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A three-dimensional Fourier expansion has been developed to describe the dispersion re-
lations E(k) for the vr bands of graphite throughout the Brillouin zone. The coefficients of the
Fourier expansion are evaluated by a fit to the experimentally determined parameters of the
Slonczewski-Weiss model, as well as to the optical data. Using this energy-band model, the
interband contribution to the frequency-dependent dielectric constant has been calculated in the
energy range 0.5 & I'co &6 eV for both E Ic and E II c. For this calculation, a numerical-inte-
gration procedure has been developed to carry out the full-zone integrations. The results for
the dielectric constant are primarily dependent on the values of the McClure parameters yo,
y&, y3, and y4, which enter the Slonczewski-Weiss Hamiltonian for graphite.

I. INTRODUCTION

The calculation of the optical properties of solids
provide a critical test for any proposed model of
the electronic energy bands. There have been
several first-principles calculations for the energy
bands of graphite that have taken advantage of the
nearly two-dimensional nature of this material.
These models might be expected to fit the high-
frequency optical and ultraviolet regions of the
graphite optical properties, but they are unsatis-
factory in the infrared, where the energy disper-
sion along the third dimension (c axis) becomes
important. A three-dimensional calculation indi-
cates that the agreement with the two-dimensional
models at high energies may be fortuitous, since
the effects of the dispersion along the third dimen-
sion happen to cancel. ' Furthermore, the two-
dimensional models do not predict the optical prop-
erties, when the electric field of the incident radi-
ation is polarized perpendicular to the basal planes.
This payer develops a three-dimensional energy-
band model which is valid throughout the Brillouin
zone and can be applied to interpret optical data
over a wide photon energy range.

The Slonczewski-gneiss-McClure band model
for graphite is in the form of a Fourier expansion
along the 8-R' axis of the hexagonal Brillouin zone
and a k ~ p expansion in the direction normal to this
threefold axis. This model provides a good
description of the Fermi-surface and infrared
properties of graphite, which are sensitive to the
energy bands near the II-K axis. On the other
hand, the optical properties at visible and ultra-
violet frequencies are sensitive to a more extended
region of the Brillouin zone. The Fourier-expan, -
sion technique for electronic energy bands in a

periodic solid represents a convenient method for
the extension of the k. p expansions to obtain ener-
gy bands valid over the entire zone, thereby per-
mitting calculations of the optical properties as-
sociated with the electronic levels over an exten-
sive region of the Brillouin zone. The three-di-
mensional Fourier expansion developed here re-
duces to the Slonczewski-%eiss-McClure
(SWMcC) form along the H Kedge o-f the Bril-
louin zone. The Fermi- surface experiments, which
have been fitted by the SWMcC model, determine
relations between the three-dimensional Fourier-
expansion parameters to within a sign. The cal-
culated optical properties implied by the S%McC
model when extended to the full zone can be com-
pared with experiment. The comparison is gen-
erally satisfactory, provided the usual sign as-
signments are made for the SWMcC parameters.
In this sense, the present work represents the first
verification of the signs of the band parameters
'Yo) 'Ys& '4)»d 'Y4 ~

In Sec. II, the three-dimensional Fourier ex-
pansion for the graphite structure is developed.
An efficient new numerical-integration scheme
which is employed for full-zone integrations in the
dielectric-constant calculation is given in the Ap-
pendix. Results for the dielectric-constant calcu-
lation for graphite are given in Sec. III, followed
by a discussion of the results in Sec. IV.

II. THREE-DIMENSIONAL FOURIER EXPANSION FOR
GRAPHITE

In graphite there are four valence electrons per
atom and four atoms yer unit cell. These four
atoms lie in two layer planes; A, B in the basal
plane and A', 8' in the neighboring plane. The
sP hybrid bonds in the layer planes form three 0-
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type electronic energy bands which separate into
very low-energy "bonding" and very high-energy
"antibonding" states, with a band gap of about 6-12
eV. Near the Fermi energy lie the m bands which
are made up from the one leftover P orbital per
atom. Thus, at energies somewhat less than the
o-band gap, only the m bands need be considered in
calculating the dielectric response function.

To write a general Hamiltonian for the w bands
consistent with the graphite crystal symmetry, we
choose a basis of four Bloch functions, one for
each of the atomic sites within the unit cell. These
basis functions may be regarded as generalized
tight-binding functions. This derivation is really
not restricted to any special basis, since all that
is needed for the derivation of the functional form
of the Hamiltonian is the correct spatial trans-
formation properties of the eigenfunctions.

If each basis function is associated with a differ-
ent site, the Hamiltonian may then be written

IIAA +AALU +AB

+AA

HABET

HAB s HBB HBB e

HBB

-t&4-(k d~ )], (2f)

where P is a sum on inequivalent sites, E,+ and
E&- are the symmetrized Fourie r functions given
in Table I, and the Fourier-expansion parameters

Taking advantage of the periodicity of the Hamil-
tonian in 4 space, the matrix elements of K can
then be expanded in terms of Fourier functions
symmetrized according to a given representation
of the space group D6& for graphite. This same
type of procedure has been used previously for the
diamond structure. If the distance between two
sites i and j is d&&, then the six independent matrix
elements of Eq. (l) are

H AA (k) + + (d AA) +1+(k d AA) (2a)
~AA

Haa(k) = Z a(daa)Ft+(k ~ daa), (2b)
"BB

H~(k) = &n(d~)[&t (k d~)+t&4-(k d~)l,
(2c)

Haa'(k)= + [~(d~a')&t+(k' d~~')
AAa

+»(da~ )&4-(k d~~ )],. (2d)
I

Haa (k)= & &(daa ) [+1+(k daa )
"BB'

+ tE;(k ~ daa. )], (2e)

H~. (k) = Z a(d„a.) [F,+(k ~ d~. )

TABLE I. Symmetrized Fourier functions for the
paphite structure. $„=k„a, $~=(/3)k~, $~=ak~, and
d '=n{a, 0, 0)+m(0, a/+3, 0)+l(0, 0, c/2). Forgraph-
ite a =2.46 A and c =6.74 A.

I'&, (R'd~') =cosl$ g [cosn)„cos3m g~

+ cosy(n+ m) f„cosy(n —~)f~

+ cosy (n —m) P,„cosy{n+~3)$~]

&4„(k 'd" ) =cos)$~ [cosn)„sin(3m)~)

+cos2 (n+ m) &„st�(n—3m) (~

—cos-'(n-m) & sing(n+~)&, ].

a(d) and b(d) can be shown to be real by time-
reversal symmetry. These Fourier coefficients
can be interpreted as the matrix elements of the
Hamiltonian between Wannier functions, e. g. ,
orthogonalized atomic functions, centered on each
lattice site. Our model now has the minimum num-

ber of independent coefficients required by sym-
metry to represent the m band Hamiltonian through-
out the Brillouin zone, and explicit values for these
parameters may be determined by a fit to a first-
principles calculation or by a fit to experimental
data.

To evaluate these parameters, we express the
Hamiltonian of Eq. (l) in the same basis as is em-
ployed in the SWMcC model. This is accomplished
by using a unitary transformation that gives the
basis functions for A+A. ', B, and B'. Along the
Brillouin-zone edge (H Taxis) arou-nd which the
Fermi surface lies and the SWMcC model applies,
the symmetrized Fourier functions can be ex-
panded to first order in Tr= k —k~, where k~= (4s/
3a, 0, k,). The resulting Hamiltonian then reduces
to the SWMCC k p model. 5-v MCClure6, 11 has
shown that seven expansion parameters are satis-
factory for the description of Fermi-surface data.
The relationship between the Fourier- expansion
parameters describing the full-zone band model
and the McClure parameters is given in Table II.

Recently, infrared magneto- optical experiments
in graphite along with Fermi-surface data have
been correlated to provide values for the McClure
parameters' given in Table III. These values,
together with the expressions given in Table II,
can provide empirical values for the Fourier-ex-
pansion coefficients of the three-dimensional Fou-
rier expansion. As a first approximation in this
evaluation procedure, we wished to use as few
parameters as possible. Thus only the first terms
in each of the expressions in Table II were used.
This formulation provides values for the coeffi-
cients describing interactions of up to first neigh-
bors in a given plane, and up to two layer planes
away. This would be expected to be an adequate
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TABLE II. Relation between Fourier coefficients a

(cP~~') and McClure band parameters, d™g(a,0, 0)
+en(0, a/v 3, 0)+E(0, 0, p/2).

Vp
= a(d~) +2a(d~) g a(d~)+ '"

yg=pa(d~p' )+'"
y2 =3a(d~pp2)+ "
re=~a(~» )+ "~
f4 ~ya{~~p) + 0 ~ ~Mff

3a(d~op2) + ...
y2+ y5 3 la(dye) a(d~) l 2 ~(dye) a(d~)]+ ~

model if the m orbitals pointed out of the layer
plane, minimizing the importance of more distant
in-plane neighbors.

We now use the full-zone Fourier expansion to
determine the sensitivity of the energy bands at
other points in the Brillouin zone to the McClure
parameters. A calculation of the optical proper-
ties to 7 eV is particularly sensitive to the band
structure on the M-L axis, which passes through
the center M of the rectangular face of the Bril-
louin zone and is parallel to the HE'H axes at the
zone edge. The M-L axis corresponds to the point
Q in the two-dimensional Brillouin zone. The op-
tical transition near 5 eV has been assigned' ~ to
the critical points occurring near the M point
caused by the saddle-point nature of the energy
bands in the basal plane around the M-L axis. The
first-term truncation of the Fourier series requires
the optical transition at M to occur at about 2yo.
Using the value of yo deduced from magnetoreflec-
tion experiments would predict an optical transi-
tion at over 6 eV, whereas the experimentally ob-
served transition is below 5 eV. ' This is clear
indication that interactions from more distant in-
plane neighbors must be included. By including
the first, third, and fourth in-plane neighbors
listed in the equation for yo in Table II, we have
obtained "effective" values of yo-3. 2 eV along
H-K to be consistent with Fermi-surface data and
yo-2. 3 eV along M-L to be consistent with optical
data. The second and fifth in-plane neighbors do
not contribute to yo. The energy bands for the. m

bands of graphite shown in Fig. 1 are determined
from the Fourier parameters explicitly written in
the equations of Table II, using the Fourier param-
eter values listed in Table IV. All of the Fourier
parameters, except those in the yo expression,
directly correspond to the McClure parameters
given in Table III. Note that an arbitrary zero of
energy can be used to determine one of the
"zeroth"-neighbor coefficients in the equation for&- ya+ y5.

Since we have included the third and fourth in-
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FIG. 1. x energy band. s for graphite along several
high-symmetry directions. The symmetry labels are
according to Ref. 13 for the space group D@, (i.e. , P63/
egme). The McClure band-parameter values used are
given in Table III; a summary of the corresponding
Fourier coefficients is given in Table IV.

TABLE III. Values~ of the McClure parameters (in
eV) used to determine Fourier coefficients.

See Ref. 12.

yp 3.18
0.40

'y2 -0.0207
0.30

y4 G. 18
'ys —0, 006

0, 005

plane-neighbor interactions, consistency would
seem to require that we should use other than the
zero values listed in Table IV for the second-
neighbor interactions, a(d„„)and a(des) which oc-
cur in the &- y2+ y5 expression. Since graphite
is nearly two dimensional, one expects the wave
functions on the A and I3 sites to be almost identi-
cal, and, therefore, the two second-neighbor in-
teractions should a,iso be nearly identical. Indeed, in
a two-dimensional model, symmetry requires that
the intera, ctions be equal. Being equal, they would
add terms to the three-dimensional Hamiltonian
proportional to the unit matrix which would have
no effect on the optical properties when only direct
transitions are considered. Therefore, the second-
neighbor interactions have a negligible effect on
the dielectric function, and they have been com-
pletely neglected in the present work even though
their effect on the electronic energy bands may be
larger than many of the other parameters that
have been included.
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TABLE IV. Values of the Fourier-expansion param-
eters g(d" ').

In-plane
neighbor No.

Out-of-plane
ne.ighbor No. Parameter

c(P~)

(dye)

0 id@}

a(dQ)

c(dye)

a(d~020)

a(d~20)

a(P~.)
ci(d~t)

CE(dye&)

a(d~002)

u(d~00~2)

Value
(eV)

0.0069

0.0136

-0.677

—0.135

0.267

0.60

-0.0069

-0.002

The energy bands of Fig. 1 do not necessarily
plovide Rn RccurRte determination of the deQsity
of states. Since the bandswere produced by fitting
to the optical properties, they provide a satisfac-
tory determination only of the jointdensityof states.
The energy bands would be physically more accu-
rate if values could be found for the second-neigh-
bor interactions. Keeping the interactions nearly
equal to avoid disturbing the fit to the optical prop-
erties, the electronic energies could be adjusted
to match the bandwidths of the ~ conduction or va-
lence bands, if they could be determined through
photoemission or soft x-ray emission expeximents,
for example. The predicted overlap of the w bands
with the 0 bands makes it very difficult to deter-
mine the m bandwidth from the x-ray experiments. ' '

The 4. 7-67 work function in graphite puts most
of the m conduction bands below the vacuum level,
thus gravely limiting the usefulness of photoemis-
sion results to establish only m-band structure.
It may be possible to use this technique to study
m-o transitions while using a band model that ex-
plicitly includes the o' bands. Recent photoemission
experiments' have located the valence states Rt

the M point at —j..8 and —2. 6 e7 below the Fermi
level which is less than 10%%uo smaller than our
theoretical values of —i. 96 and —2. 84 eV. A val-
ue of - —0. 2 eV for both second-neighbor interac-.
tions would match the photoemission data, but it
would not significantly alter the appearance of the
energy bands in Fig. 1. For simplicity, we have
not added these parameters to our model.

All of the parameters of our model have been
evaluated for regions of 4' space near the rectangu-
lar face of the Brillouin zone. Therefore, the

greatest errors in the Fourier extrapolation of
the Hamiltonian occur at the center of the zone.
However, the band structure near I' is unimpor-
tant for a description of the optical properties be-
low - 7 eV, because transitions between w bands
are forbidden by symmetry at 1". On the other
hand, the 0' bands cross the m bands ' near I', so
that the set of basis functions for the HRmiltonian
of Eq. (1) would have to be expanded to include the

bands, in order to successfully describe the
electronic enexgies in this region of 4 space.
However, it is expected that the 0 bands only be-
gin to contribute to the frequency-dependent di-
electric constant at frequencies greater than were
considered in the present work.

III. CALCULATION OF OPTICAL PROPERTIES

In the relaxation-time approximation, the iII-
terband contribution to the dielectric response
at absolute zero temperature is

e2 1 p~, d~k v~~(k)v~, (k)
v 9,&, ' I'

~~( )k—2+&v, &(k)
.Bg

'u(~PA�(&))

(0+ (vga(k)

(3)
where 8= &+i/r, k&uq, (k) is the energy difference
Eq(k) E&(k), -E~ is the Fermi level, and the
primed summation 18 tRken ovex' StRtes which 8Rtls-
fy E; &E~ &E&. The dielectxic response function
defined in Eq. (3) does not include indirect transi-
tions or any many-body effects. The velocity
matrix elements can then be found from the gradi-
ent of the Hamiltonian,

v„(k) = (V(k) [V„X(k)]u'(k g„, (4)

where U(k) ls unitary transformation that diagonal-
izes the Hamiltonian R(k), The Fourier-expan-
sion Hamiltonian Rs developed ln Sec. D 18 pRr-
ticularly suitable for a determination of the di-
electric response for two reasons. First, the
evaluation of the velocity matrix elements using
Eq. (4) is quite simple because each Hamiltonian
matrix elemeQt ls R kDown fuDctlon of 0 RDd

second, the quick evaluation of the energy eigen-
values and velocity matxix elements at many points
in the Brillouin zone is facilitated by the small
size of the Hamiltonian. Nevertheless, one should
be aware that, for a given truncation of the Fouri-
er Hamiltonian, the velocity matrices are not
determined as accurately as the energy eigenval-
ues.

To do the numerical integration over the full
Brillouin zone, we divide reciprocal space into
small cubes in which the frequency dependence of
the integral for each cube may be approximated
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by an analytic expression. At first glance, it is
not obvious that the various types of Brillouin zones
can be divided into cubes without odd pieces sticking
out. The hexagonal zone, which must be used for
graphite, may be divided by packing cubes together
that are standing on their corners; that is, the
[111jaxis of the cubes is parallel to the c axis of
the Brillouin zone. The cube sizes must be fixed
so that the rectangular faces of the hexagonal zone
contain the centers of any cubes intersected by
these faces. Then, the half of a cube protruding
from a rectangular face may be reinserted at the
rectangular face on the opposite side of the zone
that is reached through a translation by a recipro-
cal-lattice vector. Similarly, the hexagonal face
must contain either a cube center or a cube corner
with the protrusions and missing pieces fitted in at
the opposite hexagonal face. To satisfy these re-
quirements, the c/a ratio for the hexagonal zone
must be a rational number times the square root of
2, which can be accomplished by using a simple
spatial scaling factor.

Only the subgroup DM of the full hexagonal point
group D,I, leaves the cubes invariant. Therefore,
it is necessary to integrate over a wedge of ~ of
the Brillouin zone instead of the 2'4 of the zone
needed with full hexagonal symmetry. When the
crystal being considered, e. g. , graphite, has full
hexagonal symmetry, the cubes with centers re-
lated by a symmetry operation of D6& need to be
calculated only once. Other types of Brillouin
zones may be divided into cubes by extending the
above techniques.

Once the cube locations are established, the
accuracy of the integration in Eq. (3) may be im-
proved by subdividing each of a certain set of cubes
into 2, 3, . . . smaller cubes. The density and
size of the cubes in a particular region of k' space
is determined by the importance of that region in
the determination of the frequency-dependent di-
electric constant &. After an expression for the
Hamiltonian. is developed for the material of in-
terest, matrix elements of the Hamiltonian and its
first derivatives with respect to 0 are calculated
at the center of each cube. With this information,
a linear extrapolation of the energy eigenvalues is
made within each cube. A constant value is approx-
imated for the optical matrix element evaluated
using Eq. (4). The linear term in the wave-vector-
dependent optical matrix element comes from the
second derivative of the Hamiltonian, which is not
calculated, to save computer time. Note that the
value for the optical matrix element does vary from
cube to cube. The contribution to the integral in
Eq. (3) from each cube may be formulated analyti-
cally with these approximations, by evaluating the
expressions presented in the Appendix. As is
shown in the Appendix, the evaluation of an integral

with spherical, rather than cubic, limits results
in a considerable saving of computational time.
This time saving enables one to increase the den-
sity of cubes to diminsh the error of the linear
extrapolation.

The complex dielectric function was calculated
from the electronic bands of Fig. 1 for graphite
with a constant interband relaxation time of
2&& 10" sec. The use of a phenomenological re-
laxation time allows the simultaneous determina-
tion of both the real and imaginary parts of the di-
electric response in Eq. (3). The real part of the
dielectric response && is more sensitive to the
relaxation time. Thus, the final value of the re-
laxation time was chosen to match the experimen-
tal behavior of E& near the 5-eV critical point.
This value for the interband relaxation time agrees
with values found in other materials. '

In performing the momentum-space integration,
over 1200 grid points with high concentrations near
the H-E-M-I face were used in ~4 of the Brillouin
zone. The rest of the Brillouin zone was accounted
for by using appropriate weighting factors for each
grid point, which were determined by symmetry
considerations. For the electric field polarized
in the basal plane (E 1c), our theoretical values
for the interband dielectric constant (dark curve
in Fig. 2) compare favorably with the Kramers-
Kronig analysis of normal incidence ref lectivity
data' (light curve shown in Fig. 2). The low-fre-
quency contribution is primarily from the II-K axis
of the Brillouin zone, while the structure near 5
eV is from the M-L axis. The contribution of the
& bands to the dielectric constant for the energy
range shown in Fig. 2 has been modeled as a fre-
quency-independent core value of 1. 5, following
the separation of the dielectric response into m and
0 regions, as was carried out by Taft and Philipp.
Including the contribution of free space, a total
core dielectric constant of 2. 5 has been added to
e, in Fig. 2(a).

The discrepancy between the experimental and
the solid theoretical curves for e~(&u) and ez(tu)
which appears in Fig. 2 at low photon energies is
largely due to the free-carrier contribution to the
total dielectric response. The free- carrier con-
tribution is calculable, in principle, from an in-
tegral over the Fermi surface as determined by
the SWMcC model. This calculation has not yet
been done for the values of the McClure parameters
in Table III. An approximate treatment of the free-
carrier contribution can be given by estimating
the plasma frequency u~ associated with the free
carriers from the effective masses of the model.
This gives a value for ~ of approximately 0. 5-1.0
eV for E lc, and about an order of magnitude less
for E ll c. For photon energies above 1 eV, free-
carrier contributions are probably not important



2280 L. G. JOHNSON AND G. DRESSE LHAUS

10.0

I I I I I I

(a)

7.5

5.0

I

2.5 4
I

I

I

I0
I

I

I

I-2.5 T-
I

I

I

-5.0 tI—
0.0

I I I

1.0 2.0 5.0 4.0 5.0 6.0 7.0

fi(u (eV)

so.o —'

I

25.0—

I I I I I

(b)

20.0—

15.0—

10.0—

5.0—

1.0
I I I I I I

2.0 5.0 4.0 5.0 6.0 7.0

4~(eV)

FIG. 2. Calculated interband dielectric response
& (co) for E lc (dark curve). A Drude term was added
with a free-carrier plasma frequency of Iu&=0. 95 eV
(dashed curve). The experimental data (light curve) are
from Taft and Philipp (Ref. 8). The core contribution
to &&(co) is taken as 2.5.

for either polarization. We have added the free-
carrier contributions to the dielectric response to
produce the dashed curve in Fig. 2 through the
use of a Drude term of the form —&af/ur(to+i/r)
The value of &~ that fitted the experimental data
best was about S&~= 0. 95 eV for E lc. This agrees
with the dc conductivity measurements ' if the
low-frequency intraband relaxation time is just
over 10 ' sec, which is almost an order of magni-
tude larger than the interband relaxation time.
The substantial free-carrier contribution at low
photon energies accounts for the negative experi-
mental values of E„observed for E ~c, at low

energies, as shown in Fig. 2(a). Furthermore,
the free-carrier contribution. produces a positive
divergence in &2 at low frequencies for E Ic and
also for E II c.

As the frequency goes to zero, the present cal-
culation of the interband contributions to the di-
electric function becomes infinite, similar to the
prediction of the two-dimensional band models.
This occurs in semimetals when the conduction
and valence bands intersect at the Fermi level so
that the hole Fermi surface in the valence band
touches the electron Fermi surface in the conduc-
tion band. If the Fermi surfaces intersect on a
line or in a plane, the zero band gap between the
initial and final states causes an infinite contribu-
tion to the dielectric response [see Eg. (3)] similar
to that for the free carriers. The linear extrapola-
tion can only have planar constant-energy surfaces
which intersect along a line so that a logarithmic
singularity in the joint density of states results.
Thus, there would seem to be a nonzero interband
contribution to the dc conductivity from the zero-
frequency limit of Ea. In graphite, the band de-
generacy along H-E' which produces the vanishing
band gap is lifted by the spin-orbit interaction,
which is expected to be -10 eV in magnitude.
Below this energy range, the interband contribution
to the conductivity would fall toward zero as one
would expect. Since the spin-orbit splitting has a
negligible effect on the optical properties in the
energy range of interest in the present treatment,
it has been neglected in the development of the en-
ergy-band model. Still, we must use a high den-
sity of cubes around the H-K axis to reduce the
error of the linear extrapolation for small band

gaps (see the Appendix).
Although various attempts have been made to

study the optical properties of graphite for E II c
in the photon energy range below 6 eV, ' only
scanty experimental data are currently available
for a quantitative description of the large anisot-
ropy of the optical constants. Predictions of e "(co)

based on the energy-band model of Fig. 1 are given
in Fig. 3 for both e&(v) and e2(v). In constructing
this figure, a core dielectric constant of 1 was
used, which includes only the free-space contribu-
tion. The dashed curves again incorporate the
free-carrier contributions with a Drude term. We
have used a free-carrier plasma frequency of 0. 1
eV in agreement with the two orders of magnitude
anisotropy observed experimentally in the dc con-
ductivity. ' Experimental problems, discussed
in Sec. IV, could make it difficult to observe the
predicated dependence for E IIc shown in Fig. 3.
The structure around 4. 3 eV is not associated with
any critical point, since it comes from an extended
volume of the Brillouin zone near the L point, but
displaced towards the II-E axis. This differs from
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FIG. 3. Dielectric response for EIIc. Here the free-
carrier plasma frequency is taken as Ice&=0.1 eV and
the core contribution to &~(u) is taken as 1.0.

The present treatment not only calculates the
graphite optical properties from a three-dimen-
sional model that goes beyond the SWMcC model;
it also includes the 0 dependence of the optical
matrix elements. The method of &-space integra-
tion. developed in the Appendix facilitates the quick
and accurate determination of both the real and
imaginary parts of the frequency-dependent dielec-
tric constant. The integration scheme requires

'

that the Hamiltonian must be diagonalized at many
points in the Brillouin zone. Thus, the Fourier-
expansion technique, as used in Sec. II, provides
a convenient representation for the Hamiltonian
by giving an analytic expression for the Hamiltonian.
valid throughout the Brillouin zone. Also, the di-
mension of the Hamiltonian is much smaller than that
normally used in other representations, e. g. , the
plane-wave representation for a pseudopotential cal-
culation. Therefore, the time required to diagonalize
the Hamiltonian. may be kept to a minimum. The
same procedure has recently been extended to cal-
culate the optical properties of arsenic ' and
tellurium. '

The w bands in graphite in Fig. 1 are determined
from the McClure parameters that fit the infrared
magneto-optical and Fermi-surface data along with
the addition of in-plane neighbor interactions so
that the allowed optical transitions at M occur near
5 eV. Unfortunately, the signs of the McClure

the results obtained for E lc, where there are large
contributions in the photon energy range between
4 and 5 eV from a volume centered around the crit-
ical point at M, as well as from a volume around
the L point.

IV. MSCUSSION

parameters are somewhat ambiguous because the
SWMcC Hamiltonian is invariant under changing
the signs of several subsets of the McClure param-
eters. The signs of the parameters have already
been adjusted 7 to have electrons rather than holes
at the K point. At the M point several possible
band orderings may be obtained from the truncated
Fourier expansion by appropriate adjustments of
the signs of the McClure parameters while leaving
the SWMcC Hamiltonian invariant. In order to
give the single ref lectivity peak observed experi-
mentally, '8 the allowed optical transitions be-
tween states of opposite parity must have nearly
the same energy. This eliminates many of the
possible sign changes. To justify the sign assign-
ments of Table III, we can resort to physical argu-
ments that take advantage of the direct relationship
of the Fourier coefficients to matrix elements of
the Hamiltonian in the Wannier representations.
A positive value for /0 is taken since it represents,
primarily, the negative of the nearest-neighbor
interaction which is expected to be attractive be-
cause the electrons are relatively free to move
about in the basal planes. An argument similar to
that for yo implies that y~ should remain positive.
The only other McClure parameters important in
the determination of the dielectric function in the
optical region are y3 and y4. The signs of these
parameters are more difficult to estimate since
they represent out-of-plane interactions. To ob-
tain a state of even parity as the lowest-energy
state at the I' point, y3 must be positive. With the
previous three sign assignments, the magneto-
optical and Fermi-surface data can only be fitted
by a positive value of y4. With y4 positive; a band
crossing occurs in the conduction bands between
K and M (see Fig. 1) in agreement with previous
calculations. '4 A crossing of the valence or con-
duction bands is required to reverse the parity
ordering of the states between the M and E points
to agree with the optical experiments. The calcu-
lation of the frequency-dependent dielectric con-
stant is insensitive to whether or not there is a
conduction or a valence-band crossing; so, based
on optical data, we cannot say with certainty in
which bands the crossing occurs. Crossing con-
duction bands are consistent with the physical ar-
guments we have presented for the usual ' ' signs
of the McClure parameters whose magnitudes were
found in Ref. 12.

To extend the range of validity of our model to
higher photon energies, the o bands must be in-
cluded. This project could be made simpler by
neglecting the three-dimensional splitting of the
z bands, which is probably much smaller than for
the m bands. Thus, the previous two-dimensional
calculations may give sufficiently reliable results
for the 0 bands. Bassani and Parravicini give a
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6-eV separation of the 0 conduction and valence
bands. Thus, the allowed transition between the
p bands at I" for this energy would have to be many
times weaker than the observed m band transitions
at 4. 8 eV, since there is no significant structure
observed in the optical properties with electric
field in the basal plane at 6 eV. Greenaway et ak. '
maintain that there is a slight shoulder in the re-
flectivity just above 6 eV. However, we can pro-
duce an asymmetry in the usual 4. 8-eV n band
peak that looks very similar to the shoulder by
modeling the p band contribution as a real frequen-
cy-independent core value of 1.5 in the dielectric
response. On the other hand, Painter and Ellis'
obtain a 12-eV separation of the o bands. This
larger separation of the o bands could produce the
increase in & observed by Taft and Philipp above
10 eV, and is more consistent with the photoemis-
sion data and our ability to model the low-frequen-
cy optical properties with only m bands. Plasma
effects are also very important in the high-photon-
energy region.

We have shown in Fig. 2 that the optical proper-
ties of graphite can be predicted for the electric
field polarized in the basal plane by a semiempirical
Fourier-expansion model. The good agreement
between theory and experiment is extended to low
frequencies when the free carriers are taken into
account through a simple Drude dependence. The
energies of the three-dimensional band structure
used are in qualitative agreement with the m bands
derived in previous first-principles band structures,
such as those of Painter and Ellis or Bassani and
Parravicini. The general description given by
Painter and Ellis of their three-dimensional re-
sults seems applicable to the energy bands of Fig.
1, except that the present calculation has energy
bands along HKH, as given in Ref. 27, that produce
electrons at the K point. Painter and Ellis did
not test their model with a calculation of the opti-
cal properties. Bassani and Parravicini did,
however, calculate the joint density of states, using
a constant- matrix- element approximation, and
their two-dimensional result showed a much sharp-
er structure than is observed experimentally in the
optical properties. A later paper determined the
three-dimensional corrections to the band struc-
ture, which found crossing conduction bands be-
tween M and K in agreement with our results. In
another treatment of the optical properties,
Kobayashi and Uemura and Imatake and Uemura '
attempted to extend the SWMcC model using only

yo and y& to explain the 4. 8-eV peak in the optical
properties with E L c. The calculated optical prop-
erties contained two transitions separated by 1.6
eV, because these authors obtained a different
energy-band ordering at M. In order to success-
fully extrapolate to the M-point energies, we find

that at least the McClure parameters yo, y&, y3,
and y4 must be used. Since the SWMcC model is
only valid near the H-K axis, it is not surprising
that to adequately describe the optical properties
more parameters need to be added to the set
originally used by McClure. '" Up to the fourth
neighbor, interactions in the basal plane must be
included in our model (see Table IV) to reconcile
the 3. 2-eV value of yo provided by the low-frequen-
cy magneto-optical and Fermi-surface data with
the value of 2. 3 eV required for a fit to the optical
data at higher frequencies.

We have given the first theoretical determination
of the optical properties in Fig. 3 with the electric
field polarized perpendicular to the basal planes
(E I~ c). The experimental observation of the optical
ref lectivity for this polarization is severely re-
stricted by the difficulty of preparing a suitable op-
tical-crystal face perpendicular to the basal planes.
Ergun has measured the ref lectivity as a function
of polarization on faces inclined at 58' to the basal
planes which occur in natural single crystals of
graphite. He observes a ref lectivity with E II c of
just less than 10% with no structure between 2 and
5 eV. The non- normal incidence experiments on
the basal plane yield similar results with a some-
what smaller value for the ref lectivity. This con-
trasts with our prediction. of a very small reflec-
tivity except near 4. 3 eV, where Fig. 3 indicates
a ref lectivity peak. Our results are admittedly
more inaccurate for this polarization, but it seems
unlikely that the ref lectivity for this polarization
could be as large as has been measured4'4 without
some structure. To get a ref lectivity of nearly
10/g would require a core contribution of well over
3.0, which seems too high to be associated with the
high- energy 0-m transitions. It could be that experi-
mental difficulties have prevented the observation
of the very large anisotropy (about an order of
magnitude) that we predict. For example, a slight
depolarization of the light in either experiment '

would wash out structure in the measured reflec-
tivity with E ~~ c.

On the other hand, structure has been observed
in modulated ref lectivity measurements and per-
haps can be associated with the polarization E II c.
Recent thermoreflectance data have shown con-
siderable structure around 4. 5 eV; these data were
taken for unpolarized light at a 45' angle of inci-
dence to the basal planes, which would therefore
include effects from both polarizations, E Lc and

33E II c. An earlier experiment at near-normal in-
cidence which would measure only E l c did not
reveal any structure below the main 4. 8-5-eV
transition. One may speculate that some of the
4. 5-eV structure may be associated with our pre-
dicted peak in the optical properties with E ~~ c.
It would be interesting to carry out an experiment
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to look for anisotropy in the observed thermore-
flectance structure.
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where M(ko) is a constant function of the matrix
elements,

&= k- ko, P(ko) = u'&g(ko) +
0

which i,s different for each of the three terms of the
Partial function exPansion, and o.'(ko) = s P(k)/
sk Ip p, in which m = l, 2, 3 are the vector com-
ponents. Note that P(ko) may be complex, but the
o.', (ko) are all real. A significant difference between
this and previous linear-extrapolation techniques
is the use of the interband relaxation time which
eliminates the need for taking principal values of
infinite integrals. ' Also, the relaxation time
makes it possible to calculate simultaneously both
the real'-'and imaginary parts of the dielectric re-
sponse.

The higher-order terms in tc, which were omitted
in Eq. (Al), may be represented by including the
effects of the second derivative of the Hamiltonian.
Let us define K as the curvature of the frequency
difference w&&(k),

x '~(k) = V„V, (u, q(k) = V„V„[E;(k)—Eq(k)]/k . (A2)

Including these curvature terms, the integral of
Eq. (Al) becomes

' ')™'p+ /(p" )'
where &, p, and K are evaluated at ko. Therefore,
the error for a given optical transition is small if
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APPENDIX: MOMENTUM-SPACE INTEGRATION TECHNIQUE

After doing a partial-fraction expansion of Eq.
(3), the linear extrapolation as discussed in Sec.
III makes it necessary to evaluate the following
type of integrals over a small momentum-space
cube centered about ko, with length 4~ along a cube
edge:

d K

I~(ko) = M (ko)
p(k ) (k )"cube

(A3)
g„„l K'„'„I

that is, the ratio of the curvature of the energy
difference to the band gap must be small. This
requirement can present problems in the low-
frequency region where regions of k space with
small band gaps make the primary contributions
to the dielectric response. The calculation of & for
graphite is especially sensitive to these restrictions,
since there are several points in k space near the
II-E axis where the band gap nearly goes to zero
between occupied and unoccupied states.

A valid criticism of this and other linear-expan-
sion techniques is that it is not accurate around
critical points; i.e. , the bands may be nearly
parallel around a critical point, and the linear ex-
pansion may extrapolate the parallelness" to a
very large volume, thereby overestimating the
resonance in E. This can be avoided to a certain
extent by a judicious placement of the cube (or
sphere) centers, so that they do not lie on high-
symmetry points of the Brillouin zone. One can
then resort to increasing the density of the cubes
to achieve any desired accuracy. Even near criti-
cal points, our experience has indicated that con-
siderably fewer points, i.e. , cubes or spheres,
need be used in this scheme than in a Monte Carlo
integration, for example.

Because w„, ~, , and &, each have to be evaluated
at both limits, Eq. (Al) requires that the complex
logarithm be evaluated eight times for each term in
the partial-f raction expansion for every cube. The
computer time needed may be significantly reduced
if the cube integral is approximated by an integral
over a sphere of equal volume having radius
It = (3/4~)"'~

d KI, (k ) = M (k ) I

syh

M(ko)
(

o P — R
Q P+ ~R

(A4)

in which a and P are evaluated at ko and the scalar
quantity o!(k) denotes the amplitude of the corre-
sponding vector quantity. The major advantage of
the integration over a sphere is that the logarithm
term of Eq. (A4) has to be evaluated only once as
compared with eight times in Eq. (Al), thereby
achieving a considerable saving in computer time.
A comparison of the approximation schemes of
Eqs. (Al) and (A4) applied to graphite showed that
they differed by less than 5% in a determination of
the dielectric-response function using a 100-cube
subdivision of the Brillouin zone; the spherical
approximation used only ~6 of the computer time
needed when integrating over the whole cube. A
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more detailed discussion of the error introduced
by the spherical approximation is given in the
doctoral dissertation of one of the authors. The
time advantage of the spheres may be used to re-
duce the error of the linear approximation by tak-
ing a high density of spheres in the same amount
of time that it takes to integrate over fewer cubes.

For the case of metals and semimetals, the
Fermi-level cutoff provides additional complica-
tions in setting the limits on the integrals in Eq.
(A1) or Eq. (A4). The spherical approximation
still has an analytic expression when the energy
bands cross the Fermi level. Consider the contri-
bution to the dielectric response from a transition
between two bands, one of which crosses the Fer-
mi level. As a consequence of the linear approxi-
mation to the energy bands, all constant-energy
surfaces are represented by a series of planes
inside the region of integration. Using spherical
coordinates with the s axis perpendicular to the
Fermi surface, the needed integral is

~R ~8

I,'(zo, ko) M(ko)
i

dz
i

d8
i

dq

(A5)
where ao is the distance from the center of the
sphere to the Fermi surface, &,=cos '(Izol/&),
and n and P are defined below Etl. (Al). After
using the method of residues to evaluate the inte-
gral over p, the rest of the integration of (A5) is
straightforward, and one obtains

I,'(zo, ko) — (P —n2R ) ln
n (nz+ n)(P+ nR)

+ Pn(R —zo)

where

~=+((P+ neo)' (-R'-zo) (n'- n3))'", (AV)

limI', (zo)=I, as zo —R, (A6)

where I, is the spherical integral with no Fermi-
level intersection as defined in Etl. (A4).

Even when two bands cross the Fermi level in.

the same sphere, Eq. (A6) may be used to derive
an analytic expression for the required integral
for the diagonal components of the dielectric ten-
sor &». However, for small band gaps between
strongly interacting bands, the linear extrapolation
may represent the bands as crossing each other at
or near the Fermi level, which produces an infinite
or inordinately large contribution to the dielectric
response. To avoid crossing bands at the Fermi
level, we have not included contributions from
transitions between energy bands when both their
linear extrapolations cross or nearly cross the
Fermi level within one of the small cubes. The
error introduced by the elimination of these types
of transitions can be made small by further sub-
division of the cubes where the error occurs, so
that no more than one band crosses the Fermi
level in most of the smaller cubes.

and e3 is the projection of difference in energy
gradients of the two bands a onto the energy gradi-
ent of the crossing band. The dependence of +, P,
and o', on &0 has been suppressed in writing Eqs.
(A6) and (AV) for simplicity. By carefully keeping
track of the region of physical values of the vari-
ables, one can establish that the sign of the com-
plex root in Eq. (AV) should be such that the root
is always in the same quadrant as P+ &3zo. Similar-
ly, the physical branch of the logarithm can be
shown to have no multiples of 2@i added, and the
branch cut is along the negative real axis. Note
that
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For the case of electrons in a periodic lattice there exist extended basis functions (Bloch
waves) and localized basis functions (Wannier functions). It is shown here that also for lat-
tice vibrations there exists, in addition to the usual extended basis functions (normal modes),
a set of localized basis functions. These are nontrivial only for lattices with several atoms

per unit cell. Examples are worked out and discussed. These functions appear to be of in-
terest for the treatment of defects and other problems calling for a localized description.

The electronic theory of solids has been largely
developed in the language of Bloch functions, which
are extended throughout the entire solid. While
this approach has generally been eminently appro-
priate and successful, it has one drawback: The
effective interactions between electrons are gen-
erally of short range and many interesting phe-
nomena in solids, such as those associated with
defects, are of a local character. For some pur-
poses it is therefore somewhat unnatural, and also
an obstacle to the application of physical or chemi-
cal intuition, to work in a representation of infi-
nitely extended states. This drawback can be over-
come by the use of localized Wannier functions'
which span the same space as the extended Bloch
functions.

For similar reasons it appears to be of interest
to construct a localized orthonormal basis for lat-
tice vibrations, which spans the same space as the
well-known'delocalized normal modes of the crys-
tal lattice. This will be done in the present paper.

The localized basis to be discussed is nontrivial
only for lattices with more than one atom per unit
cell. We therefore consider first a diatomic lat-
tice in one dimension with lattice parameter a,
masses M& and M» and two nearest-neighbor

where the coefficients u„satisfy the equations

(2)

and the matrix

e+ Pej~'

(m, m, }'"
The eigenfrequencies are given by the quadratic
secular equation

D t —(u (k)Cga =0,k
(4)

whose two solutions for each value of k are.denoted

by &u~(~~) (j=1,2). These constitute the acoustic

force constants n and P. The N lattice cells (with
N ~) are-labeled by I= - ,'N, . . ., + ,'N--1; and-the
two atoms in each cell by z = 1, 2 (see Fig. 1). It
is well known3 that the atomic displacements in a
normal mode of vibration of wave number k and

frequency ur have the form


