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Evidence for a Second Magnetic Phase Transition in Gadolinium™
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The heat capacity and temperature derivative of the electrical resistivity of Gd have
been measured simultaneously in the vicinity of 226 K, where the easy axis of magneti-
zation tilts away from the crystallographic ¢ axis. In addition to the known anomaly in the a-
axis resistivity, a small step change in the specific heat was observed. Application of mag-
netic fields above 1000 Oe along the ¢ axis or 120 Oe along the @ axis suppressed both the
resistive and specific-heat anomalies. This behavior is discussed in terms of a molecular-
field model which treats the anisotropy energy as a term in the magnetic free energy. The
tilting of the easy axis is driven by the temperature dependence of the magnetization, which
causes the lowest-order anisotropy constant Ky to change sign. The magnitudes of the step
in the specific heat and the critical field in the c-axis direction calculated in this model are

in good agreement with experiment,

Gadolinium has long been considered a simple
ferromagnet below its Curie temperature of 291 K,
although its easy magnetization axis is known to
vary with temperature. The magnetization is
aligned with the hexagonal ¢ axis just below T,
but tilts away from it to form a cone below a tem-
perature of 220-240 K. =3 In this same tempera-
ture range, anomalies have been found in many
magnetic, thermal, and electrical properties of
gadolinium, including the magnetization, *° mag-
netostriction, 7 thermal expansion, " elastic con-
stants, ®° electrical resistance, '® and magneto-
resistance. We report here a simultaneous mea-
surement of the specific heat and temperature
derivative of the electrical resistance of gadolin-
ium between 213 and 243 K and attempt to clarify
the nature of the anomalous behavior by means of
a simple molecular-field model.

An ac calorimetry technique which has been
previously described? was used to make the mea-
surements. The sample of gadolinium was a sin-
gle crystal cut from the same source used by
Lewis to measure the specific heat near the Curie
point, * and was estimated to have 0.1% rare-earth
impurities and 0. 5% other impurities. It was cut
to dimensions 7.0x1.5%0.1 mm?, with the 7.0-

mm side parallel to the a axis and the 1, 5-mm
side parallel to the ¢ axis. The sample was an-
nealed between two tantalum sheets in a vacuum
of 5x10°® Torr for 24 h at 850 °C. Tantalum cur-
rent and voltage leads were spot welded such that
the current was directed along the a axis. Mea-
surements were made in magnetic fields applied
along the a or c¢ axis. Since the field was always
in the plane of the sample, demagnetizing effects
were negligible,

In Fig. 1(a) we have plotted the results of spe-
cific-heat measurements made with fields applied
along the ¢ axis. In zero field, a step change in
the specific heat is observed at 226 K with a value

AC,=0.09+ 0.01 cal/moleK. 1)

Increasing the field decreases the size of the
specific-heat anomaly, and it apparently disap-
pears between 0.7 and 1. 0 kOe.

The temperature derivative of resistance shown
in Fig. 1(b) provides a more sensitive measure
of the presence of a transition. Behavior which
strongly suggests spin-disorder scattering!®?®
is observed in zero field, Application of the mag-
netic field shifts the peak to lower temperatures,
distorts its shape, and finally suppresses it com-
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pletely between 1.0 and 1. 3 kOe.

With fields along the a axis, the transition is
suppressed at much smaller fields, as seen in Fig.
2. We again note a shift of the peak in dR/dT to
lower temperatures as the field is increased.

Measurements with the current flowing along
the ¢ axis show no resistive anomaly, as may be
seen in Fig. 3. This, together with the a-axis-
resistivity behavior, suggests that additional or-
dering occurs only in the basal plane below 226 K.
One possibility, a helicoidal structure, has been
proposed to explain magnetization anomalies in
polycrystalline gadolinium® however, a neutron-
diffraction study on a sample of unknown thermal
history failed to reveal any evidence of a spiral
structure.? Since the anomalies we have reported
here were unobservable in unannealed slices of
the crystal, we must await further neutron-diffrac-
tion measurements on a well-annealed sample be-
fore discarding the possibility of a spiral structure
below 226 K.

A simple model for the anisotropy qualitatively
reproduces the major features of this transition.
For an axially symmetric crystal we may express

the anisotropy energy as

E 4= Ky Y3(0)+ Ky Y3(6) , (2)

where Y and Y are spherical harmonics and 6 is
the angle between the magnetic moment and the ¢
axis of the crystal. The coefficients k, and k, are
temperature dependent and, at low temperatures,
may be related to the magnetization by

ky(T) = Ky (O)m (T)H D72 ®3)

where m (T) is the reduced magnetization. '® This
theorem holds for localized spins and should be a
reasonable approximation for gadolinium. The
anisotropy energy (2) can also be expressed in the
more familiar form

E, =K, sin®0+ K, sin'd , (4)

if we make the identification

Klz - 3a2m3 - 40a4m10
and
K,=35a,m*° .

(%)

The constants a, and a4 are products of the zero-

T T T T

b) H//a

FIG. 2. (a) Specific heat and
(b) temperature derivative of
basal plane resistance in fields
parallel to a axis. Curves shifted
as in Fig. 1. Note lower range
of fields.
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temperature anisotropy constants in (3) and the
normalization factors in the spherical harmonics.
For gadolinium K, is positive at all temperatures,
while K; becomes negative below 220-240 K. '3
From (5) we conclude that a4 is positive and a,

negative, and that K; changes sign at
mi=~3a,/40a, .

(6)

Examination of (4), which has the same form as

SECOND MAGNETIC PHASE TRANSITION. ..
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the free energy of a magnetic system in the Lan-
dau model if sind is taken as the order parameter,*
shows that for K, positive the minimum energy
occurs at sinf=0, while for negative values of K;
the minima occur at

sin®0= — K,/2K, .

7

(7)
Let us now make the assumption that

m=(1=T/T,)*, (8)

and indicate the temperature at which the mag-
netization tilts away from the ¢ axis by 7;. Im-
mediately below T, we may write (7) as

o (-G

As the temperature is decreased below T, the an-
gle 6 increases rapidly, reaching a value of
sin"![($)1/2]=249° at 0. K. This behavior is qual-
itatively similar to the experimental values of 6(7)
especially in the prediction of an infinite slope at
T,.

Equation (4) predicts a decrease in the anisotropy
energy below T, and will, therefore, contribute to
the specific heat. Just below T, we may write

10 3/1 ﬁz(T _ T)Z
E, =- 20(-> K Bt o
4 3 Y (Te-Ty)

9)

1=3

(10)

where KP®*=2,5+0. 5x10° erg/cm® is the maximum
(positive) value of K;.' Using B=0.370, !® the “tilt-
ing” transition yields a step change in the specific
heat given by

0% ,
AC,=-T, (W)T =0.06+0.01 cal/mole K, (11)

t

in reasonable agreement with (1).

According to the above theory (see Fig. 4) there
will be no phase transition if a magnetic field is
applied in the basal plane, since any finite field will
tilt the moment from the ¢ axis. If a field is ap-
plied along the ¢ axis, the transition will be shifted

Ea
Ea Ea
T>Tt T>T1 T>Ty
Tq% \ T<T1/ T<TT7
sing sing
H=0 HIl c-axis
H +c - axis

FIG. 4. Anisotropy energy as a function of siné for temperatures above and below the zero-field tilting temperature
T;. When the field is applied along the ¢ axis, the minima are reduced and the transition is suppressed at a critical
field. Any field in the basal plane, however, removes the degeneracy of the minima and suppresses the transition,
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to lower temperatures and will be completely sup-
pressed by a field

BT
~ S& gk
Her= 50y = 1 08

where we take M(0)="7.55u,/atom.® Again this is
in agreement with our measurements, although we
do see a small critical field along the a axis which
the theory does not explain.

It is clear from our measurements as well as
others that the molecular-field model presented

SALAMON AND D. 8.

SIMONS 7

here is too simple to explain the detailed nature of
this transition. Recently, Sherrington!® has cal-
culated the properties of an anisotropic ferromag-
net at zero temperature in a more general way. In
that model, as well, the change in sign of the low-
est-order anisotropy constant leads to a second-
order transition due, in that case, to the presence
of a soft mode. We hope that the qualitative agree-
ment between our experimental results and a molecu-
lar-field model will encourage a general treatment of
the anisotropic ferromagnet at finite temperatures.

*Research supported in part by the Advanced Research
Projects Agency under Contract No. HC15-67-C-0221.
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The scaling equation of state for a generalized classical Heisenberg ferromagnet near the
critical point is derived by an expansion in € =4 —d, where d is the dimension of space. It is
shown that, though infrared divergences are induced by the Goldstone modes, the equation of
state is divergence free. The results are compared with previous numerical calculations. It
is also shown that, for non-Ising-like systems the “linear model” cannot be exact, even at
first order in € (although the numerical deviations from-linearity are small).

I. INTRODUCTION

The understanding of the physics of the critical
region has been improved by the use of the ¢ ex-
pansion technique.!? This method provides system-
atic corrections to mean-field theory by a per-
turbation expansion about four dimensions. Criti-
cal exponents have been calculated? and the known

terms in the expansion in powers of e=4 —d, where
d is the dimension of space, give sensible results
in three dimensions. In a previous work® the
scaling equation of state was calculated up to order
€ for an Ising-like system. Here we present the
details of a similar calculation, to the same or-
der, for a generalized classical Heisenberg sys-
tem.



