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Pseudopotential Models for Pb and Mg: Convergence Properties
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The convergence properties of Fermi-surface pseudopotential calculations are discussed.
It is found for Mg and for Pb that previous models which use only a relatively small number
of plane waves are inadequate, particularly when pressure derivatives of Fermi-surface
cross sections are calculated. Convergence studies are presented for both materials. It is
found for Mg that a local-pseudopotential model if converged can be satisfactory and thus that
a nonlocal model is not required. For Pb it is found that several of the discrepancies between
experimental results and the model of Anderson et al. can be attributed directly to noncon-
vergence of their model. A pseudopotential model for the Pb Fermi surface is presented
which gives a quite satisfactory description of the de Haas-van Alphen results both at normal
volume and under pressure.

I. INTRODUCTION

Parametrization of the Fermi surface of metals
has become quite common. The parametrization
may be done in a manner that is obviously mathe-
matical~' such as a Kubic-harmonic expansion.
Alternately, it may be considered in a more physi-
cal manner, 3 8 for example, using a pseudopoten-
tial. The latter has certain pleasing features, par-
ticularly if one wishes to extend the model to com-

pare with something beyond normal-volume de
Haas-van Alphen (dHvA) information. The pres
ent work will be primarily concerned with the of-
ten neglected necessity for pseudopotential con-
vergence if a pseudopotential model is to be a sat-
isfactory physical m.odel.

In Sec. II the pseudopotential method is reviewed.
Section III considers Mg, and we will see how the
use of an unconverged pseudopotential led Kimball,
Stark, and Muelier (KSM)' to incorrectly conclude
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where the 6's are reciprocal-lattice vectors and

v(@ are the Fourier coefficients of the pseudopo-
tential. With certain loss of generality this is re-
written in the form more common to empirical
pseudopotentia1 work,

V(r) = & w(G) &(~) e' '
where S(P) is the structure factor and w(G) is
called the form factor.

The pseudopotential is often discussed as if it
had been further rewritten

where t now indexes sets of reciprocal-lattice vec-
tors which transform into thems'elves under sym-
metry operations of the appropriate space group.
A typical pseudopotential calculation in a high-
symmetry material will use only a few t values.

The pseudo-wave-function is represented as a
plane-wave expansion,

y(k r) =QG (6) &i(f+5) r (4)

For practical reasons the summation in (4) is usu-
ally truncated. The present work is primarily
concerned with the consequences of this truncation.
The expansion is usually truncated to include one
of the following: (i) all 4 such that I k+ 6 I —G,„;
(ii) some particular number of 6's such that
Ik+Gl for those included is less than for those ex-

that the normal-volume Fermi-surface data could
not be fit by a local pseudopotential and hence that
a nonlocal model was required. We will also see
that convergence is very important in carrying out
a pseudopotential study of the volume dependence
of a Fermi surface. In Sec. IV, Pb is considered.
The pseudopotential calculation of Anderson et gl.
(AOS)6 for Pb had two major deviations from experi-
ment that can be attributed directly to nonconver-
gence: (i) There was one orbit that simply couM not
be satisfactorily fit. (ii) Using the standard pseu-
dopotential prescription to make the calculations
volume dependent, all pressure derivatives were
much too free-electron-like.

A model for the Pb Fermi surface is described
in Sec. IV consisting of a local pseudopotential
plus a spin-orbit term. This model quite satis-
factorily describes the Fermi surface both at nor-
mal volume and under pressure.

II. PSEUDOPOTENTIALS

To be explicit let us write an expression for a
local pseudopotential

eluded; or (iii) a particular set of 6's. One of the
points to be noted in the present work is that the
choice of truncation method is unimportant. If the
expansion is converged, i.e. , if a sufficient number
of 5's have been included, the variation in eigen-
value and in wave functions will be unimportant be-
tween the choices. On the other hand, if not enough
5's are included, global application of any of the
above prescriptions will almost assuredly run into
trouble —discontinuities i.n Z(k) or in k(8, Q, Ez) on
the order of —', to + the magnitude of the difference
between E(k) calculated unconverged and converged.

For understanding convergence in Fermi-surface
calculations, the 5's in Eq. (4) can be separated
into three classes. First, there are those such
that 151 —2kz. For certain directions in k space,
plane waves on the Fermi surface may be coupled
by v+6 to other plane waves at the Fermi surface.
These plane waves enter into the free-electron con-
struction or the one-orthogonalized-plane-w ave
(OPW) model. It is obvious that this entire class
must be included in the expansion (4).

The second class includes those plane waves
(not in the first class) which have a significant
coupling directly to plane waves at the Fermi sur-
face. These extend approximately from 2k~ & I Gl

to 151 —kz ~ G„, where G„. is the largest IGI
for which v(0) is significant. The error in trun-
cating (4) within this class can be readily estimated
as

Iv(6)I'
(5)

where 5 «are all reciprocal-lattice vectors
omitted in the truncation of Eq. (4). (Under most
circumstances 5, @ may not be expressed as 5
such that gi is greater than some G .) For
I@»k~, Eq. (5) represents just a constant shift
of states independent of position on the Fermi sur-
face. This means that the first terms in the sum-
mation will be most important because these terms
will be different at different points on the Fermi
surface. Using either of the first two prescriptions
for the truncation of Eq. (4), the set 5, e can
change as a single piece of Fermi surface is
mapped out. If this is a change in type of 5 (such
as from a [111]to a [200] in an fcc material), a
discontinuity in the calculated Fermi surface re-
sults. This class may be slightly ambiguous since
a definition of the last significant v(G) is required,
but it is asserted that this entire class must also
be included. Note that the difficulties may be di-
minished if 5 were such that the form factor
changes very little between w(t) and w(t+ 1).

The third class includes all the rest. The
classes can be summarized as follows: The first
class enters the calculation in first order, the sec-
ond class in second order, and the third class in
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higher order. In the Mg calculation of KSM, the
pseudopotential has been truncated early in the
second class. In the Pb calculation of AOS, the
truncation has been made between the first and

second classes for part of the Brillouin zone and

very early in the second class elsewhere in the
zone.

The foregoing discussion and Eq. (5) imply that
perhaps part of the second class of plane waves
could be treated in second order and thus effect a
significant saving in computer time. As is quite
common in pseudopotential calculations, the
Lowdin partitioning scheme will be used to im-
plement this saving in the present work. After
truncation, the summation in Eq. (4) will be broken
into two parts; the first part of the sum will in-
clude those states to be treated exactly and the
number of these states will determine the size of
the "inner matrix. " The influence of the second
part of the sum will be folded into the inner matrix
which will then be diagonalized to yield eigenvalues
and eigenyectors.

Qne might be tempted to regard the resulting in-
ner matrix which we diagonalize as essentially a
nonlocal-pseudopotential. matrix. The author' s
point of view is that we set up a large local-pseudo-
potential matrix and then, as a computational con-
venience, use Lowdin partitioning to hasten ob-
taining the desired eigenvalues. The crucial point
is that we know how to make the local, -pseudopoten-
tial volume dependent —but it is incorrect to simply
assign that volume dependence to the individual. ele-
ments in the resulting Lowdin inner matrix.

In a high-symmetry material a pseudopotential
band-structure calculation requires values of the
form factor at a few discrete points and hence these
specific values may readily be used directly as the
parameters. However, if the value of the form
factor is needed at many values of q, such as in a
low-symmetry material. , or to consider a probl, em
in which the translational symmetry has been bro.-
ken by aperturbation, or to simply take into account
change in lattice constant, it is convenient to use
an analytic form for w(q),

Theoretically derived expressions for sv(q) tend
to fall off at large q more slowly than is convenient
for use in energy-band calculations. [The more
slowly w(q) falls off, the more reciprocal-lattice
vectors are included in the second class, having a
significant coupling directly to states of interest,
and hence the more reciprocal-lattice vectors that
must be included in Eq. (4). ] Many empirical
pseudopotential cal.cul.ation have been performed
using ad hoc analytic forms that fal. l off more rap-
idly. (The use of such an adhoc form is similar
to setting all. Fourier coefficients to zero beyond
the first few, which is common practice in treating
cubic semiconductors. ) Jacobs'0 has addressed

the question of why these ad hoc forms do nonethe-
less yield satisfactory energy-band structures. In
the present work the analytic expression used by
Lin and Falicov" in As will be adopted as a conve-.
nient form:

~(q) = (~,/~) a, (q'-a ) (e' "-'~'+ l)-', (6)

where the volume-normalization factor has been
added explicitly. The atomic volume is g, the
normal volume is 60, and the 8's are parameters
(which are a,ssumed to be independent of lattice
parameters). The question to be considered in
what follows is, having selected a form for w(q)

[or a set of w(t)] that presumably fall off with con-
venient rapidity, how many reciprocal-lattice vec-
tors must be included in Eq. (4) to yield meaningful
results '?

III. Mg

The Mg aspect of the present work grew out of
an effort to calculate the predictions of the models
of KSM' for the pressure dependence of the Mg
Fermi surface. KSM used both local and nonlocal
models employing ten plane waves. Their ten-
plane-wave local-model fit was sufficiently poor
that they concluded a nonl. ocal model was necessary
to fit the Fermi surface. There are two serious
objections to the use of a ten-plane-wave model.
First, a converged local model will fit the normal-
volume data —so that use of only ten plane waves
l.ed to their wrong conclusion. Second, the pre-
dicted pressure derivatives of an unconverged mod-

el differ from those of a converged model. As will
be evident when we examine the detailed conver-
gence properties, changing the number of plane
waves from ten required a complete new pseudopo-
tential fit to the Fermi-surface data. The fitting
procedure followed was essentially that of KSM.
The pseudopotential. Fourier coefficients and the
Fermi energy were used as parameters in a least-
squares program. The difference between the
Fermi energy and the energy of the appropriate
band at 11 points in k space defined by trial Fermi
radii was minimized. (The Fermi radii were those
used by KSM'; a 12th point was added at the ap-
proximate center of the ~ orbit. To yieM the cor-
rect p,,' orbit size this point was asked to be 0. 01
Ry above the Fermi energy in the least-squares
procedure. ) Using the parameters thus determined,
Fermi-surface areas were calculated, after which
trial Fermi radii were adjusted on the basis of
comparing calculated and experimental areas,
Having a new set of Fermi radii, the whole process
was repeated. This cycle was repeated until the
agreement between calculated and experimental.
areas could not be improved. In the present work
the first four m(t) (wiofo ~oooa ~F07&, 'sofa)
then fit to Eq. (6) which was subsequently used for
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all values of ~(t). This was done as a convenience
in finding ge(f) at different values of the lattice con-
stant. [It should be pointed out that the values of

w(t) beyond nr, ofa are sufficiently small that the con-
clusions to follow would be unaltered if all se(t)
beyond w, ofa were set identically to zero. ]

States on the Fermi surface are coupled to other
states on the Fermi surface by the first three w(t)
and their values are readily determined by this
fitting procedure. Additional. coefficients which
enter only in higher order seem to be indeterminate.
This led to a procedure in which the fourth coef-
ficient was arbitrarily selected and the procedure
carried out. Equally good fits to normal-volume
data were obtained for two distinct values of sUyoyp,

it is inferred that the same could be done for any
reasonable value of se&o&3.

In Table I the results of a convergence study on
our model' for Mg are excerpted. To put the en-
ergy scale in perspective, note that in the local
model of KSM, which was not satisfactory, the
largest error was 38% on an orbit where this cor-
responded to a shift in E„of only about 40 meV.
KSM optimistically estimated their convergence to
be within 20 me&. The present model, which is
shown in column 7 of Table I, was adopted after
looking at such a convergence study and the model
employs over 100 (100+) plane waves folded by
Lowdin partitioning into a 20&&20 inner matrix.

The parameters used were selected by the fitting
procedure described above using the 100+-plane-
wave calculation. The same parameters are then
used for all calculations in the convergence study.
The parameters used are not those used by KSM.
However, if there are differences in the conver-
gence properties, this model should converge more
readily than that of KSM. The reason is that the
fourth Fourier coefficient is slightly smaller in
our model, and the fifth coefficient in the local
model of KSM is not small.

There are several things to note in Table I.
Comparing with column 6, we see that the same
100+ plane waves folded into a 60X 60 inner matrix
change eigenvatues less than 3 meV. This test
tells us whether or not the inner matrix is of ade-
quate size. A significantly larger number of plane
waves folded into the same 60&&60 matrix does not
produce a detectable change. Thus, the total. num-
ber of plane waves used is adequate. Comparing
with column 8, we see that even folding down to the
size used by KSM, 10&&10, produces a reasonably
converged result. On the other hand, if the total
number of plane waves is reduced below about 50,
the convergence error is seen to begin to grow
significantly. For Fermi-surface work a shift of
all states together is unimportant; all. that really
matters is the relative (differential) motion of
these energy levels (at the Fermi surface). For

example, using 25 plane waves the maximum dif-
ferential nonconvergence is only 16 meV. On the
other hand, for ten plane waves, the number em-
ployed by KSM, the differential nonconvergence is
87 meV. It is very apparent that the influence of
nonconvergence is not just a uniform shift of the
energy of states on the Fermi surface.

We have just found the convergence properties
of a local model. However, the convergence prop-
erties of the nonlocal model of KSM should be es-
sentially the same as those just found since the
values of the resulting matrix elements in their
nonlocal model are very similar to those of the lo-
cal model.

The real problem of convergence manifests itself
when pressure (volume) derivatives are calculated
using various numbers of plane waves. Before
doing such a calculation, it seemed reasonable that
most of the effects of nonconvergence wouM be the
same for slightly different lattice constants and,
thus, that pressure derivatives could be calculated
from the KSM models even if they were not fully
converged. As we shall. see in what follows, this
is not sof

To calculate pressure derivatives for Mg, the
pseudopotential calculation is repeated at lattice
parameters corresponding to 20 kbar. The change
in convergence properties with the change in lat-
tice parameters is shown in Table I by listing the
difference in eigenvalue between the 20-kbar calcu-
lation and the normal-volume result. These values
are listed in parentheses. (There is a free-electron
shift of about 5V meV that has been subtracted
out)'4 These numbers are significantly different
at ten and 25 plane waves from those of a converged
model. This is to say that the nonconvergence
error we have previously found does not have a neg-
ligible dependence on lattice parameters. In view
of the importance of higher-order effects in the ob-
served convergence properties of the Mg pseudo-
potential at normal. volume, the result should not
be surprising.

It should be acknowledged that the ten-plane-wave
calculation described in column 1 of Table I is not
a ten-plane-wave pseudopotential, model, for Mg.
If one wanted a ten-plane-wave model, the Fourier
coefficients would be readjusted to improve the
normal-volume Fermi-surface fit. This would in
fact result in slightly different energy distortions
with pressure. This latter approach was actually
followed in this investigation. From the ten-pl. ane-
wave model, we progressed through 25- and 30-
plane-wave models before carrying out a detailed
convergence study and selecting the 100+-plane-
wave model. (The 30-plane-wave model gave an
excellent fit to the normal-volume data. ) The prob-
lem manifests itself as systematic changes in vol-
ume derivatives as more converged models are
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TABLE II. Pressure derivatives of Mg Fermi-surface

areas.

d 1nE
(%/kbar)

gb

Orbit (deg) Area' Expt.

+o.o5 (+ o.o2)0.072790

pl 28.7

p', 90

pv& 90

0

O. 00183 —0.9 (+ O. 3)

O. 00721 —0.17 (+ 0.02)

+o.o5 {+o.o2)0.0457

0.00598 +0.40 (+ 0.04)

Theory"'

0.09

—0.78

—0.19

+0.03

+0.35

Free-
electron~ e, g

+0.11

—0.94

—0.27

-0.003

+0.42

Free-electron scaling" 0.18

'See Ref. 5 for orbit nomenclature.
"Angle measured from [0001].
'Reference 5.
Reference 12.
Calculated "derivatives" are finite differences using

20 kbar and 0 pressure results.
Model used in Ref. 12 and described in this work

using a 20-kbar ~~ of 0.259 eV.
~Model that results from using free-electron estimate

for change in E~ with 20 kbar (~~=0.264 eV).
"For an isotropic material, in the free-electron ap-

proximation all cross sections scale with the Brillouin
zone, i.e. , increase at a rate of 3 the volume compressi-
bility.

used. If the normal-volume fits were uniquely
determined, perhaps this comparison should be
presented. However, since it was found that vol-
ume derivatives did depend on the choice of the
fourth Fourier coefficient, convergence properties
of a model based on fixed Fourier coefficients are
more transparent.

The experimental and calculated pressure deriva-
tives are listed in Table II. As pointed out by
Tripp etal. ,"the calculated pressure derivatives of
Fermi-surface cross sections are very sensitive
to the value selected for the change in E~. In Mg
we initially used the free-electron estimate for this
change. This led to the pressure derivatives
shown in the last column of Table II. Careful com-
parison of calculation and experiment suggested
that the agreement would be improved if AEz was
changed by about —,

' mHy. The change in E~ was
also determined by integration over the Brillouin
zone. The results of this integration are sum-
marized in Table III. Note that calculation of E~
to the desired precision required a large number of
points in the Brillouin zone even using the linear
analytic method. ' Fortunately, the difference
seems to be better determined. The detail. ed cal-
culation led to a shift of 0.005 eV. This is out of
a total AE~ of 0. 259 eV. This small amount signif-
icantly improved the agreement between the model
and the experimental results. Note that in fact the
last column in Table II does not real. l.y agree quan-
titativel. y with experiment, whereas a shift in Ez

TABLE III. Ez obtained by Brillouin-zone integration. a

Number
of

points" 112 180 330 546

P=20 kbar
P=O
Difference

Measured from I'i in eV. Calculated using linear
analytic method. See Ref. 16.

Number of points in ~ of Brillouin zone.

7.3866 7.4122 7.3973 7.4076 7.4043
7.1253 7.1542 7.1402 7.1483 7.1455
0.2613 0.2580 0.2571 0.2593 0.2588

of only 5 meV produces agreement almost within
experimental uncertainty.

The 100+-plane-wave model. described fits the
normal-volume data and the pressure dependence
quite satisf actorily. '~ The ten-plane-wave local
model of KSM gave a volume dependence that was
more free-electron-like than the results of the
pressure experiments. 'e In particular, the X& (90')
orbit in a 10-plane-wave model had a pressure
derivative of 0. 14'Pc/kbar versus the experimental
value of 0.05/c/kbar. The preliminary calculation
indicated that the ten-plane-wave nonlocal model
of KSM had a volume dependence quite similar to
their ten-plane-wave local model. However,
since the converged local. model is satisfactory,
the nonlocal model. was not pursued further.

IV. Pb

For Pb, Anderson and co-workers ' 7 have used
only four pl.ane waves in their pseudopotential mod-
els. In view of the present finding in Mg, these
Pb results were considered suspect and the fol-
lowing phase of the investigation was undertaken.

For description of the Pb Fermi surface including
figures, the reader is referred to Anderson and
Gold (AG). '7 The values quoted for dHvA areas
will be taken from frequencies in APS and Ander-
son and Hines (AH). 'e Some confusion exists con-
cerning the orbits about the arms designated )[110]
by AH and AOS. There are two orbits resulting in
a beat pattern of 42 or 42. 5 cycles/beat. Experi-
mentally, one readily determines the frequency of
the dominant oscillation (area= 0.0482 a. u. ). De-
termining whether the second frequency is higher
or lower is more subtle. ~9 Careful measurements
on a well-oriented high-finality sample indicate the
nondominant orbit to have a lower frequency.
The original AG theoretical fit found two orbits
separated by the required 2. 2/q. In the theoretical
fit of AG the central orbit corresponded to the low-
er frequency. . In AOS the central orbit was fit to
the dominant or larger frequency, and no additional
orbit was found.

AOS found very poor agreement with pressure
derivatives using a local model and only achieved
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TABLE IV. Fermi radii used in least-squares fitting for
Pb.

Point Origin Direction Radii (a.u. ) 0rbits

a
b

d

f

000
000
000
000

———03 3
4

———03 3
4

[l.oo]
[111]
[110]
[112]
[Tlo]
[110]

0.6504
0.472
0.5726
0.5084
0.1240
0.2968

/[100] /[110]
/ [110]
/[110] /f111] /[100]
&[111]
)[110] /[111] 8[100]
)[110]/[ill]

3 3

001
2 01
—01
1 1 1222

———03 3
4 4
1 1 1222

As labeled by

[ool]
[lool
[ool]
[oil]
[110]
[112]
[112]

AG, Ref.

O. 1680
0.3016
0.4165
0.2362
0.4709
0.2093
0.4332

g[llo]
$ [100]
v[1 10]
v[11O]
0[111]
g [ill]
g [111]

where k, are vectors in reciprocal space [k, =. k
+5, in the notation of Eq. (4)], o are the Pauli
matrices, and A. is the parameter describing the
strength of the spin-orbit interaction. The wave-
function Fourier transforms C(k&) have been mod-
eled as Cok, (l —ak,'), where a (= 0. 269 a. u. ) was
selected to approximate the Fourier transform of
the Pb 5p wave function. [For computational rea-
sons the C(k, ) are set equal to zero beyond the 30th
plane wave. ] This is not the same form used by
AOS. Note that we no longer have a, strictly local
model; the spin-orbit term is jp dependent. The
spin-orbit calculation proceeds by a double-expan-
sion technique. The local pseudopotential without
spin is set up using about 90 plane waves. This

agreement within a nonlocal model by using a "P-
scaled" volume dependence. Experimentally, al-
most all orbits grow more rapidly with pressure
than simple free-electron scaling. The local-
pseudopotential results of AQS simply do not signif-
icantly deviate from free-electron scaling. This
is not surprising. This is a direct consequence of
using an unconverged pseudopotential. The very-
few-plane-wave model is si.mply much more free-
electron-like than experiment.

The R -scaled model is somewhat disturbing.
A key assumption of empirical pseudopotential
theory is that the pseudopotential describes prop-
erties of the ion core that are nearly independent
of crystalline environment. This is directly con-
tradicted by a prescription for calculating as a
function of volume that says that the ion radius
changes in direct proportion to the lattice constant.
AOS offer no physical rationale for the R -scaled
model —except that it works t

The model to be discussed here is a local pseudo-
potential with a spin-orbit term added which is
modeled after the corresponding term in the rela-
tivistic QPW methods:

TABLE V. Areas of de Haas-van Alphen orbits in Pb.

Area (a.u. )

% deviation
This
work AOSCenter Orbit Expt. Calc.

W' v[100] 0.1369 0.1369 0.0 —0.1

d lnF
dP

Expt. " Calc.

2. 3 1.9
2.7d

K f [110] 0.04831 0.04833 0.04 0.3 5C

2.4d
2. 9

&[llol 0.04717 0.0476 0.09 Ref. e

f [111] 0.0597 0.0593 —0.8 0.6 2.7

L 6)[111] 0.2924 0.2927 0.1 —0.2 1.2
$ [100] 0.09625 0.09645 0.2 (-3.4) 0

/[110] 0.4249 0.4260 0.2 O. 1 2. 9

Q [111] O. 4161 0.4144 —O. 4 —l.4 2. 1

I" /[100] 0.5459 O. 5479 0.4 —1.3 2.4

2. 9

1.4

2.9

2. 8

3.6

rlns 0 45 0 8'

'Units of 10 ~ kbar"'. Free-electron scaling value is
1.37 && 10 3 kbar '. Qn the free-electron approximation
all orbits scale with the Brillouin zone, i.e. , increase
at a rate of ~ the volume compressibility. )

.Reference 6.
'Fluid He&25 bar. See H,ef. 6.
Solid He~4 kbar. See Ref. 6.
A noncentral orbit was not found in the model of AOS.

See H,ef. 21.
( I,100] orbit excluded in AOS calculation of rms devia-

tion.

is solved using Lowdin partitioning to fold it into
a 30&& 30 matrix. The eigenvectors within about
1.75 By of the Fermi energy are then used as a,

basis set for expanding H„. Finally, the eigen-
values of the resulting matrix (including the part
from the local pseudopotential which is diagonal)
are determined. This latter matrix ranges from
about 20&&20 to 30 &&30.

The fitting procedure is essentially the same as
that used in Mg. Table IV lists the poi.nts used in
the fitting procedure and the orbit on which each
lies. As previously noted in Mg, it is again found
that Fourier coefficients that do not directly couple
states on the Fermi surface are indeterminate in
a fit to zero-pressure data. Consequently, V»0 and

V3&& were arbitrarily set at 0.04 and 0.02 By. The
final values for the other coefficients were Vz&1
= —0. 1022 By, Vz~= —0.0210 Ry, LCD=0. 02829 Ry,
and E~ =0. 6526 By.

Table V lists the orbits calculated. The table
contains the orbits listed in Table I of AOS plus a
second /[110]. Included for compariosn is the
percent deviation of AOS. AGS excluded the )[100]
orbit from their rms-error calculation because it
was fit so poorly. Using a more converged model,
it is possible to fit this orbit (and all others AOS
compared with) with a rms error of about 0.4%
compared to 0. 8/o for AOS. (The 0. 87p error of
AOS excludes a 3.4/o deviation on /[100] and ig-
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TABLE VI. Energies at I' and W in Pb (eV).

Ps eudopotential
Energy Difference

0.48

w, (w3) —0.75

—20 32
2. 33

4.69
4. 17

—9.79

B,OF%
Energy Difference

0.50
1.21

—0.71
1.13

—5.58
9.13

5.98

-11.21

3.75

3.15

17.19

'With respect to Fermi energy.
"Energy zero chosen to make E(S'&) =0.5 eV.

nores the second )[100]orbit. ) (Estimated experi-
mental errors ranged from 0. 02 to 0. 5% for vari-
ous orbits. )

The least satisfying feature of the normal-volume
fit concerns the two /[110] orbits and the /[111]
orbits. It was not possible to fit the central l'[110]
and the /[111] orbit without a combined uncertainty
of 0.8%. That is to say, it was not possible to
achieve the correct ratio of ([110]to )[111].A fit
was also obtained assuming the nondominant /[110]
orbit to be larger than the dominant one. 3 The fit
was of very comparable quality to the one shown in
Table V, but the combined deviation between the
central /[110] and i;[111]was still about 0. 8%
(/[111] was then too big). In both of the above fits
the central orbit had the larger frequency in con-
trast to the models of AG and AOS. In neither of
these fits was the lower-frequency orbit in satis-
factory agreement with the experimental results.
Comparing these two fits, it would appear possible
to fit f [111]very well and simultaneously obtain a
2. 4% difference betweenthe two /[110] orbits; how-
ever, this would result in the experimental fre-
quency being approximately equal to the average of
the two calculated frequencies instead of to the
dominant one.

In the [100]di. rection a beat pattern of about 600
cycles is observed experimentally on the v orbit. ~

The model does not give this. d A/dz for v was
about 0. 5 and the area increases monotonically off
the symmetry position well beyond the 0. 16% re-
quired for such a beat pattern. 24

AOS were unable to keep the fourth band empty
at W in a local model. The model described in
Table V has the fourth level at W 0.48 eV above
the Fermi energy. However, this is higher than
AH infer it should be from alloying experiments.
For completeness, the pseudopotential energy
levels at W and I' are listed in Table VI. For com-

parison, values obtained from a relativistic OPW
(ROPW) calculation are also listed. ' The I,—I"6

spin splitting affords the only clean comparison
of the strength of the spin-orbit parameter. (The
8", level is not simply split but is spin-orbit mixed
with W2. ) We see that the pseudopotential model
estimates the spin-orbit interaction about 30%
larger than the first-principles calculation.

In the Mg section there were only two conver-
gence questions to consider-the total number of
plane waves and number of plane waves in the inner
matrix. In the Pb work we must also consider the
effects of the spin-orbit term. Does the double-
expansion include enough states; and since the
spin-orbit interaction is included only in the
Lowdin inner matrix, is that matrix large enough?
The results of the convergence study on the pseudo-
potential model for Pb are shown in Table VII. To
get an energy perspective for this table we note
that on the v orbit, which is the most prominent
feature in the dHvA spectra, an error of 10 meV
corresponds roughly to a 1/o error in area. The
difference between 50 and 100 plane waves is seen
to be 5 meV differentially; thus, 100 plane waves
should be reasonably well converged. The differ-
ences between an inner matrix of 20 and 30 are
7 meV or less, so that 30 is also adequate (both
for Lowdin and spin-orbit splitting). Including
basis states for an additional 1.25 Ry above E+
produces changes on the order of 10 meV so that,
in fact, this is the poorest aspect of the conver-
gence.

One very quickly observes from Table VII that
a four-plane-wave model is so far from converged
that discussion of 10- or 20-meV details with it is
meaningless. Thirty plane waves would seem about
the bare minimum one might reasonably employ.

In order to obtain pressure derivatives, the cal-
culation was repeated for the lattice parameter cor-
responding to 20 kbar. I The 20-kbar Fermi
energy was adjusted to fit the experimental deriva-
tives as well as possible. With so many hole and
electron orbits, careful application of this pro-
cedure can be expected to yield results comparable
to doing the volume integration and calculating the
change in Fermi energy. The 20-kbar shift in E~
was only about 75% of the amount predicted by the
free-electron model (with respect to the bottom of
the band). The calculated and experimental pres-
sure derivatives are listed in Table V. The agree-
ment is not as good as that claimed for the R-
scaled model by AOS. However, the trends in large
deviation from free-electron scaling are reproduced
in a converged pseudopotential calculation using the
usual prescription for a volume-dependent pseudo-
potential. [The spin-orbit term has been made vol-
ume dependent by noting that in addition to the de-
pendence of k on the lattice constant, the C(k, ) are



2366 J. P. VAN DYKE

TABLE VII. Convergence study for Pb model.

I'f5"

~15
~f5
I'

f
V(4)
W(3)

C

b

ne
esb

11.333
9.831
8.865

—9.166
1.510

—0.345
1.500
1.262
1.244
0.902

10(10)

9.656
9.656
6.773

—9.653
0.732

—0.414
0.578
0.613
0.505
0.255

3
30(30)

8.899
8.899
4.729

—9.754
0.512

—0.722
0.035
0.036
0.032
0.026

8.896
8.896
4.722

-9.790
0.497

—0.738
0.024
0.022
0.021
0.013

100(30)

8.866
8.866
4.694

—9.794
0.482

—0.751
0.000
0.000
0.000
0.000

6
100(20)

8.884
8.877
4.703

—9.801
0.479

—0.767
0.007
0.001
0.000
0.001

7
100(10)

8.666
8.860
5.862

—9.889
0.469

—0.851
0.195
0.207
0.113

—0.009

8
3.0"

8.866
8.866
4.694

—9.794
0.482

—0.751
—0.013
—0.002

0.001
0.015

9
3.5"

8.866
8.866
4. 694

—9.794
0.481

—0.752
—0.013
—0.005

0.001
—0.015

0.546
1.303
0. 532
0.633
0.746
0.832
0.633
0. 875
0.733

0.385
0.515
0.386
0.337
0.352
0.358
0.337
0.309
0.320

0.030
0.032
0.030
0.029
0.029
0.031
0.029
0.027
0.028

0.014
0.020
0.014
0.015
0.014
0.015
0.015
0.017
0.015

Eigenvalues eV.
"Number of plane waves used and in parentheses the

number of plane waves in inner matrix. See text. Last
two columns labeled by number of By above E& included

—0.042
0.125

—0.042
0.005

—0.003
0.007
0.005

—0.004
—0.004

0. 000 0.001 —0.006 —0.006
0.000 0.001 —0.004 —0.005
0.000 0.001 —0.005 —0.006
0.000 0.003 —0.005 —0.006
0.000 0.003 —0.008 —0.009
0.000 0.003 —0.010 —0.010
0.000 0. 005 —0.005 —0.006
0, 000 0.006 —0.010 —0.010
0.000 0.007 —0.007 —0.007

in spin-orbit expansion using 100(30) plane waves. All
other columns used states to 1.75 Ry above E~.

'k points are defined in Table IV.
X f g is spin-orbit split into X'6 and I'8 ~

inversely proportional to the square root of the unit
cell volume. ]

V. SUMMARY

Convergence studies of Fermi-surface pseudo-
potential calculations have been presented for Pb
and Mg. These studies show that previous works
which used ten or less plane waves were not ade-
quately converged. Converged models for both
Pb and Mg are described which fit normal-volume
dHvA data. In Pb the fit is significantly better
than that of AOS. In Mg the local-pseudopotential
model described fits the data as satisfactorily as
the nonlocal model of KSM. Hence, contrary to
the conclusion of KSM, a nonlocal pseudopotential
model is not required for Mg. For both materials
the pressure dependence of the Fermi surface has
also been calculated. The convergence study for
Mg under pressure indicates that calculated pres-
sure derivatives are quite sensitive to convergence.
These findings also explain why the calculated

pressure derivatives of the local model of AOS are
so much more free-electron-like than the experi-
mental results. For both materials the models
presented satisfactorily describe the Fermi sur-
face—both at normal volume and under pressure.
The important conclusion of this work is that if a
pseudopotential model is to be a "physical model"
rather than only a Fermi-surface parametrization
scheme —that is, if the model is to be used for other
than just fitting normal-volume Fermi-surface
data —it is necessary that the pseudopotential model
be converged.
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Effect of Reconstruction on the Electronic Free Energy of a Simple Model of Transition
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We present the results of theoretical studies of the change in free energy associated with surface

reconstruction for one simple model of transition metals. We study the dependence of the free energy on

reconstruction for a semi-infinte simple cubic lattice with one tight-binding Wannier orbital per unit cell.

For this model, we compare the free energy of the unreconstructed surface with that when the surface is

deformed into a 2)(1 configuration, The effect of the distortion is introduced into the model by allowing the

overlap integrals to vary with interatomic separation. We find that this particular mode of reconstruction

always lowers the electronic free energy, with maximum effect when the band is half-filled. The physical

origin of the changes in electronic density of states with reconstruction is discussed. The variation with

temperature of the given gain in the electronic free energy is also studied.

I. INTRODUCTION

There has been a considerable effort on the part
of experimentalists and theorists devoted to the
study of the effect of a surface on the elementary-
excitation spectrum of solids. The effect of a
surface on the nature of the electronic states,
phonons, and spin. waves has been explored exten-
sively in the theoretical literature.

Most of the theoretical models used in this work
presume that in the surface layer, the geometrical

arrangement of the atoms is identical to the arrange-
ment in the appropriate bulk atomic plane. While
this assumption greatly simplifies the theoretical
analysis, it is often true that the atomic arrange-
ment in the surface differs significantly from the
bulk. For one thing, the atomic layers near the
surface may relax, so that the separation between
adjacent layers differs from the bulk. ~ It is also
found that in many crystals, the atoms in and near
the surface layer shift away from the lattice sites
appropriate to the bulk layer, to produce an atomic


