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where P~ has matrix elements defined in Eq. (4. 5).
Tiie last step in Eq. (A7) serves to define the ma-
trix G that appears in Eq. (4. 6).
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A simple method for evaluating the electron-phonon interaction matrix elements, and hence the
point-mass enhancement and the relaxation time of quasiparticles, is proposed for the transition metals.

The method is based essentially on the Bloch model of the electron-phonon interactions and is similar

to a pseudopotential formulation with modification to account for the presence of d electrons in the
conduction bands and the resulting anisotropy of the above quantities. The results obtained by applying
our theory to copper, based on the combined interpolation scheme with explicit inclusion of the
screening effects based on Lindhard's formulation and of the contributions from transverse and

longitudinal phonons and from umklapp processes, are in fair quantitative agreement with those
obtained from a phenomenological interpretation of the experimental cyclotron-mass data of Lee and
with the calculations of Nowak based on an empirical phase-shift formulation.

I. INTRODUCTION

Although the importance of the electron-phonon
interaction has been well demonstrated in super-
conductivity, very little work has been done to
demonstrate explicitly the nature and anisotropy

of the electron-phonon interaction in transition
metals. This is primarily due to the great com-
plexity that the presence of the d bands near the
conduction bands in such metals leads to. In sim-
ple metals the conduction bands, consisting es-
sentially of s bands, are separated from the well-
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localized d or f bands (when occupied) such that
the conduction electrons can be treated as non-
localized nearly free electrons; therefore, the
electron-ion interaction in these metals can be
represented by a pseudopotential, enabling one to
perform rather easily accurate calculations of the
average mass-enhancement coefficient X. Suc-
cessful calculations of the electron-phonon contri-
bution to the mass enhancement in simple metals
have been reported by several authors, who have
essentially used one or two orthogonalized plane
waves (OPW's) and an isotropic approximation for
the phonon spectrum. On the other hand, a gen-
eral formulation to evaluate the electron-phonon
matrix elements for more complex metals was
discussed by Sinhas and Golibersuch4 as early as
1968, and a phenomenological interpretation of the
cyclotron-mass data by Lees demonstrated the high
anisotropy of the electron-phonon mass enhance-
ment in Cu. However, until very recently, no
detailed calculation of the electron-phonon-inter-
action matrix elements have been reported. Re-
cently Allen and Lee~ have extended the phase-shift
model of calculating the Fermi-surface properties
to express the matrix elements of the electron-
phonon interaction in the augmented-plane-wave
(APW) formalism given by Golibersuch. 4 This
formulism uses the criteria discussed by Heine
and Lee~ for choosing the Fermi-energy parameter
for calculating the phase shifts for electron-
phonon-interaction matrix elements. Allen and
Lee have successfully applied their model to the
alkali-series metals. Independently, Chui has
also parameterized the AP% formalism of Sinha
in terms of the d bandwidth and energy, but no
rigorous application of his techniques has yet been
reported. The first attempt to calculate the ve-
locity-renormalization constant directly for copper,
a metal with d bands lying close to the conduction
bands, was done by Teichler, who used the %an-
nier-function representation and a simplified
model for the phonon-dispersion relation neglect-
ing the phonon polarization. However, the results
obtained were in poor qualitative agreement with
the phenomenological results. More recently,
Nowak has extended the formulation of Allen and
Lee6 to discuss the velocity renormalization and
thermal phonon scattering in copper. He included
the effects of the phonon polarization and umklapp
processes. His results are in very good quantita-
tive agreement with the ones obtained by Lee' for
the anisotropic velocity renormalization and also
with the recent experimental results on the quasi-
particle scattering rate by Gantmakher~' and Koch
and Doezema. '3

An alternative approach to the calculation of the
electron-phonon-interaction matrix elements is
presented taking into account explicitly all the

necessary factors such as screening, the trans-
verse and longitudinal phonons, the umklapp pro-
cesses, and the band-structure effects.

The method discussed here differs from that of
the other workers, with the exception of Nowak, '
in that it neither has any adjustable parameters
other than those previously used to form the band
structure itself, nor does it derive the anisotropic
mass renormalization through any comparative
ratio. Hence, the successful application of this
method to the calculation of the anisotropic veloc-
ity renormalization' and the quasiparticle scatter-
ing rate in copper suggests that it can reliably
be used to calculate the electron-phonon-interac-
tion effects not only in the normal transition
metals but also in the superconducting metals.

The general plan of the paper is as follows: In
Sec. II the general calculation of the electron-
phonon-interaction effects on the mass renormali-
zation and the quasiparticle scattering time is
discussed; in Sec. III band-structure calculations
are reviewed briefly; in Sec. IV the calculation
of the electron-phonon-interaction matrix ele-
ments is discussed; Sec. V contains details of the
computational techniques employed; in Sec. VI the
results obtained for copper using the above method
are presented; and finally possible improvements
and application of the method to other metals in-
cluding the superconductors are discussed.

II. GENERAL FORMULATION OF CALCULATION
OF ELECTRON-PHONON INTERACTION

The many-body effects of the Fermi velocities
and the cyclotron masses can be taken into account
approximately by expressing the one-electron
propagator for the interacting system as

(,) ~ q-„"*(x)y-„"(x').„,„&u —(u"(k) —Z,",(k, (o) —Z,"~(k, (o)

Thus the quasiparticle energy differs from the
band-structure energy by the self-energies
Z,",(k, &o), the contribution from the electron-elec-
tron interaction, and that from the electron-phonon
contribution Z,"i(k, ~). The self-energy E,i in-
fluences the bands only near the Fermi surface,
whereas Z„modifies the band structure smoothly
and therefore can be folded into a semiempirical
one-electron potential. Thus the quasiparticle en-
ergy &"(k) for the nth band is given by

a) "(k) = (re(k) + ReZ,"i(k, &) I „.~.&i)

where &gs(k) is the band-structure energy that in-
cludes the electron-electron-interaction effects.
One can relate the band-structure velocity Vs(k)
to the quasiparticle velocity V"(k) through the .

mass-enhancement factor X-„" as follows~3:
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Vs(k)
1- (9/&(o) ReZ,"~(k, (o) I „.„q„)

V",(k}
1+x-„"

(3)

a:,(& ') IM-„-„"„(q)I'

J (t),&t (d + (d —(L) (k ) + ri))(t

where D;„(~)= 2~;),/[up —((d",„—i6) ], ar",„being the
phonon energies

n'
M;";",(g) =&q;"~g;,~q; )

&/~

Ml) qp 0

Here summation over p, refers to only the ions in
unit cell, and V(r) denotes the screened potential
at the point r due to the ions in the unit cell located
at the origin:

V(r) = J e '(r, r') V,(r') d'r'

Carrying out the integration over d&', one gets
the velocity- renormalization factor

nn'
Q0. g ~

d O'X)( IMf7„((l) I

(2~)' „, I (~;,+ IZ„.", -~„I)'
where e~ is the Fermi energy,

n'
E"„;=e~—(d" (k —(1),

(6)

(6)

k-k'=q+ C„'

The vector q lies mithin the first Brillouin zone.
We shall also consider the relaxation time of

the quasiparticle, mhich is obtained from a ther-
mal average of the imaginary part of the self-en-
ergy (defined from the temperature-dependent
electron-phonon Green's function). Thus the re-
laxation time v-„" of the added electron at the point
k in the band n is given byxo

)) r 2)('(( (2
( )

I("(Q,k)l') p (s)
mMff V"„7 C„

where Ks is the Boltzmann constant, l'(3) is the
Rieman g function, C~ is the velocity of sound for

Here Vs = V.„(()s(k) is the velocity derived from
band-structure calculations, and A&~is the velocity
renormalization constant at point k. Considering
only the lowest-order contribution to the self-en-
ergy from the electron-phonon interaction, "one
gets

iAo
Ze, (k, &o) =

(2 )4

polarization X., and ( I V"(0, k) I /C'„) denotes the
angular average of the quantity

The following major steps are included in the
calculation of X-„and ~-„: (i) calculation of the band
structure, the density of states, the value of the
Fermi energy, and expressions for the wave func-
tion and energy at a general point; (ii) calculation
of the dispersion relation for phonons; (iii) cal-
culation of the electron-phonon-interaction matrix
elements for the transition from state g-" to p-",

)(e

with momentum transfer q; and (iv) evaluation
of the integral (6) over k' on the Fermi surface
finally gives the velocity renormalization constant

These steps will now be described in relation
to copper in the following sections.

III. BAND-STRUCTURE CALCULATIONS

In the formalism presented here the Bloch func-
tions (I)„-" are expressed as a linear combination of
OPW's and the tight-binding d states in the same
manner as in the combined interpolation scheme. '
The approach modifies the latter to make it suit-
able for the calculation of the electron-phonon-
interaction matrix elements. In order to include
the effect qf the umklapp processes properly, the
OPW basis set was augmented from 4 OPW's to
15 OPW's, which include the first three stars of
the reciprocal-lattice vectors, so that all the por-
tions of the Brillouin zone mere treated on the
same footing and it was possible to consider the
transformation properties of the matrix elements
properly. Thus the wave function g can be rep-
resented by

4„."(r) = Q C-„",I @-„,I(r) +Q D";y"„(r), (10)
H m

first
three
stars

where

e-„.m(r) = (i&+ i() -Z (y,') i+(()((",„)),
&if+8 m

1/3
Cg+H 1 — 9 gm k+

p„(r) = Z e'"'"y, (r —0)
aeares t

net ghlNrs

Before discussing the details of the derivation of
the wave function, a few comments shall be made
about the orthogonality to core functions and its
contribution to electron-phonon matrix elements.

Since in the formulation the effect of s and P
core states has been folded into the potential with
the help of the pseudopotential formulation in the
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interpolation scheme, the wave function obtained
could be considered to be the true wave function
if the basis set were complete. Since this is not
strictly true, it is in principle necessary to orthog-
onalize the interpolation-scheme wave function to
the core s and p states. However, it shall be
shown that the correction to the electron-phonon-
interaction matrix elements due to this orthogonali-
zation effect is negligible. This is because the 8
and p core states are extremely localized, and

therefore most of their contribution to the matrix
elements comes from the small values.

The matrix elements of the electron-phonon
interaction between the states 4-" and 4-", can be

k
written

&O'.„"I&vl 4-„",)

@I gy yI @I

x &@-„'Ivv
I y-„') —g &e„-'I vvl e-„')&e-„', I

w„-'.)

+Z &e [4 &&0; i
e.,',&&@,.'i vvi e. &), &&a&

CC

I .
where 4-„ is the wave function obtained from the
interpolation scheme and 4& the tight-binding func-
tion obtained from the core state &)&,. The summa-
tion over core states involves the 18, 28, 2P, Ss„
and SP states, and ¹ and N„; are the normaliza-
tion constants. The effect of the orthogonalization
of the wave function is essentially to replace the
Fourier transform of the crystal potential V(x) by
a pseudopotential V(r)+ V„(r, x'), the correspond-
ing additional contribution to the electron-phonon
matrix elements being'

1/3
Q (E-„"—e, )f&;~b,„"i e;&, (k- k')

where c, is the energy and b,»„ the Fourier trans-
form of the core orbital P,. It is found that this
term is of the order of 1% of the matrix element
obtained without the orthogonalization. Thus it is
justified to neglect the corrections due to explicit
orthogonalization of the interpolation-scheme
functions to the core states.

We will not discuss here the details of the band-
structure calculations, as they are already given
by Mueller. " However, we will present the fea-
tures of our method which differ from those de-
scribed by Mueller.

(a) Here the effect of the second nearest neigh-
bors, which was neglected originally, has been
included.

(b) A better representation of the form factor
f(k), which enters in the overlap between the plane
waves and the tight-binding d functions, has been
considered. In the original calculations, the over-

lap was represented by

q,.(k) -=&q",„Ik) =a,r,.(k)j,(kII,)

=Fan(k)f(k) &

where the parameters A0 and R0 were determined
by making the least-squares fit to the eigenvalues
obtained from the APW method. Also an arbitrary
cutoff was introduced in f(k) at the first node of
ja(kBO). Although Mueller was successful in pa-
rametrizing the Hamiltonian to get a good fit to
the APW eigenvalues, his method could not decide
the form of the function f(k) for large k values.
Also the accuracy of wave functions obtained from
the combined interpolation scheme is difficult to
assess. When we applied the combined interpola-
tion scheme to calculate the positron-annihilation
spectra in palladium, ' it was found that the dis-
agreement with the experimental results could be
reduced by modifying the form factor f(k) [as the
disagreement was occurring at the values of kB0
where we introduced the cutoff in jz(kR&&)]. To
avoid this, we used the Slater-type expansion for
the M atomic functions for copper. It is found

by I ipari and Deegan that the optimized wave
functions for M electrons of copper with
Chodorow's' potential represent quite satisfac-
torily the band structure of copper. The three d-
band parameters —ddo, ddt, and ddt —calculated
by Lipari and Deegan are listed along with the
values from the present work in Table I. We have
represented the d function by

&/&, (r) =Z c~A~~~e '/" Fp„(~),

(2g )7/8(6 ~) 1/2

The values of the parameters $~ and c~ were taken
from the atomic calculations of Wahl et gl.

It was found that use of Lipari and Deegan's1
values of ddo, ddt, and ddt, in place of those ob-
tained from the least-squares fit to the APW,
eigenvalues at high-symmetry points, changed the

energy eigenvalues by only a few millirydbergs
near the Fermi energy; the changes in the values

TABLE I. First-neighbor linear-combination-of-
atomic-orbitals parameters (in Ry) for copper in the two-
center approximation.

Combined Lipari Present plater-type
interpolation and interpolation atomic orbitals

Parameter scheme Deeganb scheme for Cu 3d state

dd(T —0.0257 —0.021 26 —0.0258 —0.0188
dd7f' 0.0132 0.009 40 0.0139 0.0104
ddt —0.0014 —0.000 88 —0.0017 —0.0018

Reference 15. These parameters were obtained by
fitting the band structure of Burdick, who has used
Chodorow's potential.

"Reference 18.
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FIG. 1. Angular variation of
the character of the eigenfunc-
tions on the Fermi surface of
copper in I110] plane. The plane-
wave (s) and d- (F2'~, &f2) proba-
bilities f(8), 0 being measured
from (001) direction, are given
by the squares of the respective
amplitudes in the sixth-band
state of copper. The d-function
character has a maximum of 38%
along I.110] direction.

nn'
of matrix elements M„--„"~(q) on the Fermi surface
were also less than 5%. On the other hand, when
values mere obtained for ddt, ddt, and ddt by
using wave functions represented by Eq. (14), it
was found that though the energy eigenval. ues
changed by only a few millirydbergs, i.e. , an
amount within the limits of accuracy given by the
interpolation scheme, the changes in the matrix
elements were slightly more than those given by
Lipari's values for d-band parameters, being con-
sistently less than 8%. Because the wave function
obtained by Lipari and Deegan'8 is not very dif-
ferent from the one given by the Slater-type ex-
pansion form, me have decided to use the l'atter
representation for the atomic d functions in the
tight-binding representation of the crystal wave
functions for preliminary calculations to verify our
formulation. We have also studied the character
of the eigenfunctions on the Fermi surface of
copper in the (110) plane. The results are shown
in Fig. 1, where the probability of a given sym-
metry character is the sum of the squares of the
amplitudes of the corresponding basis functions.
The d character is maximum along the [110]direc-
tion where it is only 88%, consequently, a slight
error in representing the d bands should not cause
more than 5/0 error in the matrix elements of the
electron-phonon interaction. ' The values of the
parameters used to parametrize the Hamiltonian
are listed in Table G.

IV. ELECTRON-PHONON-INTERACTION MATRIX
ELEMENTS

In the present formalism, the Bloch functions
4-„are expressed as a linear combination of the
OPW's and the tight-binding d states. The matrix
elements M;,„.i~(q) will, therefore, involve the
three types of terms: those between the plane

waves, those between the plane wave and d states,
and those between the d states. The matrix ele-
ments between the plane-wave states k, k' are
simply given by

(k~g„(r)~B=( „)

TABLE II. Values of interpolation-scheme parameters
chosen for the copper band structure. ~

d bands

d bandwidth

Conduction bands

Orthogonality

HybrMiz ation

Second-neighbor parameters

Fermi energy

Parameter

dp

dd(T

ddt f
ddt

&2oo

A
LAp

B

(ddt)
(ddt)
(ddo)

Parameter
values (Ry)

—0.6107
—0.0258

0.0139
—0.0017

0.0017

0.9964

0.005
0.0339

l.0163
2.9958

1.299
3.0394

0.0003
0.0001

—0.0019

0.5685

Deviation of fit D(~) 0.006

For the definition of the parameters, see Ref. 32.

where V,(q) is the Fourier transform of the ionic
potential V,(r) (which has been taken for copper to
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be of Chodorow's form"), and e(q, 0) is the static
dielectric constant for wave vector q (approximated
in this case by Lindhard's function ). For the
terms involving (cp4 lg,s(r) j k'), we neglect the
overlap terms obtaining

(2v) 2M'&»iQs

&&

~

asm —9 9 ~ e;z ( ())
(k'- ') '.=

where qi„„(q) is the Fourier transform of the
atomic function cps„(r) defined by E4l. (14). Thus,

I

es (i) =Fs (q)f(q),

f(q) =Z i4pcs 'Y 8 sos(qf') «
When all over. lap contributions are neglected, the
electx'on-phonon matrix elements between the
tight-binding d functions are identically zero. To
determine the form of the d-d contribution, me
next consider the approximations in @which the bvo-
center terms (arising from 4f-4f overlap) and the
degenerate three-center terms (arising from the
overlap of the potential vrith the d functions cen-
tered on nearest-neighbor sites) were retained.
The d-d matrix elements in this approximation are
of the form (Appendix A)

1/3
&y& lg;&(s.)~q," )=

2 s 4M &
Z e"" Z (4v)'(2L+1)"s(2f+1) "'(s)""C(2,I., 2;m, m'-m)
B L~0, 2, 4

58»Lr88 f l~i, 3, 5
a@igh jars M*1,0,1

@&here

&«(2, L, 2;0, 0)C(1,I,E;M, m'-m)C(l, I,, f;0, 0)F,„, .„(Ry,D".,
~1/8

+
2 s 4M .g I

+~ [e I», ~m~(%+e '"'"I», „.(5)], (18)2g 4M~"~Q0)

~=0/1/ ee45
»t&lvl
Al-" 1sOs1

Z c(f, 1, I.; i4, M)c(f, 1,I„0,0)
L~0sa for &~1

L 1~ Ss ~ ~ ~ ( 0+1) for 0 8'|fQ

&& C(f, I, 2; m —i4 —M, p, 4 M)C(f, I,, 2; 0, 0)

Fxs=
~

q (
~ 0) js(q If)fs(q )dqis ~.(q')

&q, O

21+I I
/ "

6 &c c)Q c,c,w, ~, ~
~'j, (q'~) e""'&'"«,

SC

1= 0
(e»x»»/Is)i »k (»sii»s9 i »&

$ (If) =P 2 2 C C
[ (&)fl(t &» $P'&)e

, dV
~

" qsj~(qs)&. (q) d

V(s') is the screened ionic potential, and

f, ($p&, fats'&) are the functions of the Bessel func-
tions of lmRglnRry argument Rnd half-integral
order and are discussed in Appendix A. The
Quantities e~~~p e~qg~~ Rnd e~q~ Rx'e the xp pp Rnd 8
components of the phonon-polarization vectors
eg„. The form factors f(q), fs(q), fs(q), andf4(q)
areplottedinFig. 2. The first terminEq. (18) rep-
resent the contribution from the degenerate three-
center-type terms vrhile the second represents
the contribution from the thoro-center-type terms.

The derivation of 8 „(It) is discussed in Appendix
p (the constants are tabulated in Table 111) and can
be used for a y lattice str cture as t e direction
of R is completely arbitrary. We believe that the
contribution from the three-center term is negli-
gible for reasons explained later.

The choice of potential used for the first-princi-
ples calculations of the electron-phonon interaction
is still a point of discussion. We think that the
screened Chodorow's atomic potential is at the
very least a reasonable choice of potential for the
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following reasons. Since copper has d bands lying
very close to the conduction band, the assumption
that the d electrons are tightly bound to the ion and
hence move rigidly with it, when displaced, is
clearly not correct; conse4[uently, the validity of
linear screening via Lindhard's dielectric function
(which is obtained in the free-electron approxima-
tion from the requirement of self-consistency of
the potential with respect to the displaced charge
cloud) becomes rather doubtful. However, since
the screening effects are to be considered only at

6.0
q (a. u. )

FIG. 2. Radial form factors for d states: The form
factor f(q) is the fourier transform of radial part of

(r)' fp(q), f2(q), and f4(q) are related to the Fonrier
transforms of yz~(r). The long tail in the form factors
beyond @=2k~ (1.6 a.u. ) demonstrates the importance of
the umklapp processes in the electron-phonon interaction.

large distance from the nucleus where the d part
of the conduction-band states is weak, Lindhard's
screening should be approximately valid. It is
assumed that the potential is given correctly by
Chodorow's form inside the muffin-tin sphere,
while it goes as = —2/r (in Ry) outside the muffin-
tin sphere. The Fourier transform of this poten-
tial screened by Lindhard's dielectric function
[VcII/s(q, 0)] is shown in Fig. 3. The Fourier
transform of Chodorow's potential screened with
Lindhard's dielectric function [Vc/e(q, 0)] (but with
the assumption that the potential outside the
muffin-tin sphere is essentially constant) is also
shown in the same figure, and it is clear that the
two curves differ from each other only in the
small-q region of 0.3 a. u. Since the contribution
of the umklapp processes to the matrix elements
is also very important, the contribution from the
phonons of large wavelengths to the mass-renor-
malization constants X-„ is not very important.
Thus one is justified in taking the gradient of the
potential outside the muffin-tin sphere as essen-
tially zero for the calculations of the X"„. It is
shown by Lee 3 that Chodorow's potential repro-
duces the Fermi-surface properties quite accu-
rately and that the correction to this potential due
to nonlocabty is also very small.

V. COMPUTATIONAL TECHNIQUES

The calculation of the velocity-renormalization
factors X.„" and the scattering rates of the quasi-
particle 7-„ involve the following three major steps.

A. Calculation of Energy - Band Structure

The interpolation-scheme formalism discussed
by Mueller" has been followed for calculating the

TABLE III. Constants 8~&~(R) occurring in the tight-
binding electron-phonon-interaction matrix elements.
[Note that when rn = —1 or -2, only negative values of p
contribute and Ft (8z, yz) in the table is replaced by the
corresponding YI ~(8s, 00s). B«„=0for )I negative and
m positive. j

1.2-

v, (q)Ab, — (0)
v, M(q)

Ift —-—6
(. (q,0)

m=0
p t=0 1

[(i /4v) Y20 (8R&i 9 s) ] —['0 IIYI0 (8II, 0 II) ]

1 0 [P .Y,*,(8, q,)]"'
N(E F)

m=i 0 [(i/4II)Y2, (8s, (ps)] 68IIYII(8s, ques)]
~ 0

1 0 —[V'~YI0(8s (0a)]'"

0 0

m =2 0 [(1/4m)F22(8+, yz)] ~

4~~
I

0 2.0 4.0 6.0 8.0 10.0 12.0
q (O. u. )

FIG. 3. Fourier transform of Chodorow's potential
screened by Lindhard's dielectric function. Whereas
V~(g) is assumed to have zero gradient outside the muffin-
tin sphere, the modified form VcM(r) goes as -2/x (Ry)
outside the muffin-tin radius, and VCM(q)/&(q, 0) leads to
the correct long-wavelength limit 1/N(Ez) = 0.285 Ry.
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TABLE IV. Atomic force constants used in the calculations
of the phonon-dispersion relation for copper.

Constants
dyn/cm
13 102

-1417
14 820

361
-238

642
315
190
385
104

—284
396

—137
9

—16
-55

—138
—232

Atomic force

fI|'ee&

&xx~

&xx3

Pyge

&xe3

&~4
~ee4

&x&4

&xxe

Pyg8

Reference 25.

Q =q/2k~

Here k~ represents the free-electron Fermi radius
for copper and is taken to 5. 52 in v/4a units, a
being the lattice constant.

Another important quantity that is involved in
the matrix elements is the phonon-dispersion rela-
tion, which was calculated using a Born-von
Karman atomic-force-constant-dependent model.
The model takes into account six shells of nearest
neighbors. The parameters were determined
from the inelastic-neutron-scattering data along
the principal-symmetry directions, 6 and are given
in Table IV.

It has been assumed, as in the usual band-struc-
ture calculations, that the potential outside the
muffin-tin radius is constant, and the constant
quantity VMT, the potential at the muffin-tin

band structure of copper, and then the QUADaa

scheme for determining the Fermi energy was used.

B. Evaluation of Matrix Elements N&"&, {q )

The calculation of the matrix elements involves
essentially the computation of the form factors
f(q) and fz(q), th, e Fourier transform of the poten-
tial, V,(q), and the dielectric constant e(q, 0).
The dielectric function e(q, 0) is assumed to be of
Lindhard's form and is given by

a(q, 0) =1+ [4ve N(e„)/q ]1.(Q)

where N(EJ„) is the density of states at the Fermi
energy and

I (Q) = — 1+ ln
1 1 —Q 1+@

radius, has then been subtracted from Chodorow's
potential on calculating the Fourier transform of
the potential V,. Thus the gradient of the poten-
tial is essentially zero outside the muffin-tin
radius for V,.

The contribution from umklapp processes enters
into the expression for the matrix elements
M.„-„.„(q) in our formalism in a natural way since
the basis set representing the wave function 4„
includes higher OPW's too.

Owing to the high symmetry of the points selected
for calculating the mass-renormalization constant
X~, it was possible to reduce drastically the num-
ber of matrix elements that had actually to be
computed. Group-theoretical transformations on
the eigenvectors were then used to obtain the rest
of the relevant matrix elements resulting in con-
siderable saving of computer time.

C. Ca1cnlation of Xf and v)

As was mentioned earlier, the major contribu-
tion to the integrals for Xg and 7-„comes from the
transition from the states near the Fermi surface.
To evaluate these integrals, a technique similar
to the QUAD technique discussed by Mueller
et a/. 4 was followed. First the double Brillouin
zone was divided into small cubical boxes as in the
QUAD scheme and then the contributions to these
integrals considered from only those boxes that
enclosed portions of the sixth-band Fermi surface
of copper. For each of these latter boxes a quad-

tWratic-interpolation fit of the quantities I I~~i~(q) I /
~;„, ~;„, and E"(k') was derived. Unlike the
QUAD scheme, however, a three-dimensional
quadratic-interpolation scheme was adopted, in
which for every set of (q„, q„) values a different
parabolic fit is performed over three q, values.
This considerably reduced the rms error of the
least-squares fit, being consistently about 5% for
the mesh size equal to four. The Diophantine
method is then used to calculate the integrals in

Eqs. (8) and (9) with 15 000 points for every box.
Owing to the well-behaved nature of the integrand,
the statistical error is less than 0.01%. In this
procedure it was sufficient to calculate the matrix
elements at only 70 independent points for each
value of k; and out of the 64 cubes into which the
positive octant of the Brillouin zone was divided,
it was necessary to consider only 16 in the calcu-
lations of )"„.

VI. RESULTS AND CONCLUSIONS

ln Fig. 4 Iga-„i I (defined below) was plotted for
three values of k [with k' varying on the (110) zone
of the copper Fermi surface] for two different
cases. In the first case, we consider only the
contribution (represented by solid lines) from the
plane wave of g.„and ga. to Igaa I

a given by
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0.52-
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0 (4.0, 4.0.4.0)
~ (6.54, 0,0)

(4.27, 4.27,0)

NECK
REGION

I a I
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k' (deg) [I I I]
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—0.48

—0.52

—O.I6

— 0.0

[I 10]

FIG. 4. Variation of the
coupling constant Igz&. I2 on the
Fermi surface. The point k'
lies in the (110) plane and is
given in terms of the angle
measured from the Z direction.
The point k lies on the high-
symmetry directions indicated.
The solid lines (with open sym-
bols) represent the contribu-
tion from the plane-wave
states only; whereas the dotted
lines (with closed symbols)
represent the total contribu-
tions including those from the
d states.

whereas in the second case we consider, in addi-
tion to this, the contribution (represented by
dotted lines) from the d state also.

With the present choice of potential (viz. , that
of Chodorow'~}, it is found that the value of in-
tegrals E~, and S„defined in Eq. (19) in atomic
units is about 10 (see Tables V and VI) and the
d-d matrix elements are, in general, smaller in
magnitude than the matrix elements between the
d states and the plane waves by at least one order
of magnitude. Thus we are justified in completely
neglecting the d-d part of the electron-phonon ma-
trix elements. %e must, however, point out that
with other choices of potential, and/or when the
wave function has considerable d character, this
simplification may no longer be possible.

Thus we observe from Fig. 4 that the matrix
elements are highly anisotropic. The anisotropy
observed in the matrix elements could be observed
only because we have considered explicitly the
various factors like the phonon-polarization ef-
fects, the umklapp processes, the contribution
from s-d hybridization, etc. In contrast to the as-
sumption made by several workers2'~ that most of
the contribution to the electron-phonon matrix
elements comes from the longitudinal phonons,

Table VII shows that the transverse phonons are
equally important in the electron-phonon interac-
tion in copper. Indeed the main reason for the
discrepancies between experimental and Teichler's
result is that he considered only contributions
from the longitudinal phonons. The results here
agree with those of Nowak in showing that it is es-
sential to consider the transverse phonons, par-
ticularly for the transition metals. The long tail
in the form factors f(q), f~(q}, and the screened
potential V,(q)/e(q, o) (see Figs. 2 and 3) shows
clearly that the umkl. app processes are at least as
important as the normal processes.

The results obtained by applying our formalism
for A.„- and ~g along symmetry directions are given
in Table VTLI and show clearly the trend predicted
by I ee, based on a phenomenological interpreta-
tion of the cyclotron-mass data, and agree very
well with the results obtained by Nowak. As ex-
plained below, this is due to the same physical
basis of the two calculations. Nowak has suggested
two possible explanations for the discrepancy be-
tween his results for the velocity-renormalization
factor along the [110]direction (which are almost
identical to ours) and the experimentally derived

TABLE VI. Constants 10 8&&(IR I) calculated for cop-
per using Chodorow's potential (R is the nearest-neigh-
bor distance in a.u. : R =6.83087/~2= 4.8304).

TABLE V. Constants 10 EI& for copper using Chodorow's
potential {in a.u. ).

—0.0012-0.4971
—1.2340

0.0028
—0.0069
—0.2322

-0.0030
0.0005
0.0017

—0.8143
—0.1400
—0.0559
—0.0216
—0.0080
—0.0027

—0.0558
—0.0307
—0.0142
—0.0059
-0.0021
—0.0005

—0.0127
—0.0078
—G. 0038
—0.0015
—0.0003
—0.0008
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TABLE VII. Contribution from the transverse and

longitudinal phonons to electron-phonon matrix elements
6.25 )g~. ( (a.u. ) for copper.

E (in g/4a)

(4.o, 4.o, 4.o)
(6.54, 0.0, 0.0)
(4.27, 4.27, O. O)

(4.oo, 4.oo, 4.o)
(6.54, o.o, o.o)
(4.27, 4.27, 0.0)
(4.o, 4.o, 4.o)
(6.54, o.o, o. o)
(4.27, 4.27, 0.0)
(4.0, 4.0, 4.0)
(6.54, 0.0, 0.0)
(4.27, 4.27, 0.0)
(4.0, 4.0, 4.0)
(6.54, o.o, o. o)
(4.27, 4.27, 0.0)

Z' (in m/4a)

(4.364, 4.364, 2.877)
(4.364, 4.364, 2.877)
(4.364, 4.364, 2.877)
(4.263, 4.263, 0.5272)
(4.263, 4.263, 0.5272)
(4.263, 4.263, 0.5272)
(4.246, 4.246, 1.0583)
(4.246, 4.246, 1.0583)
(4.246, 4.246, 1.0583)
(3.469, 3.469, 4.905)
(3.469, 3.469, 4.905)
(3.469, 3.469, 4.905)
(1.832, 1.832, 5.557)
(1.832, 1.832, 5.557)
(1.832, 1.832, 5.557)

Longitudinal
phonons

0.0275
0.1648
0.5484
0.2064
0.3753
0.0096
0.1371
0.3615
0.0355
0.0083
0.1521
0.0682
0.3578
0.9936
0.4023

Transverse
phono ns

0.0589
0.8664
1.180
2.3357
0.3420
0.01186
2.0603
0.1853
0.0300
0.0983
1.1522
2.2437
2.9947
0.5227
0.1142

value of Lee. ' He points out, following
Christensen, ' that it is possible "that the
Chodorow potential may be less than fully renor-
malized by the electron-electron interaction. If
this is so, Lee's calculation might underestimate
X(k). It is also possible that the discrepancies
noted above could arise from uncertainties in the
interpolation of the experimental data along various
orbits to yield local values of the "quasiparticle
velocity. " However, we think the discrepancy be-
tween our results and those of Lee' and the ex-
cessively small d-d contribution to our electron-
phonon interaction matrix elements can be attrib-
uted to the following possible sources of error in
our calculation: (a) The potential experienced by
electrons in the presence of lattice vibrations
cannot strictly be taken in the form given by
Chodorow. The fact that the potential is not in
general„spherically symmetric in the muffin-tin
region is also a possible source of error. As
has been mentioned by Barisic, 7 the rigid-ion ap-
proximation is less accurate for highly localized

d states than for free electrons; in the tight-bind-
ing d-d matrix element the error is more than that
in the matrix elements between the plane waves
or between the plane-wave and d states. (b) The
possible error from the atomic Slater-type expan-
sion used for the functions y~„(r) should also be
considered. It is conceivable that crystal-opti-
mized functions constructed to match the APW
functions may lead to significant improvements.
(c) Finally, Lindhard's approximation for the di-
electric function is strictly valid only for free
electrons, although it is reasonable to assume
that this assumption has not introduced substantial
error because of the over-all small d character
on the Fermi surface of copper.

We shall comment briefly on the differences be-
tween the recent work on the electron-phonon in-
teraction in copper by Nowak and the present work.
Nowak's approach is an extension of the phase-
shift description of the electron-phonon interaction
in the alkali metals discussed by Allen and Lee,
which is based on Golibersuch's formalism. In
Nowak's approach, the self-consistency of the
charge distribution is taken into account empirical-
ly by adjusting the Fermi-energy parameter to
satisfy the long-wavelength limit of the pseudo-
potential, as is discussed by Heine and Lee.
Thus, although his pseudopotential is correctly
screened in the long- and short-wavelength limits,
it might not be accurate for the intermediate re-
gion of wavelength. We believe that the screening
effects in copper can be represented approximately
by Lindhard's dielectric function 5. For the
heavier transition metals, however, we would cer-
tainly have to modify our dielectric function, be-
cause a translationally invariant form of dielectric
function is no longer even approximately valid due
to the predominance of d electrons at the Fermi
surface This modification can be incorporated
in the presentmethod in a straightforward manner.

TABLE VIII. Comparison of the results for the point-mass enhancement factor A@ and the relaxation time v„ for copper
with those given in the literature.

~i00

xiii

1
(107 sec /'K3)

~i00

1 go~ sec-i/ K3)
~iio

1
{107sec /'K3)

xiii

Lee

0.211+ 0.014

0.038 + 0.012

0.219 + 0.012

Teichlerb

0.086

0.164

0.185

0.151

Now ak'

0.21

0.10

0.17

0.12+ 0.02

0.580

0.115

4.8

Koch and Doezemad

1.15+ 0.05

0.12+ 0.05

3.5+ 0.18 '

Present work

0.175 + 0.017

0.086 + 0.009

0.232 + 0.023

0.150+ 0.02

1.2

0.12

5.5

'See Ref. 5. See Ref. 9. 'See Ref. 10. See Ref. 12.
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FIG. 5. Coordinate system of two nearest-neighbor
atoms a and b.

Nowak's method has an advantage for nontransition
metals in that screening effects are taken into ac-
count empirically. However, owing to the more
complicated screening effects involved, it is un-
clear whether the method can be extended to cal-
culate electron-phonon-interaction effects in the
heavier transition metals.

An important advantage of the present approach
in calculating the matrix elements of the electron-
phonon interaction is that matrix elements between
states of different energies can be calculated.
These matrix elements, which cannot be derived
from Golibersuch's formalism, are essential to
calculate the phonon dispersion relations, as has
been mentioned by Sinha. 3

The discrepancy between the present results for
X„and those obtained by Teichler, who obtained
a reasonably good average value of X using the
Wannier-function representation and a rather crude
model for the phonon spectrum, clearly demon-
strates the importance of the phonon-polarization
effects and the umklapp processes in the anisot-
ropy of the electron-phonon interaction. The
average value X„=O.15+0.02 of the velocity-re-
normalization constant derived from the relation

Xgy QQ (6XJOO+ 12XQQQ+ BXfgg) (22)

is consistent with the value X„=0. 10+0.01 inferred
by Nowak and Lee from experimental data, .

Thus essentially we have developed a rapidly
convergent and comparatively inexpensive method
of calculating the electron-phonon-interaction ma, -
trix elements based on the OPW tight-binding

method, and it can be used to investigate such ef-
fects in transition metals. Also, it is essential to
consider explicitly the effect of phonon polariza-
tion and umklapp processes in order to understand
the anisotropic nature of the electron-phonon in-
teraction. The existence of such anisotropies in
superconductors should be tested experimentally.
The possibility of such experiments is now en-
hanced with the recent techniques of phonon gener-
ation by Narayanmurti. 3

From the good agreement of the present results
and those of Nowak with Lee's interpretation of
the experimental data, , it is fair to conclude that
a proper understanding of the electron-phonon in-
teraction in copper has now been achieved. One
of the immediate applications of the present meth-
od will be to investigate the superconducting tran-
sition metals. It would be highly interesting to ap-
ply the present formulation to make a similar in-
vestigation of the fifth-band sheet of the Fermi
surface of palladium. This band is known to have
a large cyclotron mass, and the Fermi energy
occurs on the single-particle density-of-states
curve in a region where the latter has large first
and second derivatives. ~ One therefore anticipates
a large effect of the electron-phonon interaction
on the Fermi-surface properties on this sheet.
This speculation is based on similar changes ob-
served in the fifth-band sheet of the palladium
Fermi surface as a result of large hydrostatic
pressure, ~ and also from positron-annihilation
studies as a function of pressure in palladium. 3'

Another immediate application is to calcul. ate the
phonon-dispersion relation using this model. We
hope to return to this problem in the near future.

ACKNOW( LEDGMENTS

I am highly indebted to Dr. M. H. Cohen and
Dr. Martin J. G. Lee for their helpful guidance in
the last stages of this work. My thanks are due
to Dr. F. M. Mueller for suggesting the problem
and for his continued interest in the work, to
Dr. G. Das, Dr. S. K. Sinha, and Dr. J. Robinson
for many helpful discussions and suggestions, to
Dr. O. C. Simpson for sponsoring this work, to
Dr. David Price for making available his computer
program for obtaining the phonon spectrum, to
the Chemistry Division of Argonne National Labor-
atory for letting me use their computer facilities,
to the ANL computation center for their excellent
service and cooperation, and to the secretaries of
the Solid State Science Division for their excellent
typing service.

APPENDIX A

Here will be derived the electron-phonon matrix elements between the tight-binding d states p"„and y„" ~

which run as
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(q&. le~(r)lqo.')=~e '"'"
~

9~.(r-lt, )g;.(r)q,.(r)d'r+~e'"' '
I

q,*.(r)r»(r)q, .(r &,)d'r
Rl Rl

+2 e""' "'a&e,„ I q,'„(r—K,)q),„,(r —K,)g,„(r)d'r,
Rl

5, going over the nearest neighbors. First the integral

(Al)

will be considered.
is given by

(A2)
) 1/2

(rr"„(r)d.„(r)(r,„,(r-(()d'r=(
(

((
y,
" (r)rr(r(r)rryr„. (r —K)d'r

2Mq), Q0 )
As the potential is spherically symmetric, VV(r) =(dV/dr)r Th. e screened potential

Thus,

1 - 1 * V
V(r) = I e '(r, r')V, (r')d r'= —

o II I( e ""''V (r')d r'd q =
o I

' e "'doq
(2v)' l.l e(q, o) ' (2v)'

I
e(q, o)

dV —1 I* g.p V,(q) .r ~ VV(r) — —
(2 ),

I

e (' )i(l rd q

Z i 4v(21+1)j,(qr)Y~(8, )
'

q cos8, sin8, d8, dy, dq
1 V.(q)

7f /~o
' aq, o

4v o. V,(q) 1
=( ),

I

qj, (qr) (' )dq=2, m(r) (As)

Now

N(r) = f, q'q, (qr)[V, (q)/e(q, O)]dq .

(A5)

~ "4l t'-R I

(2l+1)i,(gr )k,((r,)P,(cose), r, = (r, R)-ir- I so
whence

cp, (r —0) =Q C~ A~ro e )""'
Y2 r (8((, q o) =Z B„.,„(R)r'R 'Y,„(8,q() Z A)C) e ~p ' ~-" '( 2 & t &

I p I

tu P
A

where the constants B„„(R)depend on the coordinate systems chosen and the definition of the functions
Y. .. i.e. , whether they are defined to be complex or real functions. The derivation of the expression for
B „(R}is given in Appendix B.

Expandjng g" "a' jn terms of Bessel functjons of imaginary arguments and half-integral orders,

e "' "'.= —Z (2l+1)i,(hr()P, (cosO)It, (4r)) —( Z (2l+1)[ ri&,'(p'()k, (E )r)+i, (gr()k,'(gr))r&]p, (cosa)
l~0 l~0

= ~ fi(5r& h &)Pi(cosa) (A6)l~0

wh. ere

f, (fr&, Er&) = —(2l + 1)[fr& i((fr&)k, (gr&) + (r& i, (fr&)k[(tr&) + i,(fr&)g, ((r&)] (AV)

Substituting the expansion of dV/dr and y~ (r —R) in E(l, (A2),

e
qo mfa' 2M ~ gq)~, 0,

g(, (~)S«(IR I) ( P, ( seco)Y,,(r)( 'e r)YIo' (r)dn
ltd

0$~ ~ ~ ~ ~ 5
2&t&l g I

00

S„(IRI)=5 A)A, C~C, I( W(r) f,(8)r&, g~r)) e ~(("r "R 'dr

The factors S«(IR I) are shown in Table VI.
The integrals over the angular variable 8, q( in Eq. (A8) are givenby
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'

P,(cosa)r, „(~)(~ e;,)F,„(~)dA

Z y', „(~)Z,.„(rt) Z D;„1~(i)(,' v—)'t'rg.(~)y,„(r)da
2~+ ~ Sf-""1gOy 1

2t+1Z r*,.„(~)D";„Zc(t, 1, z,; f, M}c(t, 1, 1.„0,o),
~

1,.„(r)F„(i)r„,„(i)dt's

N=-1) 0) 1

1/3 2t+ 1 8 " Nr,.„„(z)a;,c(t, l, r.; t, M)c(t, l, I.;o, 0) c(,fI, 2;m- l- M, t M)
+ N-» lgOp1

1, 3, . . . , —t+1 if t is even
O if t= 1

(Alo)

Thus substituting in Eq. (A8) the results from Eq. (A10),
1/P, 4 2t+1

I;,...= —, 2 a„„,(i)r,„,„(A)s„(~z~)a-"„Qc(t, 1, 1,;p, M)c(t, 1,I„o,o)

x C(/, I., 2;I—p —M, p, + M) C(/, I., 2; 0, 0),

f = 0, 1, . . . , 5, 2 - t ~
~

p, ~, M= —1, 0, 1; I.= 0, 2 if t=1
1~3p ~ ~ opt+1 1f t is even

consider the terms in which charge density is on one center and VV on the other:

8""' ~'R e"„p„r- y„~ r- VV~ d'~

Qe""'"'" d'~@~ (r-R)y .(r-]%) d'r'd'q't, — e '"' "V(~')q'e-,

dS ++ (~r R)+ ~ (P R) e f0~'(I' R)

4v v nk'"f)'R ~t

'

d8 I f4~ 8 ~

x Z (t)'f, (q')r, „,.(q')c(2, L„2;m, m'-m)c(2, L„2;0,0)
I -"0)3)4

2J+S '~'
y, (q') = ' Z C,C,X,W,

jl

v'j, (q'r) e '"""'d»
W

and the C's are th Clebsch-Gordan coefficients. Expanding the term —e "'" in terms of Bessel functions,
noting that the q vector gives spherical harmonics of angular momentum one, and substituting Eq. (A12)
into (Al), one gets Eq. (19).

APPENDrX 8

B„„enters the expression for p, (r 0) =- p, —(~,) through the relation

~,'y,.(e, q, ) = Z J3„„(ft)~'~'-'r,„(e,q ) .
2)tkp

Let the atom 5 be situated at the point 5= (X, F, Z) in the coordinate system centered at a(see Fig. 3)

r~=r —5
First consider the case m = 0:

r', Z20(e„q, ) =X„(~'j2)(3cos'8, —1) = F0-', (3s,'- 2) =NO g [3(z —ZP —(r —B)2]

[(3g' —z') + (3g' —R') —6~8 cose cose~+ 2' cosOj
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=2 YQQ(8, y)+R FQQ(8R, yR) -NQQ(32"R cos8cose„—rR cose),
where NQQ=(a/4 v)

~ .
Substituting for cosa = cos8 cos8R+ sin8 sin8R cos(y —yR), one gets

bbrbQ(eb, yb) =r FQQ(8, y)+R Y'2Q(8„, cpR)-'rRNQQ[3cos8coseR c-os8cos8R ——,
' sin8 sine„(e"' 'R'+e "' 'R')]

~YQQ(ey 'P) +R YQQ(8Rp 'PB) bRNQQ(3 Y1Q(8R PR) Ylb(8~ m)/&iQ

- (I/2N'„)[Y„(e, q)~, (s„,q „)+Y, ,(s, q) Y', ,(8„,q„)]), (B3)

where

N„=I/(4~)"', N„=3/(4~)"', N„=-3/(a~)'" .
Thus, by comparison with Eil. (Bl) one gets the values of BQ,Q(R) listed in Table III.

Next consider the case m = 2:

tb [F22(eb 'Pb) + F22(8b 9 b)] =N22(Xb —Pb) =N22 [(X—X) —(3 —Y) ] =N22 [(X 3 ) + (X F .) —(SX—$F)]
=r [Y22(8, y)+ F2 2(8, y)]+R [Y22(8B, yR)+ F2.2(8B, y )R]-N (xX-yr)

(B3)

X-»=-'[( +' )(X+'Y)+(X-'Y)( -'y)]=l R E [S (8 q)r (8 q )] .
eN12 1

Thus,

~l l F22(eb, 9 b)+ Y2 2(8, 9 b)]=~[F22(8, I)+ Y2 2(8, 9 )]+R'[Y22(8B,9 )+ Y2~(8, P )]

(N22/~11)+R[rll(et 0 ) Yll(8Rt 0 R) + Yl 1( 0 9 ) Yl 1(8RP 'PR)] ' (B4)

Here

N„= (Ia/ail)"'.

Similarly,

l b[F22(eb& 9 2) Y2 2(eb~ tb)]=N2232(&blab) =N2222(~

=9[r (e, q) —r (s„,q„)]+R [r (e„,q„) —r (e„,q„)]-N 32(&r+yx)

[Y22(8 9 ) Y2 2(8Rf 9 R)]+R [Y22(8Rf 9 R) —Y2~(8R, eR)]

&R(N22/Nil)[rii(8 P) Yll(8R PR) —Yl-1(8 P) Yl-1(8R PR)]

Adding Eqs. (B4) and (Ba), one gets

+br22(eb Pb) +R Y2'2(8 P) +R Y22(8Rt +R) ' R (N22/N11) Yll(ef P) Yll(8 ps RR)

and similarly

br2 2(eb 9 b) ~ 2 2( 'P) +R Y2 2(8 'P ) (N22/+11)rl 1( 9 )Yl 1(

Comparing EQis. (B7) and (Ba) with Eq. (Bl), one gets the expression for B2„(R)and 8 2,„(R) listed in
Table III. One can proceed identically and get the rest of the constant B„,„(R) listed in Table III.

(B7)

(Ba)

*Based on work performed under the auspices of the U. S.
Atomic Energy Commission. The paper is submitted for partial
fulfillment of the thesis requirements for the Ph.D. degree at
the University of Chicago.
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Electrical Conductivity in Disordered Systems
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We investigate the temperature dependence of the hopping conductivity in a system in which hopping

only takes place between nearest-neighbor centers. The system is simulated by a disordered

classical-resistance network and analyzed in terms of percolation along critical paths and in terms of an

effective-medium theory. The model is applied to the recent small-metal-particle experiments of Zeller.

I. INTRODUCTION

In recent years transport phenomena in disor-
dered systems have aroused great interest among
experimental and theoretical physicists. ' The
thermally activated hopping of charged particles
(electrons, ions) between localized centers is con-
sidered one of the most important mechanisms for
the description of electrical conduction in such dis-
ordered or amorphous materials. The transition
rate p for the hopping (tunneling) between two well-
localized centers is generally assumed to be of the
form '

p = poe ' "e "e, p = 1/k, T .

g is a constant depending on the properties of the
material, but not on x, 'I', or &E, x is the distance
between the centers, ~ is the activation energy
for the hopping process, and n ' is the decay length
of the (electron, ion) wave function localized at a
single center.

Mott has argued that in a disordered system ~E
should be of the form

where N(Ez) is the density of states at the Fermi
level. By maximizing p with respect to ~, Mott
then predicted the temperature dependence of the
dc electrical conductivity 0 to be described by the
law

Equation (2) should be valid for not too high tem-
peratures and is indeed found to be consistent with,
e. g. , the dc conductivity data of amorphous ger-
manium in the temperature range 50 &T &300 K
(see Refs. 2 and 2 and the references cited therein).

Starting from Mott's model, Ambegaokar et al. 3

have assumed that the centers are randomly dis-
tributed in space and that the energies of the elec-
tronic states, localized at the centers, are also
random in a region around the Fermi energy. Then
they are able to formulate the problem in terms of
a classical-resistance network and derive Mott's
law (2) from percolation considerations.

Kirkpatrick~ investigates some general proper-
ties of disordered classical-resistance networks.
He especially discusses the results of a critical-
path analysis and those of an effective-medium the-
ory by comparing them with numerically calculated
conductivities of some random networks (i.e. , net-
works in which the values of the individual conduc-
tances are distributed according to some probability
law).

In this paper the temperature dependence of the
hopping conductivity in " system in which hopping
only takes place between nearest-neighbor centers
is investigated and discussed. This means that we
assume the transition rate p&& for the hopping be-
tween centers i and j to have the form

p&&= poe '& if i,j are nearest neighbors

ln(o/oo)~ —P' ' . =0 otherwise.


