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For the case of electrons in a periodic lattice there exist extended basis functions (Bloch
waves) and localized basis functions (Wannier functions). It is shown here that also for lat-
tice vibrations there exists, in addition to the usual extended basis functions (normal modes),
a set of localized basis functions. These are nontrivial only for lattices with several atoms

per unit cell. Examples are worked out and discussed. These functions appear to be of in-
terest for the treatment of defects and other problems calling for a localized description.

The electronic theory of solids has been largely
developed in the language of Bloch functions, which
are extended throughout the entire solid. While
this approach has generally been eminently appro-
priate and successful, it has one drawback: The
effective interactions between electrons are gen-
erally of short range and many interesting phe-
nomena in solids, such as those associated with
defects, are of a local character. For some pur-
poses it is therefore somewhat unnatural, and also
an obstacle to the application of physical or chemi-
cal intuition, to work in a representation of infi-
nitely extended states. This drawback can be over-
come by the use of localized Wannier functions'
which span the same space as the extended Bloch
functions.

For similar reasons it appears to be of interest
to construct a localized orthonormal basis for lat-
tice vibrations, which spans the same space as the
well-known'delocalized normal modes of the crys-
tal lattice. This will be done in the present paper.

The localized basis to be discussed is nontrivial
only for lattices with more than one atom per unit
cell. We therefore consider first a diatomic lat-
tice in one dimension with lattice parameter a,
masses M& and M» and two nearest-neighbor

where the coefficients u„satisfy the equations

(2)

and the matrix

e+ Pej~'

(m, m, }'"
The eigenfrequencies are given by the quadratic
secular equation

D t —(u (k)Cga =0,k
(4)

whose two solutions for each value of k are.denoted

by &u~(~~) (j=1,2). These constitute the acoustic

force constants n and P. The N lattice cells (with
N ~) are-labeled by I= - ,'N, . . ., + ,'N--1; and-the
two atoms in each cell by z = 1, 2 (see Fig. 1). It
is well known3 that the atomic displacements in a
normal mode of vibration of wave number k and

frequency ur have the form



2286 KOHN

Mp

FIG. 1. Notation for the diatomic lattice E is the cell
index; If is the intracell index; M are the masses; e, p
are the force constants.

localized functions v, ,„(~);

N -1/ 2 j ikma

or, equivalently,

u„j = v, „je™

(12)

and optical frequency branches, respectively. The
corresponding orthonormal eigenvectors u„(~~) are
obtained from Eq. (2) and the normalization condi-
tion

These conditions leave the phase of u„(~~ ) unde-
fined. The functions

k= (r/a) (2n+1) kih (14)

It remains to verify the localized character of
the displacement v, ,„(~~), i.e., that these displace-
ments tend exponentially to zero as I ll -~. This
may be done in analogy to the corresponding dem-
onstration for Wannier functions. First one notes
that the functions uP(~(, ) constitute two branches of a
single analytic function f (k) = &u (k) with branch
points at those complex values of k at which the
discriminant of the quadratic secular equation (4)
for f (k) vanishes:

N -1/ 2 j isola (6) where

with j=1, 2 and

k = (v/a) N ' (- —,
' N, . . . , ,' N —1)—

evidently form a 2N-dimensional orthonormal
basis,

(8)

In terms of these functions an arbitrary displace-
ment function f, „of the 2N atoms can be linearly
expressed.

For each branch j, we now replace the delocal-
ized basis functions (6) by the following localized
basis functions:

1/ 2 ' j ikt%E

N-1 Q + 2 i(((l-m)a
Q„

where m denotes the index of the cell in whose
neighborhood the displacements v, „are localized.

The orthonormality of the new basis,

(10)

Clearly ISO!&0unless M1=M2 and e= p, which is
the excluded monatomic case for which the two
frequency branches touch; aP(k) is thus a periodic
function of k which is analytic in a strip of finite
width enclosing the real k axis.

Next, one must choose the phases of u„(', ) as a
function of k such that these quantities become
periodic functions of k (period 2n/a) and 'are also
analytic as functions of k in a strip of finite width
enclosing the real k axis. By an argument com-
pletely analogous to that given in Ref. 4, one then
ascertains that the corresponding localized func-
tions v, ,„(~0) decay exponentially with I ll.

We now treat explicitly two cases of special in-
terest, each of which has a center of inversion.

A. "Molecular" Crystal (Nl N2 N'Ot) p)

Here the two atoms of equal mass within each
cell —the "molecule" —interact more strongly with
each other than with the atoms in the neighboring
cells. For this case the proper choices of phase
are

follows directly from the orthonormality of u, „(f,),
Eq. (6). Also, the second form of Eq. (9) shows
that the different displacement patterns v, „( ~

)
corresponding to a given band index j and to differ-
ent m differ only by translation, i.e.,

Vl sic
= Vl -m&e 0

Equation (9) can be immediately inverted to give
the normal-mode functions u, „(~~ ) in terms of the

Acoustic branch

Optical branch

FIG. 2. Localized functions vl, „for the molecular
crystal; M, =M, =M; n/P=2.
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Acoustic branch

2M 2M

Optical branch

FIG. 3. Localized functions e& „for the ionic crystal;
M~/M2=2; n=p.

The corresponding localized functions u, „(o~) are
shown in Fig. 3 for the case M&= 2M2. It will be
noticed that the acoustic and optical functions are
concentrated on the heavy and light atoms, respec-
tively. Symmetry properties are again evident
from the figure.

For a monatomic lattice with atomic-site label
l, the localized basis is simply

v, (m)=~, „,
Qo g ~

+ Mo p ~
= real and positive,

where the plus and minus signs refer, respective-
ly, to the acoustic (j=1) and optical (j=2) branch-
es. The corresponding localized functions v&, „(~0)
are shown in Fig. 2 for the case e = 2 p. The
acoustic function suggests a uniform translation of
the molecule, while the optical function suggests
an internal vibration. (In Fact, when n/P- ~,
these descriptions become exact. ) The symmetry
properties of the v, ,„(~o) are evident from the figure.

B. "Ionic" Crystal (N, )N~;O. =P)

Here the unit cell contains one heavy and one
light atom, and all nearest-neighbor interactions
are equal. For this case the proper choices of
phase are

1
uo, = real and positive (acoustic branch),

(16)

2
u0, 2 = real and positive (optical branch) .

describing the displacement of a single atom. Such
a lattice has no structure internal to each cell and
for this reason the basis functions are also struc-
tureless.

Generalizations to real three-dimensional lat-
tices are possible. In this case the point 0 = 0 and
possibly other points are degenerate and the prob-
lem must be treated in a manner analogous to the
treatment of Wannier functions for degenerate
bands. '

In metals the interatomic forces have a long-
range tail which exhibits Friedel oscillations. Un-
der these circumstances the functions &ua(~~) have
points of nonanalyticity (anomalies) for real Q. As
a result the functions v, ,„(0~) will then not decay
exponentially with I l I, as they did in our examples,
but have long-range oscillatory tails similar to the
Friedel oscillations of the interatomic forces.
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