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Calculation of the Lattice Specific Heat of Very Dilute Al:Ag Alloys
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A detailed study of the effects of force-constant changes due to impurity atoms on the lattice specific heat
has been made in very dilute aluminum-silver alloys. Numerical computations have been performed for

A1995oAgp50 and A199Q$Agp95 alloys. Almost all of the of the contribution to the specific heat arises because of
F,„resonance modes and the contribution increases with increase in temperature. A very good agreement
between the theory and the experiment has been observed in both the alloys. The use of an effective force
constant which has been defined earlier is found to be very appropriate in making simple calculations for the

specific heat. The observed discrepencies between the results obtained in the frame work of eAective force
constant and those obtained in a realistic manner are seen to be less than 12% at very low temperatures and
are even smaller at comparatively higher temperatures.

I. INTRODUCTION

The doping of a crystal with defects changes the
vibrational properties of the pure crystal. '~
There are alterations in the frequencies of the nor-
mal modes of vibrations of the crystal lattice and
in the pattern of the atomic displacements in the
normal modes. Localized modes can appear acti-
vated by a light impurity or by a defect coupled to
its neighboring atoms more strongly than to a host
atom. The frequencies of the localized or bound
states lie in ranges forbidden for the normal modes
of the pure-host crystal. Quasilocalized or reso-
nance modes may also appear for a heavy impurity
or a, defect coupled weakly to its neighbors as com-
pared to the host atom. The frequencies of the
resonance modes lie in the ranges of the frequen-
cies allowed to the normal modes of the pure-host
crystal. These modes are characterized by a large
vibrational amplitude of the defect or of those atoms
with which it directly interacts. An increase in
the density of states near the resonance frequency
is observed which gives rise to resonance-type
peaks in the frequency spectrum of the impure
crystal. Further, these modes have finite life-
times because they can decay into the band modes.
An extensive study of the changes in the phonon
spectrum due to small concentrations of very heavy
or very light impurities has been made by perform-
ing inelastic-neutron-scattering experiments.

The effects of the defects on the frequency spec-
trum of an imperfect crystal may be studied by
measuring the lattice contribution to the specific
heat. The contribution of localized modes to the
lattice part of the low-temperature specific heat is
too small to be detected in the experimental mea-
surements. Qn the other hand, the contribution of
the low-frequency resonance modes to low-tem-
perature specific heat is appreciable and is acces-
sible to observation. The possibility of occurrence
of a substantial enhancement due to low-frequency

resonance modes was suggested by Lehman and
DeWames' and independently by Kagan and Iosilev-
skii. This enhancement in the specific heat due
to heavy impurities in metals has been reported in
a number of papers. e "

&cry recently, Hartmann et al. have measured
the lattice part of the specific heat of aluminum
containing low concentrations (0. 50 and 0. 95 at. %%uo)

of Ag at low temperatures and have shown that the
mass-defect calculation accounts for about 80% of
the observed change in the specific heat. In the
present paper the effects of force-constant changes
on the lattice specific heat have been studied in a
crystal containing a low concentration of impur-
ities. Numerical computations have been made for
the two dilute alloys Alge, og Agp, 95 and Al», Ago 5.
A good agreement between the theory and the ex-
periment has been observed.

A brief account of a low-concentration Green's-
function theory for the change in the density of
states and the calculation for the change in the lat-
tice specific heat for an imperfect crystal is given
in Secs. II A and II 8, respectively. The localized-
perturbation model for the defect is discussed in
Sec. II C. The lattice dynamics and the calculation
of Green's function for aluminum are discussed in
Secs. IIIA and IIIB, respectively. The enhance-
ment in the specific heat is determined and the re-
sults, based on an effective force constant, are
obtained in Sec. GI C and Sec. III D, respectively.
These results are discussed and summarized in
Sec. IV.

II. THEORY

A. Density of States in Imperfect Crystal

If No(&u~) daP is the number of normal modes
whose squared frequencies lie in the interval
(ar, v +de ), in the limit as d&o tends to zero,
then the density of states in a pure crystal is de-
noted by No(~~) and is expressed as
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No(v )= Z 5(((4,,—uP),
k, a

where &g, is the phonon frequency corresponding
to the wave vector k and the polarization branch s.

The time-independent equation of motion can be
written

(Lo —zI )go ——0,
with LO=MO'; $0~MD'; Mo and $0 are the mass
and the force-constant matrices of the perfect crystal,
~espectively. $0 is a vector which is related to the
usual atomic displacement vector u by

-s/su=M,

Here I is the unit matrix and z denotes complex
squared frequency, given by

z =(c +2@et in the limit $ 0.

For a crystal containing a finite concentration of
defects which have different masses and interac-
tions with its neighbors, the time-independent
equation of motion may be written

=- I-]i~(„a I(nl r+G'(z)o(~'&II) . ((o)

For a crystal containing a single defect, the
Green's function and perturbation matrices are
g(z) and p (z), respectively, lying in the subspace
3b x3b, b being the total number of atoms disturbed
by a single defect including the impurity itself.
Hence, one can write Eq. (10) as

t'1 dbN=-
~

— Im z lnD(z),
(m dw

where D(z) is the resonance denominator given
by

For the case of a perturbation which possesses
some symmetry, the resonance denominator of the
t matrix splits as

D(z) = IID,(z),

where

[Lo+P(((( )]()( =(d g (4)

where P(~'), the perturbation matrix caused by the
defects, is explicitly given by

P((d )=-(d M hMM +M b, (t(M

Here the new mass and force-constant matrices of
the imperfect crystal have been denoted by Mo
+ b M and (t(0+ AP, respectively, and ()( is the cor-
responding vector of the lattice.

The Green's function for a perfect lattice is de-
fined by

G'(z) = (L, —zI )
' .

Equation (1) can be rewritten

(6)

N, (&') = -Im[ Tr(L, - z I )-']

d=- — im, (ln~ L, -zl ~).

For an imperfect crystal we may similarly write
for the density of states

N((dz)= —— Im p (ln~L —zI~),3 1 d
(6)

where L is the mass-reduced force constant ma-
trix for the imperfect crystal,

Equation (8) can also be written

oo '(=-(-)r~ ",D~(Ir ~ G'o(~'(Ilo, -*(I((.
(9)

The change in the density of states due to defects
is, therefore, given by

c(.N= N((d )- No((dz)

is the resonance denominator in the irreducible
representation v, g„(z) and P'„(&u ) are Green's func-
tion and perturbation matrices projected in the vth
irreducible representation. The solutions of the
equation

HeD„(z)=O, (14)

give the resonance or the localized frequency de-
pending on whether the frequency lies in the phonon
spectrum or outside it.

Equation (10), which is true for any frequency
lying in the phonon spectrum of the pure crystal,
connects the scattering theory with the calculation
of bulk properties of a dilute alloy. In this relation
we obtain a change in the density of states relative
to the entire crystal volume, so that if a finite con-
centration cN (N is the number of unit cells in the
crystal) of noninteracting defects is present, we
may merely multiply Eq. (10) by cN. Here c de-
notes the fractional concentration of defects.

Thus the use of the symmetry-coordinates block
diagonalizes the resonance denominator D(z), and
we may write

ro.N(&o ) = —Z v Im 3 ln D„(z) = Z AN„(&oz),
dQ)

where

~N„(~')=- z-'I„im, lnD„(z)

(16)

Here LUV„ is the contribution from the vth irreduc-
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ible representation and l„denotes the dimension of
the vth irreducible representation.

The phonon phase shifts are defined by

lm B„(2)
HeB„(~)

'

The introduction of these phase shifts immediately
simplifies Ecl. (16): The contribution to the change
in the density of states produced by scattering in
the irreducible representation v becomes

Ds~(&) = 1+ &(gl-gs g4-gs-gs g7

+g9+g10 2g12 g12) i

&22 (~) = 1+&(gl —g2+ gs —g7+g'9), (24)

D~ (&)=1—e(d'g, +-2'X(6x, —x, +x, )

+F2'(~) 1 + ~(g1 g2 g4+g7 g9 g10+g12) 1

(2s)

L.„d5„
AiV„= —"~

1T CAd
(16) + -2'-Xe01'[g, (x2 —x, ,)- Bx,(g, .:-g,)], (26)

This relation between the phase shift and the change
in the density of states is true for any frequency
lying in the frequency bands of the pure crystal.

B. Lattice Specific Heat

The enhancement of the low-temperature vibra-
tional specific heat by heavy impurity atoms per g
mole (N atoms) is given by

6 C~(T) = —
2 (d ~(1d ) cscll —d(d,r-"-- 3 Sd

4k T' 2kB 7
(19)

where AN(4d) =-201~(1d !and )22 is the Boltzmann
constant. The contribution from the vth represen-
tation in terms of phase shift is given by

6 Cl, (T) = ~ 1d —2(d~ csch ——d01 .
E dip 2 AQ)

B d 2kB T

(20)
Integrating once by parts, we have for the irreduc-
ible representations v

ZC~(T)=---2 —— S„(d csch (B(d)
N BCNB

m

x[1—B1dcoth(B01)]d&u, (21)

where x„xz, and x3 are the various combinatj. ons
of Green's functions and are given by

X1=g1-&2+g4 2

x2 = —g1+ 8ga —2&3 —gs —g6 —%+9 —2g1o+ 2g1a ~

x3 ~1+ «g4 ~5 4-9 6+ gv 4-9s 24-912 2+13 ~

Here A. is the change in the mass-reduced nearest-
neighbor central-force constant and e = (M'- M)/M
is the change in mass at the impurity site (M and
M' denote the masses of the host and impurity atom,
respectively).

In case we define an effective force constant g in
the framework of nearest-neighbor rigid-ion model
for the crystal lattice, the resonance denominator
in the I",„ irreducible representation can be simpli-
fied as"

(z)=(l+ — 0 —e~ g) ~ —0+a)—(& w g)p 3iE. (gp 2
F1u q Zg 1

(2V)
where Z is the nUmber of nearest neighbors of a
lattice site and is equal to 12 for aluminum.

The various Green's functions for p, = 1-13 are
given by

where B=h/2f2sT.

C. Defect Perturbation Model

3

g„(H.—R„)=—ZZ&.=1 r g„. -~ (26)

The aluminum metal and its alloys with silver
crystallize in fcc structures. If we assume a per-
turbation around an impurity where we consider a
change in mass at the defect site and the change in
the first-neighbor central-force constant of the de
&aunay type, the matrix p(4d ') is of 21 x 21 dimen-
sion. The irl educible representations occurring
in this problem which exhibits a O„point-group
symmetry are E,„, I3„, I"z~, E~, and A,~. The t
matrix in these irreducible representations for a
diatomic fcc lattice has been obtained earlier by
Agrawal. " The resonance denominators for a
monatomic fcc lattice are given by

D~l (8) = 1+X(gl+ 2g2+ 2g4+g4 —g4 —gl

+g9 2gm+ fg12+ 2g19) i

where the summation is taken over all the wave
vectors lying in the first Brillouin zone and R „
=. R —K„ is the difference in the lattice vectors of
the two sites located at R and R„. The thirteen
components of the Green's function are given in
Ta.ble I.

III. NUMERICAL COMPUTATIONS AND RESULTS

A. Lattice Dynamics of Aluminum

Aluminum is a trivalent metal and possesses
monatomic face-centered cubic structure. The
same is true for its dilute alloys with silver. It
has been observed that the resistance to shear in
these metals arises due to Coulomb interaction be-
tween the ions and conduction electrons and the
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TABLE I Different matrix elements of the Green's
function.

Green's function

gg

g4
gs
g'6

8'8

g'9

Ao
g'i&

A2

Component

g (o, o, o)

gx.(k, 2. o)

g (o, i, o)

g (1, o, o)
g„„(c, r, o)

g~(-s, —i, o)

g~b, m &)

short-range interaction between the ions. An eight-
neighbor force-constant model has been utilized by
Gilat and Nicklow" to explain the dispersion curves
obtained by Stedman and Nilsson' by performing
inelastic-neutron-scattering experiments. Gilat
and Nicklow have not considered the influence of
free electrons on the ionic motion. In the present
work we have discussed the lattice dynamics of
pure aluminum at 80 'K in Krebs's model, "where
one takes into account the effects of electrons on
the motion of ions via screened Coulomb interaction
between the ions. Ne consider the ion-ion inter-
actions of central type up to three neighbors. The
values of the elastic constants used are cy] —11,373
x10"dyn cm, e» = 6. 1910& 10' dyn cm, and c«
= 3.128x10" dyn cm . The value of the lattice

constant is 4. 04 A. The values of the effective
charge e* and the Bohm-Pines parameter P are
taken to be 3 and 0. 500, respectively. The wave-
vector dependence of the screening parameter has
been considered in terms of the fsctor f(f) given by

(3O)

where t = 0/3kr and kz is the radius of the Fermi
surface in the wave-vector space. A similar cal-
culation has been done by Shukla and Dayal' after
approximating the factor f(t) by unity and using a
lower value of P, i. e. , 0. 353. The frequencies
and the polarization vectors are determined by di-
agonalizing the 3 &&3 dynamical matrix by Jacobi's
method. A grid of 8000 points in the first Brillouin
zone was seen to give reasonably good results.
The results obtained for the three symmetry direc-
tions [(t', 0, 0), (g, $, 0), and (f, f, t)] are presented
in Fig. 1. Here g is the reduced wave vector equal
to kjk ~. The results have been compared with
the experimental results of Stedman and Nilsson. '~

A very good agreement is seen between the theory
and the experiment except for some small discrep-
ancies near the Brillouin zone. The density of
states has been shown in Fig. 2.

B. Green's Functions

The Green's functions were computed by em-
ploying a staggered-bin averaging method. The
real and imaginary parts of a Green's function may
be written

1 j„(kis)
gp(& )= P ~ ~~2

S gyS

{&,o, 0) (q,g 0) (~~,~)

4
0
h»

FIG. 1. Dispersion curves
for pure aluminum in the
three symmetry directions (f,
O, O), (t;, L, O), and (0, 4, 0).
Points denote experimental
results and full curves denote
the results of the present
calculations. The longitudinal
and transverse branches are
represented by L and T, re-
spectively (Tg and T2 denote
the two transverse branches).
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+ fw Z—Z j„(k
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Fr, s

where j„(kl s) is a real quantity obtained after sum-
ming a number of equivalent Green's functions.
The imaginary part is calculated first and a histo-
gram is obtained by expressing it as

RG
0 CO —GO

S ((d)
1

Q7~ +(0
2' CO~ —CO

where S(v) = g"„g,j(kis) 5(vf, ,—v) and &u„ is the
maximum frequency. In order to carry out inte-
grations the real part of the total frequency range
was divided into 60 equal bins. The histogram for
each Green's function was computed in the center
of each bin. Spurious fluctuations in the Green's

functions were reduced by choosing a finite bin
width, i.e. , 0. 25 in the units of bin width.

C. Specific Heat

The contribution to the specific heat has been
calculated using Eq. (21) by varying the central
force constant-change parameter X for the two con-
centrations of silver in aluminum. The results for
three values of X, i.e. , X= —0. 45&&10, —0. 50
x10, and —0. 55x10 sec 3, are presented in
Figs. 3 and 4. The results of the mass defect the-
ory (X=O) are also shown in these figures. Rea-
sonably good results are obtained for X= —0. 50
0&10 ' sec '. We find from the figures that the use
of a small. er value for the force constant between
the impurity and the host lattice gives larger con-
tribution to the specific heat, whereas the opposite
is the case with a greater impurity host-ion inter-
action. The result is in agreement with that ob-
tained earlier by one of the authors' using a sim-
ple expression for the specific heat in a scalar

20
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specific heat in Al99, 5pAfp
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FIG. 4. Enhanced lattice specific
heat in Al99 ~ p5Agp 95 alloy.
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model of the lattice.
The real part of the resonance denominators for

X =- 0. 50x10 sec and for E,„-symmetry motion
has been plotted in Fig. 5. The E,„-mode resonance.
frequency ~„ lies at 84 cm ' for A. = —0. 50x10
sec . For an isotopic defect this resonance mode
appears at 94 cm '

(ur„/&u =0. 29) which is in very
good agreement with the values obtained by Hart-
mann et al. (&o„/&o =0. 28). Another solution of
Eq. (14) appears at 177 cm ' which is seen to be
an antiresonance mode.

The phase shift in the F,„ irredu 'ble represen-
tations has been plotted in Fig . The phase shift
is seen to be ~ualto —,'w forth the resonance and

A = -0.50s10 sec

antiresonance modes appearing at 84 and 177 cm ',
respectively. The contribution of the antiresonance
mode is found to be negative in accordance with the
expected behavior that the density of states should
decrease at this frequency. However, its contri-
bution is insignificant at very low temperatures.

In order to see the contributions of the various
irreducible representations we have also shown
phase shifts for A,g and E, modes in Fig. 7 and for
Eag and E2„modes in Fig. 8. It may be noted that
the contributions of these four representations
(A„, E~, I"~, and E2„) are much smaller than the
E,„mode. In fact, the contributions of A]g Eg,
Es„and E,„ to the specific heat at 6 'K are 3. 5,
2. 8, —0. 2, and 10. 2/p. , respectively, while the
contribution of the E,„modes at this temperature

10—

2.4-
X=-0.50&10 sec

2.0-

p ~l
0 02

-1—
1.0

'0
o 12
tL.

0.8—

04-

0.2 0.4 0.6 o.e 1.0

FIG. 5. Heal part of determinant for E~„symmetry
modes. FIG. 6. Phase shifts for E~„symmetry modes.
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FIG. 7. Pha, se shifts for E~ and A~~ symmetry modes.
0 0.4 0.6

«&m
0.8 1,0

FIG. 8. Phase shifts for E2„and I'~~ symmetry modes.

is 84%. At 24 'K the contribution of each of the

A„, E~, F~„and F» symmetry modes is within
i%% and the contribution of the F,„m doe sis about
98%.

D. Effective Force Constant

Calculations have also been made for the contri-
bution of F,„irreducible representation by using
Dz, (z) given by Eq. (27) which has been obtained
by defining an effective nearest-neighbor central
force constant g for the pure lattice. This effective
force constant can be evaluated by solving Eq. (27)
after using X= —0. 50@10 sec and the resonance
frequency at 84 cm '. The results obtained in this
approximation have been shown in Figs. 3 and 4 for
the two concentrations. It is observed that these
approximate values are in general smaller than the
actual values obtained in a realistic manner [using
Eq. (26)] by about 12/0 at 15 'K and about 5/0 at
24 'K for the two alloys of aluminum.

The value of the effective force constant g comes
out to be 1.521x10 g/sec which is very near to
the value of the first-neighbor central-force con-
stant, i.e. , 1.609x10 g/sec used in the calcula-
tion of lattice dynamics of aluminum.

IV. DISCUSSIONS AND CONCLUSIONS

We have made a detailed study of the effects of
force constant changes on the lattice specific heat
of dilute Al: Ag alloys having fcc structures. Nu-
merical calculations have been performed for the
two very dilute alloys containing 0. 5 and 0. 95 at '%%uo.

of Ag as impurity atoms. A decrease in the im-
purity-host interaction enhances the contribution to
the specific heat and vice versa. This qualitative
conclusion is in agreement with the result of an ex-
pression obtained earlier in an analytical manner
for a scalar model of crystal lattice by one of the
authors. The calculated results compare very well
with the experimental ones. The enhancement in
specific heat arises mainly due to F,„symmetry
resonance modes and the contribution increases
with an increase in the temperature of the solid,
e. g. , the contribution is 84'%%uo at 6 'K and becomes
98% at 24 'K. The effective central force constant
for the pure lattice evaluated by using the resonance
frequency is in very good agreement with that ob-
tained on the basis of a force constant model and
is, therefore, reliable to perform involved com-
putations. The results obtained in this approxima-
tion are smaller only by 12% at low temperatures
and 5% at higher temperatures. At still higher
temperatures the difference in the two calculations
may be insignificant.
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Pseudoyotential Calculation of the Third-Order Elastic Constants of Coyyer and Silver

J. F. Thomas, Jr. "
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The third-order elastic constants of copper and silver have been calculated by the method of
homogeneous deformation from a total energy expression consisting of four terms: a free-electron

energy, an electrostatic energy, a band-structure energy, and an ion-core overlap energy. The
band-structure energy has been expressed in terms of a local pseudopotential. The overlap energy has

been approximated by a Born-Mayer potential. The total-energy expression includes five adjustable

parameters which have been chosen to fit the binding energy, lattice spacing, and three second-order

elastic constants to experiment. The ion-core repulsive energy makes the dominant contribution to the

third-order elastic constants. The other contributions are not negligible but tend to cancel. The

calculated third-order elastic constants of copper and silver are in good agreement with low-temperature

experimental values. An attempt to apply the five-parameter fitting procedure to gold was unsuccessful.

I. INTRODUCTION

Pseudopotential theory has been remarkably
successful in the calculation of structural proper-
ties, such as elastic constants and phonon spectra
of simple (sp-bonded) metals. Unfortunately, the
situation is quite the opposite for the transition
metals. There is now no distinct approach of com-
parable power applicable to this important class of
materials. This is true, also, for the noble met-
als copper, silver, and gold which, in many re-
spects, form a link between the simple metals and

the transition series.
Several yea, rs ago, Harrison proposed a scheme

by which the pseudopotential formalism could be ap-
plied. to transition metals. The key result was
that hybridization between the d bands and conduc-
tion band could be included in a weak pseudopoten-
tial. Perturbation theory could then be used in
the usual way to obtain an analytical expression
for the lattice energy as a function of the ion posi-
tions. Harrison's approach has been developed
by Moriarty. ' He recently completed numerical
calculations of the total energy of the noble metals
and applied the results to predict crystal structure
and calculate phonon spectra with moderate, yet
encouraging, success. 5

The purpose of this work is to calculate the
third-order elastic (TOE) constants of the noble

metals. Interest in TOE constants, which mea-
sure the anharmonic part of the interatomic poten-
tials, has centered on informatio~ which can be
obtained regarding the lattice energy or inter-
atomic potential. For example, by symmetry,
there are six TOE constants for a cubic crystal. Ex-
perimental values of these parameters for the
noble metals, 8 «0 including some measurements
at low temperature, ' ' are available to fit or
verify a theoretical interatomic potential.

We have calculated the TOE constants by the
method of homogeneous deformation. The total-
energy expression used in the calculation is based
upon the work of Harrison and Moriarty. How-

ever, we have made several simplifying assump;
tions, including the use of a local-empirical
pseudopotential, to keep the calculation of the re-
quired energy derivatives tractable. To partially
compensate, we have included five adjustable pa-
rameters in the total-energy expression. These
have been chosen to fit the binding energy, lattice
spacing, and three second-order elastic (SOE)
constants to their experimental values. The total-
energy expression consists of four terms: the
free-electron energy U„, the electrostatic energy

U„, the band-structure energy U~, and the over-
lap energy U„. The energy term U, &, which mea-
sures the exchange interaction between neighboring
ion cores, has been approximated in terms of the


