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The paiametrization of simple-metal Fermi surfaces by a set of band gaps leads to a model for umklapp
electron-t:lectron (Coulomb) scattering and its contribution to electrical resistivity. We discuss transport
coefficients in general, but emphasize electrical resistivity, which would vanish without umklapp processes.
We tree.t deviations from Matthiessen's rule resulting from the energy dependence of the deviation function,
for the case in which both electron-electron and electron-impurity scattering are present. The resulting 1'
power 1;.tw is too small to be seen in polyvalent metals. In potassium, the T' term is comparable to the

phonon '.ontribution at about 2'K.

I, INTRODUCTION

This quantitati. ve study of simple-metal electron-
electron scatteri. ;,g and its contribution to trans-
port was motivat~! d by the experimental search'
for a T componerit in the low-temperature elec-
trical resistivity. The results of this calculation,
compared with the experimental findings, '3 help
us to conclude that electron-electron scattering is
not responsible for the observed effects. Our re-
sults for the elec txical resistivity are as follows:
(i) The contribution from electron-electron scat-
tering is as largi: in the alkali metals studied (Na
and K) as in the;simple polyvalent metals; this is
the primary result. (ii) Estimated deviation from
Matthiessen's rule (DMR) (in the presence of elec-
tron-electron anil electron-impurity scattering)
are small in gen(. ral, but considerably smaller in
the alkali than in the polyvalent metals.

The first resuIit may seem paradoxical since the
polyvalent metal, s offer far more possibility for
umklapp scatteri. ng (without which there would be
no contribution a.t all). However, the low electron
density in the alkali metals compensates for the
relative lack of «mklapp character in the scatter-
ing. As we shal'1 see later, the resistivity can be
factored,

p-(m/ne 70) ch,

into a basic electron-electron scattering rate 70'
and a quantity &, the ' fractional umklapp scatter-
ing. "

(As usual m is the electron's mass, e is its
charge, a,nd n is the electron density. ) The resistiv-
ities and the values of & are listed in Table I. Ne
shall also see later that (crudely) vo-n, so p-n 24.
The relative smallnesses of both n and & in the
alkali metals tend to compensate, giving a resis-
tivity comparable with that of the polyvalent metals.
Because of this we can conclude that electron-elec-
tron scattering should be more evident experimen-
tally in the alkali metals. The reason is that, as
shown recently by the authors, 3 umklapp electron-
phonon scattering is much more important in poly-
valent metals at very low temperatures. In alumi-
num, for example, the electron-electron contri-
bution dominates the electron-phonon contribution,
only for temperatures below a small fraction of a
degree. In potassium the electron-electron con-
tribution may dominate below about two degrees, 4

so that experimental identification, although tenta-
tive at present, may be possible.

Our second result follows from the fact that the
estimated DMR are roughly proportional to the
"fractional umklapp scattering" &, which is quite
small in the alkalis. Estimated DMR in the ther-
mal resistivity are also found to depend on 4, but
to a lesser extent. These will be discussed later.

Let us now sketch the plan of this paper and list
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some previous works upon which we shall draw.
First, Jensen, Smith, and Wilkins'8 (JSW) have
found the exact transport coefficients of an isotrop-
ic Fermi liquid subject to both particle-particle
and particle- impurity scattering. That calculation
requires solution of the Boltzmann equation for the
energy dependence of the deviation (from equilib-
rium) function. In this work, an exact calculation
of transport coefficients would require solving for
the angular dependence as well, since the scatter-
ing kernel in the Boltzmann equation is itself aniso-
tropic (i. e. , depends on the positions of individual
wave vectors in addition to wave-vector differ-
ences). Such a full calculation is not feasible, but
we can nevertheless solve for an "optimal" energy
dependence subject to a plausible assumed angular
dependence. According to the Kohler variational
principle this would provide an upper bound to the
electrical and thermal resistivities. The optimal
energy dependence referred to would provide the
lowest upper bound, subject to the assumed angu-
lar dependence. In Sec. II we describe the use of
the JSW formalism in finding the optimal energy
dependence. The formalism permits a general
discussion of the transport coefficients, including
an estimate of the possible DMR, in terms of a set
of surface integrals involving the transition prob-
ability.

In Sec. III we address the problem of evaluating
the surface integrals, with close attention to um-

klapp processes. The form of the integrals is sim-
ple, and most of the work in evaluating them has
already been done by Ziman' and by Rosier. 9

Those authors have treated the case of a spherical
Fermi surface with an isotropic umklapp-transition
probability. Rosier writes down an explicit ex-
pression for the probability, which there arises
from the core- orthogonalization components of the
wave functions, but does not evaluate the expres-
sion. The difference between those and the present
work (Sec. III) is that in our model the umklapp

scattering arises from the multi-Iilane-wave nature
of the states as it enters the desex iption of simple-
metal Fermi surfaces. This resu. its in an explicit
form for the umklapp-transition ainplitudes which
permits easy numerical evaluation. of the transport
coefficients. The model of course produces an
anisotropic scattering probability, but our formal-
ism encompasses that case. Wher e possible we
naturally choose states which confiarm to the known
Fermi-surface distortions. As expected there is
a close relationship between surface". e distortion and
the fractional umklapp scattering.

In Sec. III we treat the simplest case, in which
only one set of Bragg planes (B.P. ) intersects the
Fermi surface. In Secs. IV and V we attempt to
generalize the result to the case i» which many
B.P. are involved, to permit the treatment of spe-
cific metals.

We should point out that except for its final
equations Sec. II is not essential tt:i the rest of the
paper, and some readers may wish~ to pass directly
from here to Sec. GI.

II. GENERAL PRELIMINAIi'. IES

The goal of this section is to obtain formulas for
the electrical and thermal resistivities, and esti-
mates of possible DMR's. We begin with a dis-
cussion of the Boltzmann equation f sr electron-
electron scattering. As usual we linearize the
Boltzmann equation by expanding thi. Fermi distri-
bution function n, about its equilibrium n„= (e'+ I) ',
where f = (e„—u)/keT is the reduced energy vari-
able with u the chemical potential, ;at each wave
vector k:

0 8+00
&a = &~+ +a

We write the resulting linearized Bciltzmann equa-
tion as

X=PC .
The driving term X may contain a t&.mperature

TABLE I. Values of resistivity and 6, and parameters which determine 4.

p(p=o)lp( )
zero-

impurity
limit

p 2& Nl

r'a 3ne'7p~r num. ber
of

pairs

[2oo]
[111]
[101]
[1ol]

0. 14
0.15
0.18
0. 14

0. 96
0. 96
0. 95
0, 95
O. 95

~;, are in-

dominant
contribu- infinite-
tion Total z j QL impurity

u/Np from Vp N„ Eq. Eq. limit
{1O-'4 n cm 'K-') [G]=- 6'p Np (4 10) (4 ~ 16) (10 Q cm 'F )

Al 3.1 3 O. 066 O. 8O 2/5 1,2
In 6. 1 4 O. O76 0. 79 2/5 2. 4
Mg 12 6 0. 069 0.76 3/5 7. 2
Zn 6 0. 048 0. 80 1/2 2. 6
Cd 10 ~ 1/2 ~5
K 290 [llo] 6 0.11 0. 011 O. 95 O. O6 17
Na 1OO [11O] 6 O. 056 0. 0029 0.015 1.5

In all cases, our quoted value of 6 [from Eq. (4.16)] differs from ~~ by less than 4%. The values of
eluded as an estimate of error to be expected from ignorance of interference effects.
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gradient or an electric field E:

X» = tv» ~ V,(k») T) (thermal case) (2. 3a)

-=ev„. E» Eelectrical case), (2. 3b)
~&&

where v, = V»e» is the velocity in state k. The col-
lision term is

(P%)»=—
2 6 d'k2d'k»d k4 P(1,2-3, 4)

1 2

x(e„+4,—e, —e,) . (2. 4)

Numerical subscripts and arguments represent the
wave-vector indices, rs=k„. For the case n=1,
1=k, = k wiil all be used interchangeably. The
collision operator is

P(1,, 2 - 3, 4) = W(1, 2- 3, 4) n, nq (1 —n») (1 —n4)

X 5(fg+ Eg —fg'—K4), (2. 5)

The transition probability W is given by Fermi's
"Golden Rule" and defined in (2.4) and (2. 5) to in-
clude an average over spins and exchange. For
scattering between plane-wave states it is

W(1, 2- 3, 4)

=(2w/k)[V'(k, -k,)--,V(k, -k, ) V(k, -k,)]

x5(k, ~k, k, k, ) (2. 6)

[note W(1, 2-3, 4) = W(3, 4-1, 2) = W(2, 1-4,3)].
For V we take the Thomas-Fermi screened-Cou-
lomb interaction

(2. 2).
It is standard procedure, and quite adequate for

many purposes (e.g. , where electron-impurity
scattering dominates), to select the trial solutions

4'» = tv» ' V„(kg T)

for thermal conductivity,

= v„~ E for electrical conductivity .
(2. 11a)

(2. 11b)

It is feasible for our purposes to generalize the
trial functions to include additional energy depen-
dence:

4'» = V» ' Vx(AT)$(t) (thermal) (2. 12a)

= v, ~ Ey(t) (electrical) ~ (2. 12b)

(t) is a general function of t, but should be odd in the
thermal case and even in the electrical case, as
are the particular choices in (2. 11). By maximiz-
ing Tt@ }over the subspace of functions (2. 12) we
derive a reduced Boltzmann equation for the ener-
gy dependence ())(t). The e(Iuation is identical to
that of JSW. ' So we can simply carry over their
exact expressions for the eonductivities, except
that in this treatment the conduetivities are no
longer exact but only lower bounds, because the
angular dependence of 4~ is restricted. But the
advantage of this formulation is that we can calcu-
late the JS%' parameters in the presence of aniso-
tropic scattering, which we will have to do in or-
der to treat umklapp scattering in See. III.

The integrals in (2.9) and (2. 10) can be decom-
posed into surface and energy integrals

V(q) =4ve /(q +k,), (2. 7)
B

I e~l
(2. ia)

T(e'}= (~', X)'/(e', P4'-), (2. 3)

where X is defined with unit electric field or tem-
perature gradient. The inner products are defined
by

(4, X) = (1/4v') f d'k @,X» (2. 9)

(e', Pe') =-(I/4' 1 d'k e„'(Pe'), . (2. 10)

As discussed by Kohler, ~ T(4 }attains its maxi-
mum value, the physical conductivity, if and only
if 4 = 4, the solution of the Boltzmann equation

where the Thomas-Fermi screening length k,~ is
given by

k,'=- Gee'/e~ .
In standard transport calculations the Boltzmann

equation is solved only approximately, and the re-
sulting transport coefficients must be interpreted
variationally. So at this point we state the vari-
ational principle and explain our use of it in this
calculation. %'e write a conductivity functional

The actual physical input of our model affects only
the surface integrals (through the velocity field
v» and the transition probability W). All the nec-
essary energy integrals have been done by JSVY and
will not be repeated here. If we set 6T/5g= 0 and
"do" all the energy integrals, we are left with the
JSW reduced Boltzmann equation for g(t). (This
complicated procedure is carried out in Appendix
A. ) The parameters of the e(luation, and hence
the conductivity, can be written in terms of four
surface integrals which we now write out in detail.

Surface Integrals

The natural occurrence of the following four sur-
face integrals in the derivation of the JSW equation
is described in Appendix A.

The simplest surface integral enters through
(2. 9). If we take the simplest trial solution [(2.11b)
for the electrical conductivity], with unit electrical
field I".', then

( „)=(xv, xxx)= --~ f ' (» 0)'=,
oyt (2 14)
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m„, is the optical mass,

m/m. „=(s,v.)-' f ds
I
v

I

V~ is the free-electron Fermi velocity and S~ the
area of the free-electron Fermi sphere 4m&~2. We
take (2. 14) to be independent of field direction,
which is valid for a cubic material or for a poly-
crystalline sample, in which we can average over
directions of the field.

The three remaining surface integrals occur in
(2. 10). We symbolize these fourfold integrations
with the average over field directions by angular
brackets,

IQ-

~,(K)
0

0.5-

0
I,Q K

0.8

I5 Al

2kF
ks

Qo
I'S

(a)

2.0

(b)

(2. iS)
The simplest fourfold integration defines a basic
relaxation time for electron- electron scattering:

0.4—

3

(Ivl'w&=(2m)' — '~ "- w-
m, t k,

where neglecting exchange and using (2. 7),

W(x) = (2v/e) V'(0) y(x),

with

(2. 16)

y(x) -=— 2 3 =—arctanx+-, (x + 1)
1 dy 1 1x, (y +1)' 2x

Exchange corrections (2. 6) are discussed in Ap-

TABLE II. Including exchange reduces 1/~ p by about

3 for all metals studied. The product of effective masses
which occurs in the prefactor of 4 in the resistivity for-
mula (1.1) and (2. 26) is close to unity (column 4).

K
Na
In
Al

Exchange
correction to 1/To

0. 66
0. 67
0.70
0.71

a
sh

m

1
1

1

1
1
7

4
5

3SZ pytfgsh

References 12-14.
"Sum of contribution from each B.P.

4 T
(I vol w(1, 2-3, 4)) .

(2. 16)
Since all indices inside the angular brackets are
dummy variables we can write unambiguously

= 4
3(2w)' n'

Precisely defined, v /27, is the surface-averaged
relaxation rate for an electron at the Fermi sur-
face (t= 0), due to electron-electron scattering.
In Appendix B it is shown that to a good approxi-
mation,

Q
I 0 K No I 5 In AI

2kF
ks

FIG. 1. (a) Scattering rate 70 as a function of 2k+/kz,
normalized to its value in potassium 70~ (K). (1) p and

(cose) depend only weakly on 2k+/kz. Owing to the weak
dependence of p on n- (kz/kz)6 the scattering rate 70
[(2.18) and (2. 20)] is roughly proportional to V (0) n"

2.0

pendix C, and tabulated in Table II. m, h is the
(unenhanced) specific-heat effective mass, defined

by

sh V~ dS
m S» Ivy

Combining (2. 16) and (2. 17) we write

31 1
( )pmh

u,

(2. i9)

(2. 2o)

&= l(Ivi+v2 v3 v4I'»-(Iv -I w& (2. 21)

(cose&=-(v, v, w&(lvl'w) . (2 22)

6 is a measure of the relative amount of umklapp

From (2. 20) it is easy to show that vo is identical
to the 7'p defined by JSW' in the case of a spherical
Fermi surface with an isotropic scattering prob-
ability. This equivalence is demonstrated in Ap-
pendix C.

The crude proportionality Tp-n, can be seen from
(2. 18) and (2. 20) by noting that V(0) = —', (ez/n) -n ~~'.

y (2k~/k, ) contributes a weaker density dependence.
The dependence of both 7 p and y upon n is shown in
Fig, 1.

The remaining two surface integrals are de-
fined as ratios:
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scattering, and will be the focus of Secs. III and
IV. Note that it vanishes on a spherical Fermi
surface with normal scattering only. (cos8) is
analogous to the angular average of "cos8" which
ordinarily appears in the theory with a spherical
Fermi surface, where 8 is the angle between the two
initial wave vectors. It is treated in Appendix C
for the case of normal scattering only. The weak
dependence on n is shown in Fig. 1.

The appearance of the velocity field instead of
momentum or crystal momentum is not only plau-
sible [as suggested by the form of X (2. 3)], but it
is necessary for an unambiguous and physically rea-
sonable distribution function (2. 11). It also means
that one cannot always distinguish a given scat-
tering process as normal or umklapp, since the
"velocity transfer" (2. 21) is not restricted to a
discrete set of values, i.e. , to reciprocal lattice
vectors.

In terms of the surface integrals just presented
we now write down the electrical and thermal re-
sistivities T {4'). We shall write the resistivities
for the case in which both electron-electron and
electron-impurity scattering are present. Smith
and %ilkins~ have treated this case and found, as
with pure electron-electron scattering, that the
conductivities can be written as rapidly converging
series. The effect of impurities enters through
the parameter

K {g = tt= - I (2 —2(cos&)+b, ) . (2. 2V)
5 nkaTYo

The familiar temperature dependences are now ap-
parent. Since ro- T it follows that p- T and K- T. In the pure case the temperature dependence
will not be drastically altered, as shown in Fig. 2.
Note that in the electrical case both p and the DMR
vanish with h.

III. A SIMPLE MODEL FOR UMKLAPP SCATTERING

%e direct our attention for the rest of the paper
to the "fractional umklapp scattering"

~+I@ '~ ~ p( I vg+va-v, -v4 I "W)

4(Iv I W)

(2. 21)

Zoytp=
~e Yo

(2. 26)

due to electron-electron scattering. %e calculate
6 using two plane-wave states, ignoring the core-
orthogonalization components of the wave functions.

l.00-— Electricol Resistivity
I

20

whose physical meaning is most apparent from the
simple-trial-function result for electrical resistiv-
i

(2/~) (&0-/~t, ), (2. 23)

where v, y is the relaxation time due to impurities.
The series is well approximated over the whole
range of accessible values of the parameters by

'2

P 0 3
4 1

10 4 5 OP
2P 24

for electrical resistivity, and

.90

I.OO

tO

/5o~P

6 moyt
K = — --- I 1 ——

(2. aS)
where I'==2 —2(cos&)+b, for the thermal resistiv-
ity. We have dropped the temperature-independent
resistivities due to electron-impurity scattering
only, which would add to (2. 24) and (2. 25). As ex-
pressed by those equations, however, the presence
of impurities does increase the (temperature-de-
pendent) resistivity due to electron-electron scat-
tering. Pure and impure limits correspond to

pure: P-o, impure: P-~.
The impure limits of (2. 24) and (2. 25) correspond
to the simplest trial functions P(t) = 1 for elec-
trical resistivity, and $(t) = t for thermal resis-
tivity:

pQ=I)= —-
p

2$ mppt
(2. 26)

fl8 &o

8 .95
I

~~ .90

( .85

75'———
0

l I I

5 IO l5
Jsorp

FIG. 2. Ratio of temperature-dependent resistivity
as a function of p [(2.24) and (2.25)] to its value at p ——,
the latter corresponding to infinite impurity concentra-
tion and the simplest trial deviation function g(t) = 1.
Resistivities are plotted versus (60/P)~, which at fixed
v&~ is linear in the temperature, since P (2. 23} is pro-
portional to T . DMR are small in electrical resistivity,
but depend strongly on A. Il~ the thermal resistivity the
DMR are larger and depend only weakly on the material
parameters, potassium and indium representing small
and large values of A, respectively (Table I).
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(a) Ek EF' ( b)

FIG. 3. Fermi surfaces in extended zone scheme (a},
given by (3.2) and (3.4), and in extended-reduced zone

given by (3 4) with (Qy/Pp)~=/ sgn (yc)
x („2+].}~~2.

The result depends solely on Fermi-surface geom-
etry-in part through the band gaps Vc which
parametrize its distortions near the B.P. The
point of such an approach is to demonstrate that
Fermi-surface distortions alone guarantee a cer-
tain minimum value of 4.

In this section we proceed to treat the case of a
Fermi surface which intersects, or passes close
to a single pair of Bragg planes (+ G). If k lies
close to the B. P. (G) its simple-metal pseudo-
wave-function is

q„(r) = o.,e'"'+ P,e*'" o' ', o.', + P,'=1. (3. 1)

To work in the extended-zone scheme we choose

=q[1+(I + 'g )
i ]. , q= —(k ~ G ——'G ),2m ~c

(3. 2)

which puts g& in the upper of two bands when
k 6&-,'G, and in the lower band when k 6& —'C.
V~ is the Gth Fourier component (k —G ~ V„lk) of
the electron-ion pseudopotential V„. The velocity
and energy of (3.1) are given by

(3.3)

surface integrals of 6 (2. 21) we shall in fact per-
mit only one of the P's to be nonzero at a time.

To estimate the consequent error, note (Fig. 4)
that

I P
I

is much smaller than
I

o.'I except within
a small distance b 0- 2m V~/h~G of the B,P. where
they are comparable. (In general n ~-, and
P ~-,'. ) As we shall see, our approximation scheme
will provide a contribution to 4 which is first order
in

I Vo I/az. A "second-order" calculation, which
would allow theo of the coefficients P to be nonzero
at a time would add a contribution of order
O(Vo/e~z) to b, and so on for third- and fourth-
order calculations, For the moment we retain
only the first-order contribution, as

I
V~

I
/&z is

less than 10% in most of the cases we shall con-
sider (see Table I).

From (3.3) we find the velocity factor in (2. 21),

4 v=—vg+ vg —v3 —V4

=(h/m)(&k —pg G& —PgG2+p3G~+P4G4), (3.6)

where Q„ is the reciprocal lattice vector associated
with the two-plane-wave description of ))„. Letting
only Pq be nonzero and observing the arguments in
the 5 functions of (3. 5), i.e. , if &k=0, then

(m/8') & v = —Pf G,

and if &k —G=O, then

(m/e) nv= n,'6;
the product in (2. 21) is

(e/2v) (m'/a')
I
~v

I

'W

=o,'p,'G'V'(Ik, —k,
I
)5(~k)

+o'P,'G'V'(Ik, -k, +GI)5(~k G}. (3.V)

Since the common factor n&Pq is sharply peaked

G (3.4)
0.5

With the convention (3.2) the Fermi surface &„= e~
(Fig. 3} becomes a sphere as Vo-0.

In order to construct the transition probability
5'we write the Coulomb matrix elements for scat-
tering from (kq, kz) into (ks, k4) in terms of the
single-plane-wave matrix elements (2.6)-(2.7).
Since the expression in general contains 16 terms
we simplify the problem by supposing that only one
of the coefficients P, say Pq, is nonzero. Then
(neglecting exchange}

&ka k~
I Vc,i I ki, ka) = ~~ V(l ks-~i

I ) 5(~k)

+Pi V(I k~ —kg+GI) 5(dk —G), (3.5)

ak-=k, +k, -k., -k4,
where V(q) is given by (2. 7). In performing the

0.4

0.5

0.2
2)

O. I

I

0 05 l0 l5 20 25
'7

FIG. 4. P falls rapidly from & to 0 as I p) increases
from zero, and 0'. =1-P rises from & to 1. P is rel-2 ~ 1 2

atively large only within a distance of about GVc/ez
from the B.P. g=0.
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for k& near the B. P. (as shown on Fig. 4), it is
clear that the contributions to 4 come from regions
where at least one of the four wave vectors is close
toaB. P.

One might think of the 5(n k —6) term in (3. '7) as
representing umklapp processes, and the 5 (4k)
term normal processes, although the distinction
fades near the B. P. If one makes the distinction

then umklapp contributions to 4 dominate normal
ones since n & p . In fact if 2k~& 6 the dominance
is by about a factor of 4.

To calculate 6 we separately let each of the P„'s
become nonzero. Since the contribution of each is
identical and the contributions are (by assumption)
additive, the total is four times the individual con-
tributions and

~=~(:.ir "' "P'[P'V'(Ik -k I)«~k& lV'(Ik -k 6I)«~k-6)](I I-»'k~(, , t v]I

The denominator is treated in Appendix A, where it is shown that umklapp processes after its value by
O(V~/e~). The routine integrations over S~ and S4 give

,(G I( 2
'

dSl dS 2 2 2 22 (I Iss —
kl I )

( -) 2 22 (Iks kl+G I) k(dk G))/(kr j Ivq I Iv31 IK3 Kg I Ik k +6 I

G Slit SSI 2 2(( 2 kll (kl))

(s. 10)
The factor containing m„, results from the S,
integration in the denominator. The S3 integra-
tions cancel in the normal term —in the umklapp
term the factor y„(k &)/y

& 1 represents the failure
of complete cancellation. To estimate y(k&) we
derive simple formulas by assuming the Fermi
surface is spherical and $3 is a single plane wave

y„(k,)

1 / q-1 ( ds= a)xt+xmtn) s n )n+1
Ihill

f'2xp xmi n
= n(xz —xmin) '; a;n f» ki' 6'nG'2

(s +1)
&min

for kz' 6& &6

(s. 11)
where

xp=kd /k, s

The 4 functions merely serve to restrict the S, and

S3 integrations to regions where the wave-vector-
conservation conditions can be fulfilled. In the
"normal" term n (n, k) the S3 integral contributes
the same as in the denominator —the result is pro-
portional to Va(0)y(2k~/k, ). In the "umklapp"
term, however, (k, —5) does not in general lie on
the Fermi surface, so the "wave-vector transfer"
(k~ -k, +5) is restricted from zero and the S3
integral is thereby reduced, the amount of reduc-
tion depending on k&. We introduce a new func
tion y„(kq) to denote this contribution (see Ap-
pendix B), so (3.9) becomes

and

x...=(1/k, ) I (k,'+G'-2k, 6)'"-k,
I

= (1/k, ) [distance from (k ~ -0)
to the Fermi surface].

Consider (3. 11) separately for the following cases.
(i) The Fermi surface intersects the B. P.

[k~ & -,' G or more precisely, &z & (N G /Bm) + I Vo I . ]
In this case, the prefactor (P,nq) in the integrand
of (S. 10) peaks when k, is on the B. P. (k~ ' 6
=-,'G~), and falls rapidly as k & moves away (Fig. 4).
It is precisely when k& is on the B. P. that k&-G
lies on the Fermi surface, which means in turn
that x „=0, and y„(k & on the B. P. ) = y. If we re-
write the term in large parentheses in (3.10) as

:[y.(k,)/y- I]],
then the second term is zero for k, on the B. P. As
it can be shown to give only a small contribution
(see Appendix B), we neglect it for all k, .

(ii) The Fermi surface does not intersect the
B. P. [k„&—,'G, or ~~&(k G/Bm) —

I V~ I. ] For
the simple alkali metals we find that (P~/n q) is
at most of order V~/ed, everywhere on the Fermi
surface. It is therefore useful to rewrite the
term in large parentheses of (3. 10) as

&y (k i)/y+ Pi I
1 —yn(k i)/y]] s

and to neglect this second term, which results in a
relative error - O(V~/e~). In case (i) (3.10) be-
comes

2 (n

(P o. ) kp& nG . (S.12)
kp 4mkgm I vg I
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In case (ii) the only alterati. on in the expression is
that y„(k,)/y appears in the integrand. This re-
duces n by some fraction, denoted by y„/y.

(3.12)—
& —Qn —b yg/y, kg

(3. 13)
dS 2, 2k+ "dS

( p)' .(k)
~ , —

( p)
y lvl " k,

dS Ikj l

Ivl tv t

'
n.

where k„and k, are components of k parallel and
perpendicular to Q. pyg is the free-electron mass
since v j is unperturbed by the lattice potential.
Integration over the azimuthal a,ngle y contributes
2m, so (3. 12) becomes

2

dk (nP)'
kg 2kpm ~,

(3. 14)

The width of the peak of the integrand (n p)2 is
(from Fig. 4) b k-4m V~/k G, so the fraction of
th Fermi surface which contributes to d is pro-
portional to Vo/ez. Since the maximum value o

(nP) is independent of VG, n is a direct measure
of that fraction.

The integral in (3.14) is evaluated most simply
by using the identity (from 3. 2)

dk„= (~ V, /m'G) (nP) 'd(tan-' (n/P) ), 3. 18

which holds everywhere except at k~, =-;6, where
n/P suffers a discontinuity in the extended zone
scheme [(3.2) and Figs. 3 and. 5(a)]. Because
of the discontinuity the integral must be taken
separa e y overt l er the first and second Brijl.louinzones„
a procedure impbed by the notation f

n=-'-(GV ~.„/k, ~„m) f d(tan-'(n/p)). . (3. i8

Figure 5 shows the integral as a function of 2k~/G.
It is apparent that

lim d(tan '(n/P)) = m8(2k~/G —1), (3.17)
V'G 0

Fs

where 8 is the unit step function. The identity
2 j 1 1tan 'ran[1+ (1+7i ')"')= —2«t n= —stan

is useful in evaluating the integral explicitly:

(i) For ky & 2G,

tag, — = ——tan p&

For a nearly spherical Fermi surface y„/y depends
l ost solely upon geometrical factors. We have

metrevaluated the fraction numerically for the geome ry
of the simple alkali metals and find y„/y (alkali)=z.

A more important distinction between the po y-
valent and alkali geometries arises from the inte-
gral in (3. 12) itself. To evaluate that expression,
for a single set of Bragg planes, we write

——tan ' — —
~ (3. 18a)+ 2 2k' —|"

2k@- W- ——-- —-V~+0&,Pf-
2k~ —6 (3. 18b)

d )
tatx-'—

vo+ O(po2 ) . (3. 19b)"G-2k,
The approximate forms (3. 18b) and (3. 19b) are
valid if k& is not too close to 26, and together wiith
(3. 16) show that to lowest order in vz

p QP'g m

k~e~)st
(3.20)

t ~a a
a=tan p, p =7) I+ I+q a

Tr

~o

l.0
)

075 7
I

CO
~ tL

0.5-
u

8

0.25-

2k F /6 VG/E F

At tt it3 i.Za .021
Air. drool ~. ~~ .066 ~

Al [)tIj

200]

0.0'-
0.0

&~ L~oo3 &I t(I(j

2kF/6

FIG. 5. (a) Plot of the function which appears as a
differential in (3. 15) and in the expression for 6 {3.16),
(b) Fractional umklapp scattering 6 as a function of
Fermi wave vector, normah. ze to 'its limitin value at
large 2k&/G (large q). The two plots correspond to the
band gaps of the (200) and (111)planes of aluminum, and
the corresponding values of 2hz 6 a' are indicated on the
abscissa. The plots of (b) are equivalent to that of (a)
with its discontinuitp removed.

where v&=- m „- n—= 4 V /rc .G~ and where the first term
within the parentheses on the right-hand side is as-
sociated with the first zone, and the second term

'th th second zone. (ii) For k~ & —,G, the mtegra-
tion is over the first zone only and
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J d (tan-'(~/P)) = -.'v - tan-' v, , k, = -,'G .
(3. 22)

In the present section we have treated a Fermi
surface in the presence of only a single pair of B.P.
It has been possible to evaluate the 8, integral
(3. 12) exactly, over the distorted Fermi surface.
Surface distortions were ignored in the Se integra-
tion, which averages the transition probability 8',
but this results in small relative error O(V&/ez).
The approximation which we treat in Sec. IV is the
assumed independence of the contributions from
different coefficients P„.

IV. APPLICATION TO REAL METALS

Before attempting to discuss real metals, we

must first consider the problem of a Fermi surface
in the presence of many B.P. In a typical scatter-
ing event, more than one of the four scattering
states may deviate significantly from a single plane
wave. This destroys the approximate additivity of
contributions of the separate states to the total
scattering probability, and requires that we con-
sider the effects of interference in the surface in-
tegrals. - Therefore it is probably incorrect to cal-
culate ~ from the equation

yairs+ c
(incorrect), (4. 1)

where ~c is the contribution to & from the pair of
B.P. (+ 6), as defined by (3. 16):

d
i

t n ' —
i

(4 2)
f o. E

4k~eF m m' vs l P~

We define c.o/P~ as if only B.P. (+G) were present.
Later we shall assess our neglect of the effect of
neighboring B.P.

Since it is unduly complicated to perform the
surface integrals when each state contains two
(or more) plane waves, we shall suggest (without
proof) upper and lower bounds to the result which

k2

G G —2k~ 6~m y

with y„/y= —,for the alkali-metal geometry. The
principal results are summarized by (3. 20) and

(3. 21). The polyvalent-metal geometry results in
& proportional to V~/&„, which represents the frac-
tion of Fermi-surface area on which umklapp scat-
tering can occur. By contrast ~ is proportional to
only Vz/ef in the alkali-metal geometry, dictated
by the form of the mixing coefficient P far from the
B.P.

We mention in passing that if the Fermi surface
contacts the zone boundary but has no second zone,
as in the noble metals, then the integral is given
correctly by both (3. 18a) and (3. 19a):

would be obtained by such an exact treatment. To
do so we introduce the concept of "umklapp density
of states. "

N„ f(dS/ [v I) (np)' kz ' m

No 4' zm/O' G m „, (4. 3)

where the subscript on N0 refers to the free-elec-
tron value. Setting the factor (I/m) fps d (tan '(+/p})
to unity, we have from (3. 20),

Nu ~~a Vc
N0 4G (4. 4)

Generalizing to the case in which many B.P. dis-
tort the Fermi surface, we assume that the contri-
butions from all pairs of B.P. to N /No are addi-
tive:

N„m g kp 2 m g k'p Vg
c

N0 ~opt uairs+c G 4 yairs+ c G ~E

(4. 5)
In Table I, we list several values of NANO, calcu-
lated taking into account the factors y„(k) and

(I/m). f» d(tan '(n/p)). Additivity in NJN0, (4. 5),
would follow if the different B.P. did not overlap
near the Fermi surface. The overlapping produces
admixture of three of four plane waves in the
states and contributes to the reduction (m~/m) in
the density of states. Presumably it reduces the
umklapp density of states N„/No by O(N„'/No). In

any case overlapping is ignored.
Additivity in 6, (4. 1), on the other hand would fol-

low from the assumption that three of the four scat-
tering states are single plane waves. This assump-
tion ignores interference effects (in processes
like Fig. 6) which are present whether or not the
different B.P. overlap. In the following we esti-
mate the effects of interference by calculating 4
from N„/Na with certain assumptions, rather than
from (4. 1) directly.

Since the contributions to N„/No come principally
from regions near the B.P. , we imagine that a
certain fraction (N„/Np) of Fermi-surface states
is responsible for umklapp scattering. We refer
to this imaginary set of states as the 'umklapp
region. " The probability that n ~ 4 of four random-
ly chosen wave v ctors lie in the umklapp region

I ~ls

A. Umklapp Density of States

Following (3. 12) or alternatively setting y„(k)= y
in (3. 10) we can think loosely of (n~p„) as the prob-
ability that an electron in state k will participate in
an umklapp process provided (as assumed in the
previous section) that the other three scattering
states are single plane waves. We define the sur-
face-averaged probability as the "umklapp density-
of-states, "
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TABLE III. Probability P(n) that n of 4 randomly
chosen wave vectors on the Fermi surface lie in the um-
klapp region. For N„/Np & ~ there is only a small prob-
ability that more than bvo of the wave vectors lie in the
umklapp region.

Nu/No-— 0. 20
1 2

0. 41 0.41 0. 15 0. 026 0. 0016

(4. 6)

We assume the formula holds for four scattering
states, which must satisfy some wave-vector con-
servation rule.

For a typical polyvalent metal, with N„/No= 0. 20,
we list the probabilities on Table III.

Using N„/No and some assumption about inter-
ference, we may deduce the "relative probability"
P, that an umklapp process will occur. (One might
prefer to call P„ the fraction of umklapp scatter-
ings. ") For example, the "additivity assumption"
of Sec. III is equivalent to saying P„=4N„/No. We
find the formula for & in terms of P„by general-
izing (3. 10). Instead of multiplying the contribution
from k, by four [which we did to obtain (3. 10)], we
replace the surface average of (n', p, )' by P„ in, for
example, (3. 12) and the result is

more generally,

I'„
4(N. /No) iairs. o

(4. 8)

Now the "additivity assumption" of Sec. III, which
ignores interference effects, can be stated as fol-
lows: If a scattering state lies in the umklapp
region, it contributes to 4 whether or not any of the
other three scattering states is in the umklapp re-
gion. " The contribution to 4 from a given config-
uration is therefore proportional to the number of
states in the umklapp region, so

= Z nP(n) = 4(N. /N, )

This statement applied to (4. 8) leads to (4. 1) as it
should, and provides an upper bound to ~:

Z
yairs+ G

(4. 9)

since it probably overestimates the effects of inter-
ference. Going to the opposite extreme, we might
assume that if one or more of the four scattering
states are in the umklapp region, they contribute
to ~ as if only one state were in the umklapp re-
gion. This leads to the following, which we sug-
gest as a lower bound:

4

P„"=Q P (n) = 1 —P(0) = 1 —(1—N„/No)

1 —(1—N„/No)4
(4. 10)

Since the different 6's have different magnitudes,
we weight each according to its contribution to
N„NO, and use the definition of N„/No (4. 5) to write,

For the example N„/N, = 0. 20 (Table III), the upper
and lower bounds are quite close: 4 „=0. 744

cus of points (k&, k+)
uch that

+ kp-kg-kg-9)- Gp =O.

FIG. 6. Geometry of a double-
umklapp scattering event. The
dashed line is the great circle on
which k& and k4, diametrically op-
posed, satisfy the condition
kg+k2 —k3 —k4 —G( —62= 0.
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B. Interference Effects

We now mention a specific case of interference
which suggests that the upper bound & (4. 9) is
closer to the true value of ~ than the lower bound
4 „(4.10). Noti. ng in Table III that most of the con-
tributions to & come from scattering processes in
which only one or two of the states are in the um-
klapp region, one of the authors has repeated the
calculation of Sec. III for the case in which two
states deviate from single plane waves (Fig. 5,
and second paper of Hei. 3). The result of that
calculation is as follows: If the two states lie close
to different B.P. , and if the usual umklapp scat-
tering phase-space factors y„(k) are ignored, then
the contributions from the two states to ~ are ad-
ditive. That is, each state contributes to ~ inde-
pendently of the other.

To estimate P„we need now only make assump-
tions about scattering events with three or four
states in the umklapp region. Assuming conserv-
tively that three or four states could contribute
only as much as two, we deduce that

4

P„=P(I)+ 2 Z P(n) = 4(N„/N ) —P(3) —2P(4)

or
~(3)+u (4)

$nP(n)
(4. SS)

(for N/NO=0. 20, &=0.964& ). Because P(3)
and P(4) are small the quantitative result (4. 11) is
practically independent of assumptions about scat-
tering events in which more than two states are in
the umklapp region. Calculated values of 4 [from
(4. 11)j are given in Table I, along with the result-
ing values of electrical resistivity.

We repeat that we have not taken into account
the overlapping effects of the different B.P. in
estimating N„/No. For this reason we do not
claim high accuracy in the final result &. In cal-
culating & from (4. 11)we drop the factor m„,/m
in (4. 2), since the enhancement to ~ which it pro-
vides is almost certainly compensated by the over-
lapping effect we have ignored.

C. Estimates of h, and Electrical Resistivity

We have calculated N„/N, as described following
(4. 5), and & from (4. 11) as described above, for
the metals listed in Table I. Since in every case
N„/No & 5, the value of & is within 4% of its upper
bound & . The entries in the Table are computed
as follows.

(a) In the spirit of our two-plane-wave calcula-
tion, we take values of V& determined by local
pseudopotential fits to the Fermi surfaces. We use
the values of Ashcroft ' for Al, K, and Na,'

Ashcroft and Lawrence for In; Harrison for Zn;
and Kimball, Stark, and Mueller for Mg. Falicov

and Stark fit the Fermi surfaces of Zn and Cd,
using a pseudopotential which is nonlocal through
a strong admixture of d states. Using the param-
eters of their local component in the formula for ~
does not alter our result substantially. Using a
similar nonlocal pseudopotential, Lee and Falicov'
show that an improved fit to the Fermi surface of
K is possible. The resulting parameter V&&0 is
roughly one-third Ashcroft's value, which would
reduce our value of & by about nine. The um-
klapp scattering induced by the admixed d states
might compensate the reduction, but we shall not
consider that problem here.

(b) Special Fermi-surface characteristics are
taken into account in calculating N„/No for In and

Mg. The absence of third-zone arms in the (200')

planes of In reduces the contribution from (111)
planes by one-third, and the contribution from
(200) planes by one-half. In Mg, the important set
of B.P. barely intersects the Fermi surface:
(kz ——,'G)/k~ = IV . Nevertheless,

(I/v) f d(tan (n/P)) = 0. 85

for a single set of these planes, which is close to
its maxim value of unity. The Fermi surface of
Cd is highly distorted, and cannot be well fit by a
local pseudopotential. Noting the similarity to Zn
(which also requires a nonlocal pseudopotential for
a precise fit) we take & to be about the same,
without special considerations of its Fermi sur-
face.

(c) We use the free-electron mass for both m»„
and rn, h. To use estimated effective masses would
probably change the final result by an amount less
than the uncertainty in ~. Note that the factor
m», /ne 7'0 is proportional to m»&m, „:II we esti-
mate plop) by adding results from each B.P. , and
take m, h from the references quoted, the resulting
product is close to unity (Table D).

V. CONCLUSIONS

Since we have used only the simplest type of
wave functions in calculating umklapp scattering
probabilities, our estimates of & „can probably
be interpreted as the smallest possible values of
6 consistent with observed Fermi-surface distor-
tions. Further complications in the wave functions
which we have ignored (admixed d states and core-
orthogonalization components) can be expected
only to enhance the umklapp scattering. In pot3s-
sium and sodium, our estimate of umklapp scatter-
ing is of the same order of magnitude as that sug-
gested by Ziman and Rosier, which would arise
from the core-orthogonalization components of the
wave functions. In the polyvalent metals, ~ is so
large (about half of the scattering events may be
regarded as umklapp") that further refinements
in the wave functions would probably not alter its
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value significantly.
The surprising conclusion of this work is that

the T component in electrical resistivity resulting
from Coulomb electron-electron scattering is as
strong in potassium as in the polyvalent metals we
have studied. This is possible because the low
electron densities in both potassium and sodium
compensate their small umklapp scattering prob-
abilities. Our conclusion would not be altered by
improvements to the Born approximation, which
is known to underestimate the scattering probabil-
ities more severely in metals with low electron
density than in metals with high electron density.
Smith and Kukkonen use a phase-shift analysis
to calculate the scattering cross section due to the
Thomas-Fermi screened-Coulomb interaction for
relative energy equal to the Fermi energy of so-
dium. The resulting cross section is reduced only
by a factor of 2 over that given by the Born approx-
imation.

Nor would our conclusion be altered by including
the exchange term (2. 6) in the transition probability.
In Appendix C we calculate the exchange contribu-
tion to 1/vo and find that the relaxation rate is re-
duced by about —„the reduction varying by only 5%
over the entire range of electron densities repre-
sented on Table I. The parameter & is affected

only minutely by exchange, since almost the same
average of +' occurs in both its numerator and de-
nominator.

In closing we recall that our improved treatment
of the Boltzmann equation, which includes energy
dependence in the deviation function, leads to de-
viations from a pure T power law in electrical
(T in thermal) resistivity. For the largest values
of &, the deviations are less than 10% in electrical
(25% in thermal) resistivity, and the deviations de-
crease as ~ decreases.

APPENDlX A

We derive here an equation for the energy de-
pendence (/)(t) [(2.12a) and (2. 12b) ] which maximizes
the conductivity functional (2. 8) subject to the
assumed angular dependence (2. 12a) a.nd (2. 12b).
We shall treat the case in which there is no im-
purity scattering and simply quote the more
general result at the end.

Setting 6T/5(/)= 0 in (2. 8) is equivalent to form-
ing the inner product of both sides of the Boltz-
mann equation (2. 2) with the function v ' F. »vtth

Opt doing the energy integrals, and performing an
average over directions of the electric field (or
temperature gradient):

c

0
(»()

en~ k~ T -4 de 3
dS» lv1

I

—3,2, () d k»d k»d k»&(1, 2~3, 4)v1' (v»)/)1+vg(/)Q v3(/)3 v»(/)»)) (Al)
~qg 12 3(2m) h g Ivy I

where the factor e(t1) applies to the electrical (thermal) case. Of course )/);=(/)(t;) is a function only of re-
duced energy t&. The directional average of the electric field (temperature gradient) is justified in the
cases of polycrystalline samples or single crystals of cubic materials, where the conductivity tensor is
diagonal. Noting that —sn»/s»1= (4k)»T cosh»t») ' and that the surface integral on the left-hand side is pro-
portional to n/m„» [definition (2. 14)] and using d k = (k&T/0) (dS»/ I v& I ) dt [(2.13)], we write

((
( hl, )~ n 4 (kt) I'ds&

f1
ds .

d()e m y» 3(2w) 8'
I v» I =p

x &(1, 2-3, 4)n» n2(1 —n, ) (1-n»)5(t1+ t2 tP t»)v, (v, I/), +vzg, —v3(/)s v»(/)») . (A2)

Now we rewrite the product II—= v1 (v&(/) 1+va)/) 2

v3)/) $ v»)/)») by making the variable transforma-
tions (t3 t2 t2 t3) in the (/ 2 term, and (t3
t»- ts) in the (/)» term. Using the identity no(- t)
= 1-no(t) and noting that (/) (t) is an even (odd)
function of t in the electrical (thermal) case»0
we rewrite the product II inside the integrals:

2(electrical)= (/) Iv» I +(/) v ' (v —v —v, ),

II(thermal)=(/), Iv» I~ —(/»v1 (va+v»+v») .
Permutation symmetry in the surface variables
(2. 6) further permits the replacement

v, ~v--,'I ~vl',

where

6 V= Vg+ V2 —V3 —V4 p

and so finally

g (electrical)= (/)» Iv»l (/)s( lv» I

'
1
~v

I )

II (thermal)= (/)1 Iv»l (/'3[v» (v1+» )--:l~vl'].
So three distinct surface integrals enter the right-
hand sides of (A2). Denoting the fourfold surface
integration by angular brackets (2. 15) the inte-
grals are (i)

(1, 2 3, 4)&=-&I;I &')

proportional to the quasiparticle relaxation rate
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~ = —,
'

& )
n v )' W& & )

v
f

' W&-' (2. 21)

(cos8&=—&vi. v2 W)( iv i
W&

With these parameters we write (A2) as

(2. 22)

&n'(t) n'(t~) I.l —n'(ts)] tl —n'(t4)l

I

x 0(&) —() ~ e ~) 8(t~) . (A))

due to electron-electron scattering for an elec-
tron on the Fermi surface; (ii) ( vq ~ va W), anal-
ogous to an angular average in JSW, occurs only
in the thermal conductivity' and (iii) ( I & v I W),
which vanishes without umklapp scattering.

The first integral (i) defines the relaxation rate
from the text:

(a,r)'—
()
—

4 & I
v

I
W&

7()m„, 3(2w)' 3 '

and the remaining two integrals enter as dimen-
sionless ratios:

p==(2/n'j rp/v, „ (2. 23)

the ratio of electron elect-ron to electron-impurity
scattering times. So the conductivities are again
given by series, The resulting temperature-de-
pendent resistivities are given to within 2%%up by the
simple expressions (2. 24) and (2. 25), over the
whole range of parameters 0& cg& 2 and 0& P& ~.
For p=-0 the expressions (2. 24) and (2. 25) repre-
sent the first two terms of the series and approxi-
mate the exact results to within 4% for 0& p(

& 2.
APPENDIX 8

12 7T ~ 2B+ 1
=—+40

3 „,.„n'(n+1)' n(n+1) —a '

(A7)

The problem of combined electron-electron and
electron-impurity scattering was solved by Smith
and Wilkins. 8 The equation for )I)(t) is of the form
(A4), modified only by the introduction of the
parameter

1 —ih0=2 (+ 2(ense) —a ) (A5)

for the electrical (thermal) conductivity. JSW
show that (A4) leads to the electrical conductivity

'F8 '7p
O'= —0'

2~oyt
(A6)

", e()
coshpt

1 4n + 2n+1 1
8" I' .„.n~(n+1)"' n(n+1) —o) '

and to the thermal conductivity

nu~T7p

2m opt

The relevant energy integrals are recorded as
(Bll) and (B12) of JSW. Using those formulas
and substituting P(t) =- 27 p cosh ', t Q(t) w-e recover
the reduced Boltzmann equation (B13) of ZSW,

( cosh '-,'I;= p~+-f Q I; —z dsF t-s Q s,
(A4)

where

We calculate the surface integral ([v ~ 'W), (2. 17),
related to rp by (2. 16), and show that (2. 17) is
valid to second order in the ratio of the band gap
to the Fermi energy Vp/sz. Equation (2. 17)
would be exact on a spherical Fermi surface with
normal scattering only, but a small O(Vp/sf„) re-
duction occurs because of the reduced density of
final states which accompanies umklapp processes.
Typically Vp /se & 0. 1 (Table I) so the correction
to &)v[ W)is &1%%~ This and the analogous cor-
rection to I wiQ be discussed at the end of the ap-
pendix. In order to isolate the correction term in
our derivation of (2. 17) we shall include umklapp
processes, using the notation of Sec. III. For the
purposes of Sec. II we point out that a coefficient
c( accompanies normal processes and p~ accom-
panies umklapp processes. To derive (2. 17) with-
out the correction one may set e = 1 and P=0.

To begin we suppose that k, lies close to the
B. P. (G) and write the transition probability (2;6)
as (neglecting exchange)

(I/21r ) W(1, 2 3, 4) = c(, V (
~
k —k

~
) 5 (dk)

+P', V'(ik, -k, +Gi)6(~k-6). (Bl)

In the fourfold surface integration ([v [
a W) we first

do the Sz and S4 integrals by Ziman's method: Qn

a spherical Fermi surface the surface elements
are defined by dS~=- k3dQ~, where dA„ is the solid
a,ngle subtended by dS~ at the distance k. Intro-
ducing q = k& —kz we make the replacements dS2

(k+3 /qa) dS and dS4- 2vq dq so that
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dSzdS4= 2v (k~2/q) d &f

2 nl2'- 5(~k —q) = '" ~(~k-q)
Ival Iv41 O' Ika —&~ —Ql

(»)
where Q= 0 in the first term of (81) and Q = 6 in the
second term. b,(bk-Q) restricts the S, and Sa in-
tegrations to regions in which the condition hk —Q

= 0 can be satisfied with all four wave vectors k,
on the Fermi surface. For normal processes
h(6k) is trivially unity for all k, and ka on the Fer-
mi surface. The factors of m, „are intended to
correct for the distortion of the Fermi surface.
We assume the correction is close to the usual
definition of the "specific-heat effective mass"
(2. 19) (In most simple metals O. S & m, „/m'1.0):

&2mm, )
I

d~S dS,
(

(I 2 V(tk, —k, l)
( )

I I'()f, —k, +G))
( -))

a '
J IV1I I V3I Ika k, I Ikg —kg+ G I

(B3)

To evaluate the first term in square brackets we
write dS3 = 2g I k3 —k, )d ) k3 —k, ) as if the Fermi sur-
face were spherical, and introduce another factor
of m,„to denote the correction. Accordingly,

I
dS3 V (Ika —k, I)

( )l lk, -k, I

dq q

&) ('w&=3(a, )';"" wI ') (+o( ') .

(B6)

noring the correction term the combined normal
and umklapp contributions give exactly what nor-
mal processes alone (c( = 1 and p = 0) would give.

To complete the derivation we note that the S,
integration is proportional to the inverse optical
mass (2. 14), so

= 4m -'-"- V (0)y (2k~/k, ) = 2',), W(2k' jk,), (B4)

where y and W are given by (2. 18), with y =q/k, .
Turning to the second term in large parentheses we
can again express the S3 integration as an integral
over momentum transfer, but since k, -G does not
in general lie on the Fermi surface the momentum
transfer k3- k, +G is restricted away from zero
and the S3 integral is correspondingly reduced. The
k, -dependent reduction is expressed through the
functiony„(k, ), (3.11), which replaces y (2k@/k, ) in
(B4). [The estimate (3. 11) is done in the approxi-
mation of a spherical Fermi surface. ] The impor-
tant point is that P, is sharply peaked for k, close
to the B. P. (6), i.e. , for k, —6 close to the Fer-
mi surface. So the S, integration emphasizes those
values of k, for which y„(k,) is approximately equal
to y (2k+ /k, ), and we can isolate the correction
term by using o(~+pa, =1 (Sec. HI) to write (B3) as

x dS, ~v,
~

1+p', y" " y, (B5)
J

where y —= y(2k@ jk,). Since the difference function

y„(k,) —y vanishes for k, on the B. P. and grows
linearly in the distance of k, away from the Bragg
plane, and since p, restricts the contribution from
the S, integration to the region within about kzVo /
&~ of the B. P. , we can conclude that the correc-
tion term in (B5) is second order in Va/s~. Ig-

Umklapp Phase-Space Corrections to 7
p

and 6

We have computed by machine the correction
terms to (IvI W), (B5), andtob, , (3.10). In (lvl W)
we resolve the direct and correction terms

D+C = J ds
I
v I&1+P'[»(k)/y]] (vo)

where» (k) —= y„(k) —y and consequently C & 0. D
is the same whether or not umklapp processes oc-
cur and C vanishes in the absence of umklapp. We
evaluate C using (3.11) for y„(k). C is quadratic
in Vo /s I„ to lowest order, and depends only weakly
on geometry kz/G. We show the result on Fig. 7
for k~/G =0.65 [(111)planes of aluminum]. IC I/
D is less than a percent for Vo /sz = 0. 2.

The direct and correction terms of 6, are re-
solved as in (3. 10),

D+ C = —(c(p) 1+a), (6).
"dS

2 q by(k)
„ IvI y

Again C& 0 is quadratic in Vo/sz, but now D is
linear in Vo /sz to lowest order, and (with C)
vanishes without umklapp. Again the computation
shown on Fig. 7 was done for k~/G =0. 65. I CI/
D is as large as 10%%uo for Vo /s~= 0.08.

APPENDIX C

Angular Averages

Jensen, Smith, and Wilkins, following Abrikosov
and Khalatnikov, express the transition probability
W in terms of the angular coordinates depicted in
Fig. 8. 8 is the angle between the two incident
momenta, and p is the angle between the planes
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where W(2k+ /k, ) is defined in the text, (2. 18), and
is associated with the surface average ([v) W)
which determines vo. From (CS) and (2. 20) one
can see that our yo is identical with that of JS%, on
a spherical Fermi surface.

The angular average analogous to our (cos8) is

(
cos8u&(8, y) 2 "', ' (1 —2s) &o(N)

cos-', 8 v „0 „„~ (1-z)"'(s-u')"' '

Again ignoring exchange we break up the integrand,

1 1
2 (1 —s) —

(1 ) /3,
( 3 g/g ~(s)

ZIG. 7. Corrections to S and 7, due to restricted
umklapp scattering phas'e space, for the geometry of
O.&&) planes in aluminum.

2
3 yg 3 Cg& cos~= 1 288(s-u )

(C1)
cosx'8= (1-s)'/~, d(cos8) = -2dz.

The angular average which determined the relaxa-
tion time go is

(o(8, y) "'d~ d(cos8) ar(8, y)
cos-,'8 „0 g „~ 2 cos—,'8

v 0 Jo (1 —z)"'(s -u')"'

2 ' ' dz(u(u, s)
(1 )1/8( R)l/3 '

Ignoring exchange, &(+)=(2&/@') V ([ks —k, ~) is in-
dependent of z and we can use the identity

1 1
(1 )1/2 ( 2)&/8

defined by the two incident, and the two final mo-
me nta.

Our object here is to relate their angular aver-
ages to our averages over momentum transfer.
We shall show that our definition of yo is equiva-
lent to that of JPV on a spherical Fermi surface,
and we shall derive the expression for (cos8) as
an average over momentum transfer. Finally we
calculate the exchange correction to go.

To convert the angular averages into momentum-
transfer averages we introduce the variables

s = sill 2 8, Q = sin q 8 sing p =
~
kg —kg

~
/2k@,

the latter proportional to momentum transfer. The
following formulae will be useful:

t
1 (1 s)1/2

g, g/gds — (1 Q )~ (8 —Q )~ 8

to deduce

///)
2 a

( )d
cosp 0

= 2W ~ (cos 8).2kB

k~
(C4)

a)(8, q&)=(2w/8') [V'(8, y) --,'V(8, y) V'(8, qr+v)]

-=~n(8. y)-k~.,(8 q).

Using the Thomas-Fermi potential,

(C5)

the exchange term is

&o,„(8, y) = (27/'e /Skz) (sin'x'8 sin~-,'y +x ~) '

FIG. 8. Angular variables
introduced in Ref. 21. 8 is
the angle between initial wave
vectors and f is the angle
between the planes defined by
the two initial and the two
final wave vectors.

The second equality follows from the definition of
(cos8), (2. 22), which is equivalent to

cos8~(8, y) ~(8, y)
j. 0

cos &8

%'e now calculate the exchange correction to go.

Exchange

From (2. 6) and Fig. 8 we write the transition
probability as the sum of direct and exchange
terms:
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&&(sins-s'Hcos —a'p+x s) ',

where x=-2k+/k, . Transforming to u and z vari-

ables, we have

(d., (u, z)=(2tr'e'/kkt') (u'+x ') '(z -tta+x ') '

The z integration gives ttx (1+x -u ), so-3 3 "&~3

in comItarison with the direct term (C3):

dx 1 1
{z-I +x ') {I-x)'~a (z-u')~ts '

2X' 2+X' '" au'
a,n x ——, -=-s—t W„(-1 E

2+X ) 1+2X g 8

=2 - s =x tan x+~ =~ W{x),
)tk~ tun(e, St)

t

' du s t x I'k ~

2tr 8 cosa8 e Q +x X +~ 'Fe (CV)

where W,„ is defined by the last equality in (C6),
W is the same function defined by (2. 18), and
(C3), and x=—2k@/k, . According to (C5)-(CV) the
values of I/ve are reduced by about -s (see Table

II). The entries in Table I ref 1,ect this reduction.
The exchange corrections to & are negligible be-
cause the same average of w occurs in both its
numerator and denominator.
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