
M. B. SALAMON AND D. S. SIMONS

to lower temperatures and will be completely sup-
pressed by a field

8K(
NjM (0)

where we take M(0) = 7. 55'~/atom. ' Again this is
in agreement with our measurements, although we
do see a small critical field along the a axis which
the theory does not explain.

It is clear from our measurements as well as
others that the molecular-field model presented

here is too simple to explain the detailed nature of
this transition. Recently, Sherrington'9 has cal-
culated the properties of an anisotropic ferromag-
net at zero temperature in a more general way. In
that model, as well, the change in sign of the low-
est-order anisotropy constant leads to a second-
order transition due, in that case, to the presence
of a soft mode. We hope that the qualitative agree-
ment between our experimental results and a molecu-
lar-field model will encourage a general treatment of
the anisotropic ferromagnet at finite temperatures.
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The scaling equation of state for a generalized classical Heisenberg ferromagnet near the
critical point is derived by an expansion in e =4-d, where d is the dimension of space. It is
shown that, though infrared divergences are induced by the Goldstone modes, the equation of
state is divergence free. The results are. compared with previous numerical calculations. It
is also shown that, for non-Ising-like systems the "linear model" cannot be exact, even at
first order in e (although the numerical deviations from linearity are smaB).

I. INTRODUCTION

The understanding of the physics of the critica. l
region has been improved by the use of the q ex-
pansion technique. ' This method provides system-
atic corrections to mean-field theory by a per-
turbation expansion about four dimensions. Criti-
cal exponents have been calculated~ and the known

terms in the expansion in powers of q =4 —d, where
d is the dimension of space, give sensible results
in three dimensions. In a. previous works the
scaling equation of state was calculated up to order
& for an Ising-like system. Here we present the
details of a similar calculation, to the same or-
der, for a generalized classical Heisenberg sys-
tem.
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The difference between this and the previous cal-
culation is, first, that the weights of the various
Feynman diagrams depend on z, the number of in-
ternal indices of the spin density. More important .

than this technical point is the fact that the re-
sponses of the system in directions parallel or
transverse to the applied field are not the same.
This is manifested by the appearance of massless
Goldstone modes, i. e. , the spin waves, below the
critical temperature. These modes lead to new

infrared divergences and it is shown that these di-
vergences are absent from the equation of state,
although they will appear in other physical quanti-
ties.

The results are compared with the numerical
calculations ' based on the extrapolation of high-
temperature expansions.

The outline of the paper is as follows. Section
II contains the notation and a description of the
Hamiltonian. The perturbation expansion is out-
lined in Sec. III, with detailed calculations in Ap-
pendix A. In Sec. IV the equation of state is writ-
ten in scaling form, and is compared both with pre-
vious numerical calculations and with a parametric
form.

II. NOTATION; THE HAMILTONIAN

The spin density s; (x) has n internal degrees of
freedom i = 1, 2, . . . , n. In the absence of any ap-
plied external field the Hamiltonian is symmetric
under O(~) transformations By c.onvention, the
direction i =n will be along the applied magnetic
field H, and the Hamiltonian reads

d"x —L [(vs, )'+ros', ]+~ ~~ s,'~ —as„

(I)
It is convenient ' to subtract from the longitudinal
field s„(x) its expectation value, and to define a new
field L(x):

I.(x) =s„(x) -M,

M=(s„(x)) .

Then no "tadpole" insertions~ of the field L(x) are
required.

Brackets denote the thermodynamic average
which is defined as a functional integral

t ns, (x) 8 i' A(s, (x))
(x) - 3!/ '((T

and calculated by Feynman-graph expansion.
The Hamiltonian is then split into a free part

d's 2' (sss, (s (sr(s+r, 2' s,'+r, Cs)k'T 2 g 1 1

(6)
and a perturbation

-1
d'x ~ L'+ Z s'

~

+-tt ML L'+

+ (ro —rl, +~0M )I + '(ro —-r —'u~')

r,'6,, = f d"x(s, (x)s, (O)), I &t, j&n —I . (8)

As in previous works ' the coupling constant uo
is chosen in order to match the expected critical
behavior of the renormalized quantities in zero
field (above the critical temperature). The result
is

48m~ 9n+ 42
1CO: & I+& lnA+r

)2 2 ~2ln4v+g Cn+8 jn+8
(9)

where A is a momentum cutoff much larger than the
inverse of the longitudinal and transverse correla-
tion lengths and C is Euler's constant. The cutoff
is kept in intermediate steps but it will disappear
from all physical quantities.

III. PERTURBATION THEORY

An expansion up to order q~ of the relation

(I.(x)) =o (lo)

is performed. However, to be systematic, one
must realize that the spontaneous magnetization is
such that, although the uo vertex is of order q, the

u,M vertex which appears in Eg. (6) is of order
The three remaining vertices in X1 are

merely counter terms which also vanish in zeroth
order in q. The one- and two-loop diagrams to be
considered are shown in Figs. 1-3. Figure 1
shows the diagrams which contribute at order q

[and also e through the (4 —s)-dimensional inte-
grations]. The diagrams of Fig. 3 contain a prop-
agator insertion; the mass counter terms are
taken into account by subtracting the insertion at
zero momentum. The evaluation of these diagrams
is given in Appendix A.

The bare quantity ro is a linear measure of the
temperature, and it is eliminated in favor of the
reduced temperature t= (T —T, )/T, , by subtract-
ing from the relation (L(x)/M) = 0, its expression
at the critical point T= T, , H=M=O. This yields
a relation between H, t, M, y~, and z~ which
reads

x)~ s(+[(ro+Bugf )M H]L (6
1

In contrast to Ref. 3, there are now two different
renormalized "masses" y~ and y~, corresponding
to the fact that the longitudinal and transverse sus-
ceptibilities differ. Their precise definitions are
given by

rz,
' = f d"x [(s„(x)s„(0)) —M2],
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P—= t+ s uoM + I+ q 2 +lnA + [3rz(lure —2 lnA ——,e in~re) + (n —I) rz(lnrr —2 lnA ——,e ln~rr)]

2

z [(n + 8 )rz (Inrz, + 2 lnA lnr~ ——,
' In~r~ ) + 2 (n —1)rz (lnrr + 2 lnA lnrr ——,

' ln rr ) + (n —1 )r~ I (p) J2(n+8 '

+ —

2 —,[21nr~ (lnA —1) —21n r~]+ —
[2 ln r —Inr~ Inrz —

Inrun
—(1 —21nA)1nrr —I~(p) —Iz(p)]

QuoM& ] ) g n-1
( 8) 4 J 2 I 36 2

n —1 —-'1 ~ 21 A 1 ~ lnx& -xr»x~ g~lny~lnf~ xT +I, 11
fg —f'z &g &z

where p = r~ /4rr and the functions I, , I~, Is are
defined in Appendix A.

In order to get the equation of state the quantities
x~ and y~ have to be expressed in terms of the
basic variables H, M, and t. This may be done by
a diagrammatic expansion of the expressions (7)
and (8) which define them. However, it is much
simpler to use the relations

(i2)

and

rz, = H/M,

the first of which follows from the definitions (3)
and (7) of M and r~. The second relation follows
simply if one takes for granted a relation of the
form

H=MZ(M', t),
and is also pedantically derived as a, Ward identity
in Appendix B.

Equations (11)-(13)provide an implicit definition
of the equation of state. From the Wa, rd identity
(13) the existence of the massless Goldstone modes
is manifest: z~ vanishes with H below T, since M
remains finite. This leads to an apparent infrared

6 (n+6)(c )n,-2+ I+4 i )3 e +0(6 )
P n+8 tv+8

6=3+e+, e +O(e ).n +14n+60
2 n+8

(14)

(i6)

Then the scaling equation of state is obtained as a
relation between y=H/M' and x=t/M't~. The re-
sult does not appear naturally in the simple Griff-
iths form y=f(x), but rather as an implicit rela-
tion,

divergence of the expression (11) for H/M at the
coexistence curve (H=O, t&0). However, a, simi-
lar divergence also appears in y~ as can be seen
from Eqs. (11) and (12), or directly from the fact
that a closed loop of the transverse modes con-
tributes to the longitudinal propagator, as shown
in Fig. 4. The equation of state must not exhibit
these divergences in order to be meaningful in the
vicinity of the coexistence curve. And indeed,
when r~ is eliminated between Eqs. (11) and (12),
the diverging lny~ terms do cancel.

IV. EQUATION OF STATE IN SCALING FORM

Describing the coexistence curve as —t~ M' ~,

and the critical isotherm as H«M', one obtains,
from Eq. (11),

y = x+7(u+ 3(x+-,u) ln(x+ —,u)+ (n —1)y lny+ ~ (n+ 8)u1 1 9n+42
2 n+8 (n+ 8)'2

——, ——,ln4m+ —,Cj,

3(x+ —,'u) (10 —n)+u(26+n) 2, (n —1)y lny ln(x+ —,
' u) n(n —1)y ln y

24(n+ 8)' 4(n + 8)2 8( 8n)~+

312+ 17m —4n y 3+ Qpg + 42 ]+, „(x+—,'u)+. . . ,, ——,'+ —,'C ——,'(In4w)~ ln(x+-,'u)
4(n+ 8 j-

(n —1) (19n+ 92) (n —1) u(n —1) u(n —1)~
( )8 1lpp —

( )II
(p+ —p)l (p) —

( )
(1(p)+1(p)]+

( 1(p)] (16)

where

u—= [48]T2/(n+8)] e . and

H/M'=i a.t t=o

It is possible to solve Eq. (16) for y in powers
of &. If the fields andtemperature scales are set by

—t/M i ~ = 1 at H = 0, t & 0

the solution reads y=f(x) with
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f(x) = x+ 1+ 1+ [n —1+6 ln2 —9 ln3+ (n-1)ln(x+1)]
~2 n+8 2 n+8

2
x [3(x+3)ln(x+3)+ (n —1) (x+1)ln(x+1)+6xln2 —9(x+1)ln3] +

2(n+ 8)

&&~ —,'(10 —n)(x+1)[ln (x+3) —ln 3]+36[in (x+3) —(x+1) ln 3+xln 2] —541n2[ln(x+3)+xln2 —(x+1) ln3]

+3(n —1) (in~4) (x+1)ln(x+1)+ [(x+3)ln(x+3)+2x ln2 —3(x+1)ln3]
212+ 17' —4g

n+ 8-

+ (n —1) (x+ 1)ln(x+ 1)ln(x+3) ——,'n(n —1) (x+1)ln (x+1) + (19n+92) (x+1)ln(x+1)n+8

—2(n —1) [(x+6)1 (p) —6(x+ l)I ( )1 —6(n —1) [)alp) —(x+ 1)la( ))+4(n —1) [la(p) —(x+1)la( —',)]), (16)

where

p= (x+3)/4(x+1) .

As it stands the expression (18) for f(x) suffers
from two defects. (i) The process of solving for
y has violated the positivity of y, which was satis-
fied by the original Eq. (16), but only in the ex-
tremely small range

0 ~ x+ 1 ~ exp- (n+ 8)
2' —1 q)

(ii) More seriously, Griffiths's conditions on the
large-x behavior of f(x), namely,

(19)

lations is better for n = 1. This is not surprising
since the large-x behavior of f(x) is governed
mainly by the value of y, and in Ref. 5 the value
of y is determined' as 1.43, whereas the & series
gives y= 1.34 for &=3. This simple fact accounts
for approximately 75/o of the discrepancy for x= 5.
Therefore, the relevance of the comparison lies
mainly in showing that the & and & terms in Eq.
(18) provide meaningful corrections.

V. PARAMETRIC FORMS

It is well known that the best. way of obtaining an
equation of state consistent with Griffiths's condi-
tions (19) is to write it in parametric form, "'2

i.e. , H, M, and t are expressed as

are only satisfied within the framework of the q ex-
pansion, but not explicitly. For example, the
leading terms of f(x), for large x, are

a=R"b(S),

M=R m(8),

f = Rr(e),

(22)

4 e(n+ 2)f(x)-(1
(

)-ln —
a x+

( )
xlnx

x- - (20)

which is indeed proportional to the q expansion of
x"with the value obtained in Ref. 2:

n+2 (n+2) (n +22n+52)
2(n+ 8) 4(n+8)'

(21)
Nevertheless, with no attempt to remedy these

defects by replacing f with a more satisfactory ex-
pression equivalent at order q, the orders zero,
one, and two in q have been compared with the
numerical calculations of Gaunt and Domb on the
three-dimensional Ising model (n= 1), and with the
Milosevid and Stanley results for the Heisenberg
models (n=3). The comparison is displayed in
Figs. 5 and 6. Though the successive corrections
to the zeroth order do go in the right direction,
the agreement with the high-temperature extrapo-

where all the nonanalyticity is contained in the R
dependence. In order to compare with the "linear
model, " ' we make the choice

h(e) = a8 (1 —8 ),
~(e) =1- b' e',

(23)

a = ao(1+ eaq), b = bo(1+ &b,),
m(e) = c,&[1+~m, (e)] . (24)

x Q
longitudinal propagator

---- transverse propagator

FIG. 1. First-order contributions to Eq. (10).

solve for m(e), and explore to what extent it is
linear in 8. Each parameter in Eqs. (23) has to
be expanded in powers of q. Working for simplic-
ity to order &, we write
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x

FIG. 2. Second-order contributions to Eq. (10). FIG. 4. Source of the infrared divergence of the
longitudinal susceptibility.

The equation of state is satisfied at this order with

ap= cp, bp= ap+1,2= 2

m (8) = a (1 —8 )+—' b 8 —[1/2(n+ 3)]

x((~ —1) (1 —8 ) ln(1 —8 ) (25)

+3[1+(2bo —3)8 ] in[1+ (2bo —3)8 ]

+5(i —f',8') in2-9(1- 8') in3] .
Additional criteria are required in order to decide
which set of parameters should be chosen. Never-
theless, when g is greater than 1, there is no
choice for which m, (8) is a constant [or m(8) lin-
ear], although the linear model can be numerically
satisfactory. For example, the choice

m, (O) = m, (1)

mt(g)=nnnnt(t — (i —tt )in(1 —8 )I
~(~ —1)
2(n+ 8) i

symmetry, it is conjectured that

~,-'- const+r,-", a- O, T & T;

for all g & 1 and to all orders in q.
The ability of the Feynman-graph method to re-

produce such a result requires further study since,
in principle, additional transient terms in the re-
cursion formulas might appear in this region
(where two length scales exist). An exact treat-
ment involves a study of the renormalization group
equations" below T, .

APPENDIX A: EVALUATION OF FEYNMAN DIAGRAMS

As explained in the text all diagrams must be
subtracted at the critical point where M, z~, and

gz vanish.
(i) Diagrams of Fig. 1 are to be evaluated up to

order q retaining only at that order the relevant
lnz behavior. This requires the evaluation of

Vfhen m=3, and in three dimensions, this differs
from a constant by at most 3%.

Vl. CONCLUSION

It is clear that the q expansion provides mean-
ingful corrections to mean-field theory both for
critical exponents and for the scaling equation of
state. It also provides some quantitative under-
standing of the validity and limitations of phenom-
enological descriptions such as the linear model.

However, one problem remains. The equation
of state is indeed finite at the coexistence curve,
but thermodynamic quantities involving derivatives
of the magnetic field, such as the magnetic sus-
ceptibility and the specific heat at constant mag-
netization, are infrared divergent below T, , when
H goes to zero. " In perturbation theory these
divergences appear as powers of piny~. It is
clear that such terms arise from the q expansion
of r~ raised to some power depending on q. The
precise behavior of the system near the coexis-
tence curve requires the knowledge of the form to
which these terms should be exponentiated.

On the basis of an argument relying on the free-
dom of making nonlinear realizations' of the O(pg)

(2w)' „
q2& A2

, [1+-,'q(ln4v+ 1 —C)]
2m'

(2w)

X
dp

dqq (1 —~lnq) s
——

p +O(e )
3 1 1 2

q+~ q

16m 2 [1+—,'q(in47) + 1 —C)] r[lnx /A ——,'e in2x],

2& 8 Qi + +L 92 &L, q1 q2 &I

—[qiq2%i+ia)'] ']

4 z[(l+21nA) in' ——,'ln x] .256~'

The second diagram of Fig. 2, having two different
masses rl, and x~ in the propagators, produces a
nonelementary function of the ratio

p=r~/4r, .

Through the use of Feynman parameters, we ob-
tain

where C is Euler's constant.
(ii) The first diagram of Fig. 2 involves only x~:

(
', ' {[(q'+ )(q,', )(((1 +(1 )'+, )] '

FIG. 3. Propagator insertions contributing to Eq. (10).
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I- f (x)

fG D
(x)

IO-

0

~ ~

I

FIG. 5. Comparison
with the results of Gaunt
and, Domb on the Ising
model at order 0, 1, and
2 inc.

~ ~ ~ e + e e ~ ~ ~ ~ ~ ~
I

' 1

, [(I+2inA)~, in~, —(-,'~, )ln'~,

+ 2(l + 2 inA)rr 1nsr —rr ln rr +rz, Iq(p)],

where the function I,(p) may be written
P 00

0 P

When p tends to infinity (coexistence curve),

I,(p)- (1/4p) (lnx4p+ 21np)+ O(l/p), p- ~ .

(iii) Similarly, the first diagram of Fig. 8 involves
only y~ and gives simply

4 1
(2 )8 ( 2+ )2 1[42++i ) ((ll 12) +~~)l2 -1

~l

—(qx+~i) '}

4 [- ~ ln rz, + 2(lnA —1)inrl, ) .

The last two diagrams of Fig. 3 also depend on p
in a nonelementary way. The first one is

2 f (x)

fM. s.("'

30-
~ ~

~~
~ ~

~ ~
20-

IO—

0

FIG. 6. Comparison
with the results of Milo-
5evib and Stanley on the
Heisenberg model at or-
der0, 1, and2inc.

-20—



BRE ZIN, WA LLA CE, AND WILSON

(2' )
'

( )
([(q'+ )((cl, +j,)'+, )]

'

—(e'a+~r ) 'I
1 2

4 [—,ln y~ —lnr~ —lnzz, inner256m

+ (2 lnA —1)lnrr —I, (p) —I,(p)],

I' dulnu u -"'
2pg 1 —u p

Near the coexistence curve, the asymptotic be-
havior of Ip ls

I~(p)- —(1/4p) ln 4p+0(1/p), p- ~ .

The last diagram gives, similarly,
4d ggd gp

(2, )8 ( a„)a (42+~r) [(ai+a2) +~i]

-42+~r) '42+~i) ''I

,' ln'x, + ————[(2 ink —1) (~~ in'~
2567t yl —y~

-r, in', )+r„ in', 1nr, /~„jar(p)),

&g(p)+2I2(p)= Is(p), I,(p) = p d—'

APPENDIX 8: BROKEN 0(n) SYMMETRY AND WARD
IDENTITIES

The generating functional' for connected Green's
functions is defined as the Feynman integral

8- F (8]) g)g ~ e- x/ N'

where Z/kT, in addition to an O(n) invariant part,
contains an external source term

( H, (x)s, (xld'x .

Apart from the source term the integral is in-
variant under the substitutions

s( (x) s) (x) + (d c() 8)

where w is an infinitesimal rotation about the ~
axis and c,&

is antisymmetric in i and j. The vari-
ation of the source term under this transformation
leads to the relation

I (H) ) = I' (H; —& c,") H) ),
or in differential form, to

gp
( )

Hg($)c)q = 0
5H] x

where

pp p 00

0

We choose now H„(x) as the constant longitudinal
field H, differentiate with respect to a transverse
component H~(y) (k&u), and set all transverse
components to zero. This yields

For p large,

I3(p)- —(- ln 4p+ 2 lnp) + 0 —,p- ~ .2 1

4p P

As a final remark, we note the following rela-
tions:

which, though the definitions of M and z~ and the
antisymmetry of c', simplifies to

~, =H/m.
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We have investigated the surface bound states and resonances that occur on a. (001) surface
of either a two-level induced-moment system or the tunneling model of a hydrogen-bonded
ferroelectric. We have assumed (a) that there is a perfectly sharp surface and (b) that only
parameters on the surface have values different from those in the bulk of the crystal, and we
have used the random-phase approximation to solve the equations of motion for the thermo-
dynamic Green's functions. Analytical expressions have been obtained for the complete
Green's functions. Three phases can exist: (i) Both the surface and the bulk are disordered,
(ii) the surface is ordered but the bulk is disordered, or (iii) both the surface and the bulk are
ordered. In phases (i) and (ii) only one kind of localized mode can appear, while in phase (iii)
two kinds, localized on the first and second layers, can exist. No resonances appear inside
the bulk band when both surface and bulk are disordered, but resonances can appear in the
other two phases. Some criteria for the appearance of bound states have been derived and
numerical calculations have been carried out for the three phases at zero temperature. Some
experiments are suggested.

I. INTRODUCTION

There has been considerable interest recently
in the modes that are localized on and near the sur-
face of magnetically ordered crystals which are
described by the Heisenberg Hamiltonian with pos-
sibly anisotropic exchange interactions. We shall
be concerned here with modes that occur upon one
surface of an otherwise infinite or periodic crys-
tal. Early work was done by Wallis et al. ' and
Mills and Maraduddin on the Heisenberg ferro-
magnet and was concerned with the modes excited
on a free surface (whereon the exchange interac-
tion is the same as that in the bulk) and their ef-
fects on thermodynamic quantities. Other early
works were those of Fillipovs (see also deWames
and Wolfram4) and Mills, ' who investigated the ef-
fect of changing the exchange interactions upon the
surface and between the surface and second layer
from that of the bulk. This problem was also
treated by deWames and Wolframe (see also Ilisca
and Motchane ). These authors restricted them-
selves to isotropic interactions. More recently,
the effects of exchange anisotropy has been con-
sidered by Osborne, Ilisca and Motchane, ' and
Levy, Ilisca, and Motchane, together with next-
nearest-neighbor exchange coupling by Levy,
Ilisca, and Motchane. Recent work on the Heis-

enberg antiferromagnet has been done by Mills'
on the surface spin-flop state and by Mills and
Saslow' on surface effects in general, while
Sparks' has considered both the ferro- and anti-
fer romagnet.

There is, however, a large class of magnetically
ordered systems for which the Hamiltonian may
contain, in addition to the bilinear Heisenberg
term, terms due to the effects of crystal fields.
The magnetic behavior of such systems is of par-
ticular interest when the magnitude of the crystal
field parameters is comparable to that of the ex-
change interaction, which is the situation that ap-
pears to exist in the light rare-earth metals. One
of the best-studied examples is that of Pr3' ions
in various crystal field environments (see Rain-
ford and Gylden Houmann' and other references
therein). In a hexagonal crystal field, the lowest
ionic states are a magnetic singlet, a higher-lying
singlet, and a doublet. Because the z component
of the total magnetic-moment operator J has a
nonzero matrix element between the two singlets,
a nonzero value of magnetization can occur if the
ratio of the magnitude of the exchange interaction
to that of the crystal field splitting between the
two singlets is sufficiently large. Here we shall
assume that the system with which we are con-
cerned has two nondegenerate singlets as the


