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2s and 3s core-electron exchange splittings have been measured for a number of transition-metal

compounds. It is found that the 2s splittings agree roughly with values from Hartree-Fock calculations,
whereas measured 3s splittings are smaller by about a factor of 2. This discrepancy is tentatively

linked to correlations connected with the hole produced by the photoelectric process. A comparison of
exchange splittings with hyperfine fields in spin-only compounds suggests a close relationship between

these two properties.

I. INTRODUCTION

The exchange interactions between core s elec-
trons and those in incomplete shells, e. g. , 3d or
4f electrons, give rise to two well-known effects:
(i) the Fermi contact interaction between nuclear
and electronic spin, ' and (ii) the exchange or mul-
tiplet splitting of the s electrons themselves. '

The former is obtained from NMR, EPR, or
Mossbauer-effect measurements; the latter from
x- ray photoemission spectroscopy (XPS). The
former measures the integral effect of all the s
shells, whereas the latter is a measure of the ex-
change integrals of the individual s shells with the
spin of the unfilled shell. It might therefore be
possible to study the individual contributions to the
Fermi contact field through XPS data.

Hartree- Fock calculations are successful in
reproducing the core-polarization hyperfine fields,
though large cancellations occur between the con-
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contributions.

TABLE I. Core-electron splittings and core-polariza-
tion hyperfine fields for various 3d transition-metal ions.

tributions from the different shells; e. g. , —700
kOe is calculated for Mn", as against —650 kQe
measured in MnF2 and —690 kOe extrapolated to
zero covalency in Mn ' compounds. ' The applica-
tion of these calculations to core-electron splittings
is less direct because of two additional effects. In
XPS the final state has a hole in the s shell, thus
differing from the ground state in which the hyper-
fine field is measured. The ceo'relation energy
between the hole and the electrons may alter the
results of the calculations performed in the Har-
tree-Fock scheme. In addition there is the ques-
tion of the relaxation of the electronic shells which
accompanies photoelectron emission.

A comparison of hyperfine data, core-electron
splittings, and Hartree-Fock calculations can in
principle give indications of the importance of re-
laxation and correlation effects in the XPS data.
In addition, the trends in the hyperfine fields and
core-electron splittings with ionicity may indicate
the relative importance of 3d and 4s covalency.

Ions of the M series are especially well suited
for a study of these effects because only 2s and 3s
polarizations contribute to the hyperfine field (the
ls contribution is known to be very small ) and
because large changes in hyperfine fields with co-
valency have been observed. '

II. EXPERIMENTAL RESULTS

XPS spectra were obtained with a Varian IEE 15
spectrometer using MgKa radiation. The data
relevant to the following discussion are given in
Table I. The 2s' splittings for MnF3, MnO, and
FeF& are reported here for the first time. They
were obtained from data such as those shown in
Fig. 1. The solid lines are least-squares fits ob-
tained with a I orentzian line shape and a sloping
background, and include the ns, 4 satellites. Fig-
ure 2 shows the 3s lines of Ni, Co, and Fe metals.
The metals were cleaned by argon-ion sputtering.
Other materials were in the form of freshly
crushed crystalline powder. The MnO was pre-
pared as a thin film on Mn metal to avoid the for-
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FIG. 3. 3s core-electron splitting for various Mn '
and Fe3' (spin only) compounds vs hyperfine fields. The
3s splitting of I'eC13 is taken from Ref. 3.

3. The decrease in. hyperfine field with increasing
covalency can be ascribed to the combined effects
of d-electron delocalization and population of the
4s orbitals of the metal ion. ' These 4+ electrons
give a positive core-polarization field. The 4s
population can also alter the 2s and Ss core-elec-
tron splittings by increasing the shielding of the
3d wave functions. This increases their radial
distribution and decreases the overlap with inner
s electrons. An order-of-magnitude estimate for
this effect can be obtained in the following way.
The Ss-Sd exchange integral, which is proportional
to the 3s core-electron splitting, decreases by
10% in going from Mn ' to neutral Mn. ~ On the
other hand, the hyperfine field decreases by - 70
kOe in going from MnF2 to MnO. Assuming that
the core-polarization hyperfine field of the 4s
configuration in Mn is 700 kOe, the 4s population
can increase at most -10% between MnF3 and Mno.
Assuming that all the hyperfine-field change comes
from a 4s population of the metal orbitals, the
corresponding decrease of the R splitting between
MnF& and MnO due to A shielding is then certainly
less than 0. 1 eV. The major contribution to the
reduction in 3s splitting with increasing covalency
must therefore be due to d-electron delocalization.
This conclusion is consistent with the fact that the

TABLE IL Experimental and theoretical results for 3d
core-electron exchange in MnP2 and FeI'2. The theoreti-
cal 2s splittings have been obtained by multiplying the
available splittings by the ratio of the exchange integrals
6 calculated for the atomic configurations (Ref. 4).

Experiment
m(2s) m{3s)

(eV) (eV)

Theory
~(2s) bZ(3s)' 6' (3d, 2s)" 6' (3d, 3s)b

(eV) (eV) (Mn, Fe"& {Mn, Fe )

4.7 0.265 0.802
4.3 0.293 0, 844

MnF2 5.9
FeF~ 4, 3

14.2
12.4

6.5
5.9

'See Ref. 3. "See Ref. 4.
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2s splitting, though having a larger uncertainty,
decreases by the same percentage as the Ss split-
ting on going from MnF3 to MnO.

The fact that the data for metallic Fe fall on the
line in Fig. 3 can also be interpreted from a con-
sistent point of view. The Ss splitting in an ion is
proportional to the magnetic moment of that ion.
Since the hyperfine fields in K2NaFeF6 and Fe
metal scale roughly with their magnetic moments,
a proportionality between hyperfine field and ex-
change splitting results. Much less information
is available on Ni, but within the uncertainties
the data on ¹imetal and ¹iF&would also fall close
to a straight line through the origin.

IV. SUMMARY

2S core-electron splittings for MnF3, MnO, and
Fe F2 have been obtained. They agree with theo-
retical predictions, whereas the ' splittings in
the same compounds are only one-half as large
as those calculated. A comparison with 4s split-
tings in the rare earths, which are also about one-
half of those estimated by the Hartree- Fock cal-
culations, suggests correlation effects as the
cause of the discrepancy. A linear relationship
is found between Ss core-electron splittings and
core-polarization hyperfine fields as a function
of covalency. This is interpreted in terms of a
substantial d-electron delocalization as a conse-
quence of increasing covalency.
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The inelastic tunneling of electrons in a metal-insulator-metal junction has been shown to
be a spectroscopic method for studying the vibrational modes of the whole system. In the
present paper we consider the possibility of deducing precise information from this spectro-
scopy. The low-voltage part of the spectrum (i.e. , the d I/dV -vs-V characteristic) gives
information about the phonons of the electrodes. The phonon density, which is deduced for a
Mg electxode, is critically compared with the density deduced from neutron scattering. The
range of this phonon probe is then studied by tunneling into multilayer electrodes. The 40-
90-meV range of the characteristic of a Mg-Pb junction exhibits a specific structure due to
the lattice vibrations of the insulator. This structure is compared with the infrared spectrum
and the phonon density of states of MgO, as well as with a theoretical calculation of the tun-
neling current in the transfer-Hamiltonian formalism. From the fit obtained, it is deduced
that the 30-jt.-thick insula, tor, grown on Mg, is an oxide, in contrast with the insulator grown
on Al, which was previously deduced to be a hydroxide. At higher energies (100-500 meV),
the vibrational spectrum of molecules contained in the insulator region is observed. The
identification of the lines is shown to be accurate and it gives precise information on these
molecules, especially about their chemical binding with the insulator. This last point could
be important in the future for studying the problem of adsorption on solid surfaces.

I. INTRODUCTION

A new field in the study of tunneling in metal-
insulator-metal (MIM) junctions was devised in
1966 by Jaklevic and Lambe. ' They observed
structures in the d I/d V characteristics which
were related to vibrational excitations of molecular
impurities contained in the insulator. Since that
date a considerable amount of work has been de-
voted to the subject. It has been found that the
phenomenon is more general than was at first
thought, because vibrational modes of the metallic
electrodes'4 and of the insulating barrier itself~ '
have also been observed.

The physical origin of these structures is mainly
due to the inelastic tunneling of electrons. An
electron can cross the potential barrier of the
insulator by (elastic) tunneling with conservation
of its energy. But this barrier potential may con-
tain dynamic terms, such as those due to the vi-

brational modes of the insulator. Then an elec-
tron also has the possibility of going from one
electrode to the other, exciting one mode of vibra-
tion, and losing the corresponding energy Roo.
Clearly, this can happen only when the applied
voltage is greater than Vc= au&o/e. This gives the
threshold for the new process to occur. Above
this applied voltage the total probability of cross-
ing the barrier, for an electron at the Fermi level,
is the sum of the elastic and inelastic probabili-
ties, and the conductance is increased (see Fig. l).

Actually, the inelastic tunneling of electrons
involves the vibrational spectroscopy of the whole
MIM system. In the present paper we report new
results on the topic, mainly on structures in which
the identification can be carried out with more
precision. We also try to give answers to various
questions which have been raised on the subject.

We have studied particularly Mg-MgO-Pb junc-
tions because, in that structure, the completeness


