13.5 eV).

Here the first term represents the Fermi energy,
the second term represents the exchange energy,
and the third term represents the Nozieres-Pines
approximate expression for the correlation energy
of a free-electron gas. ' The parameter x, is the
radius per conduction electron. For the mono-
valent noble metals, x, is related to the atomic
volume Ao by Qo= (@v)rs. In the fourth term in Eg.
(10) we introduce the adjustable parameter n to
measure that component of the energy U„depend-
ing on volume as x, . This volume dependence
would be correct for the first-order perturbation
energy term for a simple metal treated in terms
of a local pseudopotential. However, for a noble
metal, the pseudopotential includes the effects of
hybridization, and nonlocal effects should also be
important. In addition, U„should account for
the volume-dependent energy of the d electrons for
which an energy term varying as x,3 is only a first
approximation. Limiting U, e to the four terms
in Eq. (10) with a single adjustable parameter is
a serious approximation. In a certain respect it
is necessary, though, as our procedure mill not
accommodate another adjustable parameter. Hope-
fully, the results of our calculation mill indicate
the extent to which this approximation is justified.

The electrostatic energy Ues represents the
classical electrostatic energy of an array of posi-
tive point charges embedded in a uniform-compen-
sating electron gas. The volume dependence of
U„can be written as

U„= —1.79a/x,

and U„also depends on the configuration of the
ions. The numerical coefficient is appropriate
for any fcc lattice. ~0 In pseudopotential calcula-
tions which include the effect of the energy depen-
dence of the potential, the electrostatic energy is
multiplied by the square of an effective valence,
Z*, to account for the exclusion of charge from
the core of a pseudoatom. Since energy-dependent
effects are not explicitly included here, we take
Z*=1 for the monovalent noble metals.

The band-structure energy U~ represents the
deviation of the energy of the conduction electrons
from that of a free-electron gas. In particular,
it is calculated from the second-order perturba-
tion energy of a conduction electron in an expan-
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sion in terms of the pseudopotential. For a
Bravais lattice, U~ can be written

where E(q) is called the energy-wave-number
characteristic, 5 is a reciprocal-lattice vector,
and the prime on the sum indicates that the term
with 5= 0 should be excluded. We have chosen to
approximate the energy-wave-number character-
istic E(q) in terms of a local-model pseudopoten-
tial and a linear screening function corrected for
exchange and correlation among the conduction
electrons. In this case, E(q) can be writte~ '

&'(q) =w~p(q)[)((q)/e(q)]D(q) ,

w2(q) = 00'[- 82/q2+ p/(1+ q'r', )'],
e (q) = 1 —(16m/n2q') [1 -f(q)])((q),

y, (q) = —sky 1+ In =1 —g g+1 '

26, n-1
f(q) = -', r12/[q2 + 4 + (2)'22 r) '] ,

Il( )
%.0258n

In these expressions, k~ is the free-electron
Fermi wave number, kz=(4 v)' r, , and q= IVI/
2k~.

For the bare-ion pseudopotential form factor
w2(q), Eg. (14), we have chosen Harrison's modi-
fied point-ion form. This includes the adjustable
parameters P and r, . There is, of course, no
theoretical justification for choosing a local
pseudopotential mith no explicit account of hybrid-
ization. We have done so to keep the calculation
of the second and third derivatives of E(q) tract-
able. However, it is interesting to note that, by
adjusting the values of p and r„ the screened
form factor w2/e calculated here can be brought
into general agreement mith that calculated by
Moriarty for q~2kz. This is the region of con-
cern in the elastic-constant calculation.

For the dielectric screening function e(q), Egs,
(15)-(17), we have used the Hubbard-Sham form. 22

This is equivalent to the Hartree dielectric func-
tion with the factor [1-f(q)] inserted to correct
approximately for correlation and exchange among
the conduction electrons. The factor )f(q) includes
the logarithmic singularity arising from the as-
sumption of a sharp Fermi surface.

The function D(q) is not usually included in the
energy-wave-number characteristic. We have
included it here to improve the convergence of
sums over E(q) and its derivatives. The coeffi-
cient in the exponent was arbitrarily chosen so
that E(q) would be down by e i at q = 5k+ and con-
verge rapidly for higher q. There is little effect

on E(q) in the region near q = (2-3)f2@ where the
principal contributions to the elastic constants
occurs

The overlap energy U„represents the exchange
energy due to the overlap of d-electron states on
neighboring ion cores. In the noble metals, the
ion cores have the closed-shell configuration d',
and the electron states on neighboring ions must
be orthogonal. This results in an interaction en-
ergy which varies rapidly with interatomic dis-
tance. We have chosen to parametrize this energy
term by the well-known Born-Mayer form

a[(IP&I j& )-S~

The expression for the total energy contains five
adjustable pa.rameters. These have been chosen
to fit the experimental values of the binding energy
and SOE constants and to assure crystal. equilib-
rium, 8 V/er, =0, at the observed lattice spacing.
The relevant constants for copper and silver are
summarized in Table II. The experimental binding
energy is the sum of the cohesive energy plus the
first ionization energy of the free atom. Since
the method of homogeneous deformation treats the
crystal as an anisotropic continuum at 0 "K ignor-
ing zero-point vibrations, we have tabulated ex-
perimental values of the lattice constant~ and
elastic constants ' extrapolated linearly to 0 'K.

We used the following procedure to choose the
va'lues of the adjustable parameters: The pseudo-
potentt» parameters p and r, were set, and the
band structure and electrostatic energies and en-
ergy derivatives mere calculated. The Born-
Mayer parameters A and B could then be obtained
from the experimental values of the second-order
shear constants, and the overlap energy and its
derivatives could then be calculated. The param-
eter z in the free-electron energy could then be

TABLE II. Cohesive properties of copper and silver at
0 'K.

Binding energy' (Ry/ion)
Lattice constantb(A. )
Elastic constants (ID~2 dyn cm ~)

C ' = g (C)( —C)o)
C= «4
~=-.«~~+2C~2~

Reference 23.
"P,eference 24.

0. 825
3.59V

0.266
0, 832'
l.439~

Caeference 25,
dReference 26.

Silver

0, VV4

4. 063

0. 3.73d

0. 5~V'
1.09Vd

Here xo is the nearest-neighbor distance, and A.

and B are adjustable parameters. The sum in Eq.
(19) will be performed over the 12-nearest neigh-
bors only.

IV. CALCULATIONS AND RESULTS
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TABLE III. Final values of the adjustable parameters in
the total-energy expressions for copper and silver.

TABLE V. Calculated Fuchs third-order elastic constants
of copper and silver in units of 10 dyn cm

Energy term Parameter Copper Silver &xxx ~XXu

Use

Uoi

a (Ry a3p)

P(ay a3p)

~,(ap)

A(Ry)

2. 92

59.10

0.516

4.62x 10"3

22, 41

69.00

0.457

4. 21x 10 3

Ub,

U~
Ufe

Uo&

Total

—0, 25
0, 35
0

1.36
l.46

—0.49
0.35

0
0.26
0. 12

Copper

0. 60
—0. 80

0
-4. 13
-4.33

Silver

0. 13
—0. 14

0
-4.13
—4. 14

2. 24
1y 31
0

-12.90
—ll. 97

—0.30
0.75

—0.96
-7.83
—8.34

14 95 15.26

TABLE IV. Calculated lattice energy contributions to
the Fuchs second-order elastic constants of copper and
silver in units of 10 2 dyn cm" .

Ues

Uge

Uoi
Total

Use

Uol
Total

C' =-,'(C«- C„)

—0.020
0.029
0
0.257
0.266

—0. 017
0. 018
0
0. 172
0. 173

C= C44

Copper

—0.202
0.261
0
0.773
0. 832

Silver

-0.155
0.160
0
0.512
0.517

S= —,'(C«+ 2C„)

0.054
—0.562

0.485
1.462
1.439

—0.198
—0.345

0. 679
0.961
1,097

adjusted to obtain lattice equilibrium. The proce-
dure was repeated for different pseudopotential
parameters until agreement with experiment was
obtained for the binding energy and bulk modulus.
The procedure was successful for copper and
sili'er, and the final values of the adjustable pa-
rameters for these metals are summarized in
Table III. The procedure was not successful for
gold. The experimental values of the binding en-
ergy and bulk modulus of gold could not be obtained
simultaneously with reasonable values of the
pseudopotential parameters. This is discussed
further in Sec. V.

The elastic constants summarized in Table I
have been calculated from the equivalent energy
derivatives. The free-electron energy U„con-
tributes only to the elastic constants 8 and C„„„.
The contributions of the electrostatic energy U„
and the overlap energy U„ to the second- and
third-order elastic shear constants have recently
been summarized by Cousins. 16 The contributions
of these energy terms to the elastic constants B,
Cxx„, C»„, and C„„„canbe calculated from the re-
sults of Cousins and the volume dependence. The
calculation of the contribution of the band-struc-

Ues

Ufe

Uol
Total

-0.17
0.22

0
0. 90
0. 95

—0.50
0.21

0
0. 17

—0. 12

0.48
—0.49

0
2Q 77

—2. 78

0. 18
—0. 09

0
—2. 83
—2. 74

2. 17
—0. 80

0
—8.71
—7, 34

-0.12
0.46

—1.37
-5.24
—6.27

ture energy U~ to the elastic constants is equiv-
alent to that of Suzuki et al. '7 except for the use
of the different strain parameters defined in Sec.
II. This calculation is straightforward, but
lengthy, and will not be summarized here. In
calculating U~ and its derivatives, F(q) and its
derivatives have been summed over the nearest
258 reciprocal-lattice vectors, which extend to
a distance q=7. 7k„.

The decomposition of the Fuchs SOE constants
of copper and silver into contributions from the
various energy terms is presented in Table IV.
We note that the overlap energy makes the domi-
nant contribution to the three SOE constants, and
that the electrostatic energy and band-structure
energy contributions to the second-order shear
constants nearly cancel. In addition, the band-
structure energy contribution to the shear constant
C is approximately an order of magnitude greater
than the contribution to the shear constant C' for
both copper and silver. This relationship is in
agreement with the calculations of Sinha' and
Collins mentioned previously. It is related to
the fact that the Fermi surface of a noble metal
intersects the (111)planes of the Brillouin zone,
and it is the motion of these planes that is the pre-
dominant feature of the shear deformation (X) de-
fining C. In fact, the band-structure contribution
to C is approximately equal to that part of the sum
arising from the eight nearest (111)reciprocal-
lattice vectors.

The final results for the Fuchs TOE constants
of copper and silver along with the decomposition
into contributions from the various energy terms
are presented in Table V. The most striking fea-
ture here is that, as for the second-order con-
stants, the overlap-energy contributions are pre-
dominant. In each case, the electrostatic and
band-structure energy contributions are opposite
in sign and nearly equal in magnitude. We also
note that, as for the second-order shear constants,
the band-structure contribution of C),~ is an order
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TABLE VI. Comparison of the calculated Brugger third-order elastic constants of copper and silver with experimental

values (units of 10~~ dyn crn 2).

Present calculation
Hiki and Granato (300'K)
Salama and Alers" (300'K)

(4. 2'K)

Present calculation
Hiki and Qranato (300'K)

'Q,eference 6.

-17.02
12+71

-15.0
—20. 0

—12, 64
—8.43

Copper

—9.65
—8. 14
—8.5
12+2

Silver

7g 12
—5.29

—0. 10
—0.50
—2 5
-5.0

—0.57
+1.89

"Reference 8.

C144

+0.34
-0.03
—1.35

1~ 32

+0.17
+0.56

—8.32
—7. 80
—6.45
-7.05

—5.40
—6.37

C456

+0.12
—0.95
—0. 16
+0.25

—0. 11
+0. 83

of magnitude larger than the contribution to Cxx„.
The analogous situation for the third-order shear
constants is not as transparent. However, in this
case, the band-structure contribution to the third
derivative B~U/BX~ is much larger than the contri-
butions to B U/Bg and B U/Bz'.

We have calculated the Brugger TOE constants
from the Fuchs TOE constants using the relations
in Table I. Our results for the Brugger TGE con-
stants of copper and silver are presented in Table
VI and compared to the available experimental
values. The experimental results of Hiki and
Granato at 300 'K and of Salama and Alers at both
300 and 4. 2 'K were obtained from stress deriva-
tives of pure-mode sound velocities. Since our
TOE constants were calculated by the method of
homogeneous deformation, we should expect
agreement with low-temperature experimental
values.

The hydrostatic-pressure derivatives of the SOE
constants can be calculated from the TGE con-
stants. In the notation used here the pressure de-
rivatives are given by

BC' —(C'+ Cx~)
8+

of the pressure derivatives for copper obtained
from the results of Salama and Alers is significant-
ly larger than that obtained by Ho et al. for silver.
In fact, Ho et al. conclude that, within experi-
mental error, the pressure derivatives for silver
may be independent of temperature. The large
temperature dependence obtained by Salama and
Alers has been questioned by Peters, Breazeale,
and Pare. ' They measured three linear combina-
tions of the TOE constants of copper determined
by the generation of the second harmonic of an
ultrasonic wave propagating in each of three pure-
mode crystallographic directions. These combi-
nations, termed nonlinearity parameters, were
determined as a function of temperature from 300
to 77 'K, and the results were extrapolated to O'K.
The magnitude of the temperature dependence de-
termined by Peters et al. is much smaller than
that obtained by Salama and Alers. Nonlinearity
parameters determined from the TOE constants

TABLE VII. Comparison of calculated elastic-con-
stant hydrostatic-pressure derivatives of copper and
silver with experimental values (dimensionless).

BC —(C+ C),~)
&P 38

Copper

oc'
M

ac
8P

'dJ3 —C„„„
~P B

Our results for the hydrostatic-pressure deriva-
tives of the SOE constants of. copper and silver and
the available experimental values are presented in
Table VII. The experimental results of Hiki and
Granato and of Daniels and Smith~ were obtained
at 300 'K. The pressure derivatives attributed to
Salama and Alers were calculated by us from
their 300 and 4. 2 'K TOE constants. The pressure
derivatives of Ho, Poirer, and Ruoff for silver
were obtained from 300 to 77 'K.

The magnitude of the temperature dependence

0. 90
0.38
0.58
0. 50
0. 70

2. 58
2. 63
2. 35
2.37
2.43

5. 80

5.59
5.90
8. 07

Present calculation
Hiki and Granato~ (300'K)
Daniels and Smith" (300'K)
Ho et gl. ~ (300'K)

(77'K)

Reference 6.
"Reference 7 ~

cReference 8.

5.72
4. 11
6. 18
6. 07'
5.96'

0.78 2. 07
0.76 3.04
0.64 2. 31
0.66 2. 32
0.64 2. 27

dReference 9 .
'Isothermal bulk modulus,

Present calculation
Hiki and Granato~ (300 K)
Daniels and Smith" (300'K)
Salama and Alers' (300'K}

(4.2'K)

Silver
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TABLE VIII. Comparisp ty

10 dyn/cm )
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the overlap energy makes the dominant contribu-
tion to the TOE constants of copper and silver.
The contributions of the electrostatic energy and
band-structure energy are significant, but these
cancel to a remarkable degree. Several years
ago, Hiki and Granato proposed that the measured
TOE constants of the noble metals could be inter-
preted by considering solely the overlap energy.
They argued that, since this interaction must vary
rapidly with ion separation, it would become in-
creasingly important in the higher-order elastic
constants. The results of our calculation help to
explain the success of this approximation.

As a final comment, we consider the fact that the
fitting procedure used here was not successful for
gold. We choose to discuss this in terms of the
failure of the Cauchy condition, the magnitude of
the difference C» —C44. The author has recently

shown how this quantity can be obtained from solely
volume-dependent terms in the total energy. 29 For
copper, silver, and gold wehave C» —C,4=0.430,
0.465, and 1.251x10 dyncm, respectively. ~ '~6

The situation for gold is clearly anomalous. It
is not surprising that an energy expression with
the simplified volume dependence considered here
is unable to account for the elastic properties of
gold in spite of the considerable success achieved
for copper and silver.
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